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Automated differentiation of mixed 
populations of free‑flying female 
mosquitoes under semi‑field 
conditions
Brian J. Johnson 1,3*, Michael Weber 2,3, Hasan Mohammad Al‑Amin 1, Martin Geier 2 & 
Gregor J. Devine 1

Great advances in automated identification systems, or ‘smart traps’, that differentiate insect species 
have been made in recent years, yet demonstrations of field‑ready devices under free‑flight conditions 
remain rare. Here, we describe the results of mixed‑species identification of female mosquitoes 
using an advanced optoacoustic smart trap design under free‑flying conditions. Point‑of‑capture 
classification was assessed using mixed populations of congeneric (Aedes albopictus and Aedes 
aegypti) and non‑congeneric (Ae. aegypti and Anopheles stephensi) container‑inhabiting species of 
medical importance. Culex quinquefasciatus, also common in container habitats, was included as a 
third species in all assessments. At the aggregate level, mixed collections of non‑congeneric species 
(Ae. aegypti, Cx. quinquefasciatus, and An. stephensi) could be classified at accuracies exceeding 90% 
(% error = 3.7–7.1%). Conversely, error rates increased when analysing individual replicates (mean % 
error = 48.6; 95% CI 8.1–68.6) representative of daily trap captures and at the aggregate level when Ae. 
albopictus was released in the presence of Ae. aegypti and Cx. quinquefasciatus (% error = 7.8–31.2%). 
These findings highlight the many challenges yet to be overcome but also the potential operational 
utility of optoacoustic surveillance in low diversity settings typical of urban environments.
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Accurate and timely mosquito surveillance is crucial for improving the effectiveness and evaluation of vector 
control measures. Unfortunately, traditional surveillance methods are often hindered by a lack of expert human 
resources and logistical  difficulties1,2. There is clearly tremendous utility in the development of robust and reli-
able automated trapping systems, or “smart” traps. By differentiating between insect species and transmitting 
counts remotely and in real-time3, these traps offer a robust and reliable solution for mosquito  surveillance4–6.

Most smart trap prototypes rely on either image or acoustic data acquisition, but it is the optoacoustic capture 
of mosquito wingbeat frequencies (WBF) that has historically received greatest  attention7–11. The greater focus 
of WBF is likely due to the inherent difficulties in remotely imaging insects to sufficiently control for variations 
in color, detail, focus, and  angle12. These variations pose a significant challenge when it comes to picturing 
mosquitoes in a way that reliably reveals their distinguishing morphological features. In response, image-based 
surveillance has been most widely adopted by citizen science campaigns wherein publicly captured images of 
mosquitoes are sent to a central repository for analysis by trained medical entomologists or  taxonomists13–15. Such 
campaigns are great public engagement tools with the potential to track broad species distributions and exotic 
incursions, but they are not yet suitable for traditional surveillance operations. However, substantial progress 
has been made recently in overcoming historic  limitations16–20, and it is expected that the number of field-tested 
photographic smart  traps21 will increase significantly in the coming years.

Despite the heightened attention that optoacoustic surveillance has received, it is important to acknowl-
edge that reliance on WBF as a diagnostic marker for species separation presents its own unique challenges. 
While WBF may differ markedly between species due to sexual  selection22–25, the range of female WBF is nar-
row and variations may occur in response to environmental, physiological, and behavioral  factors26–30. Result-
ing frequency overlap amongst closely and distantly related  species7,8 can greatly impede accurate species 
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 differentiation7,8. While simple logical extensions to classification algorithms such as the time and place of 
capture may help to reduce potential confusion between species, some confusion is likely to remain. In spite 
of these challenges, WBF-based classification remains promising when there is a clear distinction between the 
genera being observed and when the number of species being identified is relatively small.

Here, we describe the development, performance and limitations of an innovative optoacoustic smart trap 
design that enabled us to reliably differentiate congeneric and non-congeneric species under free-flight condi-
tions. We focus on the differentiation of medically and economically important mosquito species inhabiting 
low-diversity urban  environments31,32. Critically, each release scenario is designed to represent a current real-
world surveillance challenge, including:

Scenario 1 Differentiation of the globally invasive, container-breeding mosquitoes Aedes albopictus and Aedes 
aegypti in the presence of Culex quinquefasciatus. Improving the differentiation of these species is essential 
for exotic species monitoring, particularly in first  ports33,34, and public health surveillance. Ae. aegypti and 
Ae. albopictus are globally invasive and are competent vectors of dengue, chikungunya, and other important 
 diseases35 and both are commonly collected together with Cx. quinquefasciatus36–40.
Scenario 2 Differentiation of Anopheles stephensi and Ae aegypti in the presence of Cx. quinquefasciatus. Dis-
criminating these species is critical to improving our understanding of the relative abundance, distribution, 
and host-seeking activity of the introduced malaria vector An. stephensi41 in urban environments in the Horn 
of Africa. An. stephensi is currently known to share larval habitats with Ae. aegypti in  Africa42 and it is collected 
with both Ae. aegypti and Cx. quinquefasciatus, a widely distributed species in  Africa43, elsewhere in its  range44.

Results
Wingbeat frequency datasets
The developed BG-I trap system (Fig. 1) enabled us to generate substantial WBF datasets (Table 1) for each 
species tested quickly and without manipulation of insects (i.e., tethering) prior to recording. In total, 5,092 
individual recordings were produced from 4,500 released mosquitoes, suggesting an ca. 12% recapture rate. 
The mean WBFs of mosquitoes assayed spanned 302.6 Hz (Table 1), with the lowest WBF recorded from Cx. 
quinquefasciatus (302.6 Hz) and the highest recorded from Ae. albopictus (741.3 Hz). Overlap in WBF distribu-
tions, quantified using the overlapping coefficient (OVL)45, occurred for all species (Table 2, Fig. 2a,b). Notable 

Figure 1.  Overview of the tested BG-I optoacoustic trap design. (a) The infrared-LED sensor array of the BG-I 
trap system is positioned 20 cm above an integrated BG-Counter 2® (Biogents AG, Regensburg, Germany) 
unit. In the space between the IR-LED array and the BG-Counter trap funnel (the ‘observation volume’), 
mosquitoes are in free flight. They reflect and scatter IR light as a superposition of a constant ‘body signal’ 
and a time-varying wingbeat signal. This signal is recorded continuously using a large-area photodiode, 
transimpedance amplifier and analog-to-digital converter. The digitized wingbeat recording is stored in a ring 
buffer. (b) Incorporation of the BG-I electronics and sensor array with the commercially available BG-Counter 
2® (Biogents AG, Regensburg, Germany) smart trap system. The BG-Counter 2 provides a trigger signal to the 
BG-I to retrieve the data from the wingbeat recorder from the preceding 200 ms of flight in the observation 
volume, marking the point just before the mosquito was captured by the airflow of the suction trap.

Table 1.  Sample size, signal length, and mean female wingbeat frequency observed for each species recorded 
in the present study.

Species Records (N)
Mean wingbeat 
frequency (Hz)

95% CI of wingbeat 
frequency

Mean signal duration 
(ms)

95% CI of duration 
(ms)

Ae. aegypti 2118 573.7 572.2–575.1 101.0 99.1–102.9

Ae. albopictus 881 603.9 600.9–607.0 86.02 83.3–88.8

Cx. quinquefasciatus 783 483.3 480.7–486.0 119.2 116.3–122.0

An. stephensi 1041 512.0 509.2–514.9 121.1 118.4–123.8
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overlaps occurred between Ae. aegypti and Ae. albopictus (OVL = 0.67) and between Cx. quinquefasciatus and 
An. stephensi (OVL = 0.68).

Model selection
We found that the tested algorithms, XGBoost and Multilayer Perceptron (MLP), generally performed better 
in the absence of principal component analysis (PCA), whereas the use of data scaling did not improve general 
model performance (Tables S1, S2). In both sets of species comparisons, data feature type, i.e., Mel Frequency 
Cepstral Coefficient (MFCC), Power Spectral Density (PSD), and fundamental frequency, was the only parameter 

Table 2.  Overlapping coefficients (OVL) among all female wing beat frequency distribution pairs. OVL is 
a measure of similarity between two population distributions. The value of OVL ranges from 0 to 1, where a 
value 0 indicates that there is no overlap and a value 1 indicating identical distributions.

Species pair Overlapping coefficient (OVL)

Ae. aegypti

Ae. albopictus 0.67

Cx. quinquefasciatus 0.21

An. stephensi 0.43

Cx. quinquefasciatus
Ae. albopictus 0.15

An. stephensi 0.68

Ae. albopictus An. stephensi 0.31

Figure 2.  Summary of recorded female wing beat frequency distributions and classification performance 
of the BG-I trap system for all species released together in each release scenario. (a-b) Wing beat frequency 
distributions for species released together during release Scenario 1 and Scenario 2, respectively. (c-d) Percent 
(absolute) error (mean ± 95% CI) of automated (BG-I) species classifications relative to physical trap counts for 
species released together during release Scenario 1 and Scenario 2, respectively. Percent error observed for each 
individual replicate is shown as a symbol (n=12).
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to contribute significantly to classification accuracy (Tables S3, S4). The use of MFCC, in combination with 
XGBoost algorithm, produced the most accurate classification models, with few exceptions. The use of PSD with 
XGBoost generally produced more accurate predictions than the use of MFCC for the classification of Ae. aegypti, 
Ae. albopictus, and Cx. quinquefasciatus, but this model was found to underperform relative to MFCC-based 
models when classifying replicate data. Based on chosen models, Ae. aegypti was predicted to be the identified 
with the greatest sensitivity, whereas Ae. albopictus and An. stephensi were predicted to be the identified with the 
lowest expected sensitivity (Table 3). Final chosen models for each combination of species included the use of 
MFCC without data scaling or cleaning in combination with the XGBoost classification algorithm.

Application of classification models to free‑flight data
Both levels of data cleaning, aimed at removing weak or incomplete recordings, resulted in the loss of true 
observations and the underreporting of trap totals in both release scenarios (Table 4), with significant losses of 
true observations when full data cleaning was employed for Scenario 1 (F2,33 = 8.7, P < 0.01). The high agreement 
between raw remote and physical counts indicates a low occurrence of false recordings with the current trap 
configuration. As a result, raw remote recordings were used for all subsequent analyses.

At the aggregate level (all collections summed per release scenario), automated classification of all spe-
cies released in Scenario 2 was nearly accurate, with mean classification accuracy exceeding 90% (% 
error = 3.74–7.08%; Table 5; Fig. 2c,d). Classification error increased in Scenario 1 (% error = 7.79–31.23%) but 
was again highly accurate for Ae. aegypti (% error = 7.79, 95% CI 3.0–12.56%). In contrast, classification error 
increased markedly across individual replicates (mean % error = 44.7; 95% CI 30.0–59.5%; Fig. 2c,d) for both 
release scenarios. Mean species classification error across all replicates ranged from 29.6 to 63.4% (Table 5).

Discussion
To our knowledge, we report findings from the first mixed-species test of a field-ready optoacoustic smart trap 
design under free-flight conditions. While others have achieved automatic classification of mosquito  genera46, 
 sex47,48, or  both49, none have attempted point-of-capture classification of mixed-species populations of free-flying 
mosquitoes. The work presented highlights both the challenges and opportunities presented by optoacoustic 
surveillance. For instance, we estimate that, for aggregate collections, non-congeneric species present in release 
scenario 2 (i.e., Ae. aegypti, Cx. quinquefasciatus, and An. stephensi) could be quantified with accuracies exceeding 
90%. However, error rates increased when analysing individual (replicate) collections in both release scenarios 
and for aggregate collections containing Ae. albopictus in the presence of both Ae. aegypti and Cx. quinque-
fasciatus. These findings show the challenges yet to be overcome as well as the potential operational utility of 
optoacoustic surveillance in low diversity settings typical of urban  habitats50.

The study importantly introduces a novel optoacoustic smart trap design that increased the depth of acquired 
optoacoustic signals (signal length = 86–121 ms) relative to existing  designs49,51. The success of the tested design 
is attributed to its above-trap sensor placement that allows for prolonged signal acquisition. Acquired signal 
depth was sufficient for accurate quantification of aggregate collections of mixed-species under free-flight condi-
tions in the presence of significant WBF overlap. The tested design was further found to be robust to false data 

Table 3.  Summary of model classification performance (confusion matrix) for each release scenario. Final 
classification models included the use of MFCC with no data scaling or cleaning in combination with the 
XGBoost classification algorithm.

Known

Predicted: scenario 1

Ae. aegypti Ae. albopictus Cx. quinquefasciatus

Ae. aegypti 0.93 0.07 0.00

Ae. albopictus 0.50 0.48 0.02

Cx. quinquefasciatus 0.02 0.00 0.98

Known

Predicted: scenario 2

Ae. aegypti An. stephensi Cx. quinquefasciatus

Ae. aegypti 0.94 0.06 0.00

An. stephensi 0.18 0.74 0.08

Cx. quinquefasciatus 0.02 0.06 0.92

Table 4.  Departure of BG-I trap counts from physical trap counts at different levels of data cleaning for each 
free-flight release scenario. Physical count represents the mean number of mosquitoes collected per replicate.

No clean Low clean Full clean Physical count (n)

Mean (%) SEM Mean (%) SEM Mean (%) SEM Mean SEM

Scenario 1 0.18 1.99 7.64 2.99 12.10 2.96 28.58 2.11

Scenario 2 1.40 1.30 6.10 1.86 10.65 1.47 36.83 1.70
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acquisition, or captures, as supported by the low divergence of physical and remote trap counts across both release 
scenarios. However, it is important to acknowledge the absence of negative samples, or non-mosquito bycatch, 
in the present study. Although mosquito bycatch in non-light traps, such as the BG-Sentinel and the tested trap 
design, is low in comparison to traditional light traps (e.g., CDC-miniature light trap)52, bycatch collections can 
still exceed mosquito  captures53. Further research is needed to better understand how the presence of different 
groups of non-target insects may influence classification performance.

The study further presents a rare test of laboratory-trained classification algorithms against small, mixed-
species collections typical of daily trap captures. The accuracy of our classification algorithms decreased signifi-
cantly when classifying low replicate sample sizes relative to larger trap aggregates. This observation is critical 
since model validation has not been successfully extended beyond large WBF databases containing one or more 
separately recorded  datasets47,49,54. The lower accuracies observed across individual replicates suggest that the 
best approach for mixed-species classification is to aggregate trap collections over time or space. For low den-
sity species, such as Ae. aegypti55,56, this may cause significant delays in analysis in the absence of extended trap 
networks, which may not be suitable for certain surveillance operations.

It is worth noting that the decrease in model performance when applied to individual replicates relative to 
trap aggregates was unexpected. Although small datasets tend to cause problems of model overfitting or under-
fitting in machine learning, these problems typically refer to the initial training of the chosen machine learning 
 algorithm57,58. As reasonably large training data sets were employed, discrepancies in classification performance 
are harder to explain considering the low expected error rates for the majority of species analyzed. Deviations 
in classification performance may be related to cohort-to-cohort differences (e.g., body size), which may lead to 
significant over- or underreporting of species counts when analyzing small sample sizes, such as was observed 
for Cx. quinquefasciatus in both release scenarios. Such differences may occur despite the use of single colonies 
reared under controlled rearing conditions, although these differences are not as large as those observed in field 
 populations59. Further research into the performance of classification models against cohorts reared under dif-
ferent environmental and resource conditions is warranted.

The study had further limitations that should be noted. Primary among these is the use of established mos-
quito colonies reared and released under controlled laboratory settings that likely improved classification accu-
racy relative to that expected under natural field conditions. This limitation is not unique to this study as it is 
shared by the majority of previous  reports47–49,54,60. Mosquito WBF fluctuates in response to environmental, 
physiological, and behavioral  factors26–30, and this variability has yet to be adequately accounted for in the field 
or laboratory by those attempting WBF-based classification. Some of the confusion among species created by this 
variability may be accounted for by simple logical extensions to classification algorithms, such as the time and 
place of  recording7. For instance, separating collections by time of capture may significantly reduce classification 
errors for the more crepuscular Cx. quinquefasciatus61 in the presence of day-active mosquitoes like Ae. aegypti62 
and Ae. albopictus63, but some overlap will persist. Future research should prioritize testing and developing trap 
designs and classification models under natural field conditions or within semi-field systems situated within the 
natural environment and exposed to ambient environmental  conditions64,65.

In conclusion, wing beat-focused smart trap designs find their most obvious application in environments that 
have low species diversity, such as those that were simulated. However, limitations remain, and an emphasis on 
field-based studies is needed before integration into traditional surveillance operations. Despite these limitations, 
the potential operational utility of WBF focused smart traps remains high.

Methods
Trap and sensor design
The BG-I trap system (Fig. 1) consists of a bespoke infrared-LED array (192 × SFH-4641-Z, 940 nm, ams-OSRAM 
AG, Munich, Germany) with imbedded light sensor (Hamamatsu Photonics K.K., Shizuoka, Japan) mounted 

Table 5.  Percent (%) error of individual species classifications at the replicate and aggregate levels for both 
release scenarios.

Release scenario 1

Ae. aegypti Cx. quinquefasciatus Ae. albopictus

Replicate/aggregate
Mean 39.57/7.79 83.21/31.23 64.00/28.07

Replicate/aggregate
Lower 95% CI 11.10/3.01 3.43/29.11 15.05/23.02

Replicate/aggregate
Upper 95% CI 68.04/12.56 162.98/33.35 112.94/33.12

Release scenario 2

Ae. aegypti Cx. quinquefasciatus An. stephensi

Replicate/aggregate
Mean 27.25/3.74 41.15/5.00 31.72/7.08

Replicate/aggregate
Lower 95% CI 19.15/0.77 8.54/0.56 13.52/1.86

Replicate/aggregate
Upper 95% CI 35.35/8.25 73.36/9.44 49.92/49.92
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20 cm above a BG-Counter 2® (Biogents AG, Regensburg, Germany). The IR-LED and light sensor array (10 cm 
in diameter) is supported and operated by a Raspberry Pi 3 (Model B, Raspberry Pi Ltd, Cambridge, UK) and 
SAMD21G microprocessor (Atmel® Corporation, San Jose, CA, USA). Suction is provided by a 12-V (3.6 W) fan 
positioned 30 cm below the BG-Counter 2 funnel and at a 90-degree angle from the funnel opening to reduce 
background light scatter.

During operation, the BG-I system continuously measures the intensity of reflected light from the observa-
tion volume, i.e., the distance between the sensor array and trap funnel. An individual observation is initiated 
by the registration of a mosquito capture by the BG-Counter 2 attached to the trap opening. Once a mosquito 
is registered, the BG-Counter 2 provides a simultaneous trigger signal to the BG-I recorder to retrieve the data 
collected from the preceding 200 ms, or just before capture. This data corresponds to the small portion of the light 
scattered and reflected by the insect during capture and transit through the observation volume. The light sensor, 
or photodiode, output is then amplified using proprietary electronics and then digitized by the 12-bit Analog-to-
Digital Converter on the SAMD21G at the rate of 8 kHz. The digitized signal is transmitted to a Raspberry Pi for 
intermediate storage and transmission to a cloud server. The signals are converted to .wav files prior to analysis.

Mosquito rearing
A wingbeat database was constructed for each species from established laboratory colonies. All colonies were 
maintained in environmental chambers at standard conditions (27.0 ± 0.5 °C, 80.0 ± 5.0% RH, and 12:12 (L:D) h 
photo regime). In general, larvae were reared in 45 cm × 32 cm × 5.5 cm pans containing 1.0 L of reverse osmosis 
purified water. Aedes sp. and Cx. quinquefasciatus larvae were reared on a diet of Tetramin fish food (Tetra, Melle, 
Germany). Anopheles stephensi were fed on a standardized diet of Vipan and Micron Nature fry foods (Sera®, 
Heinsberg, Germany). Emergent adults were placed in 30 × 30 × 30 cm mesh cages (BugDorm, Taichung, Taiwan) 
and provided 10% sucrose solution ad libitum. Adults were aged 5–7 days at the time of recording.

Data collection and trap operation
Training datasets were generated for each species in single-species, large cohort capture experiments. A minimum 
of 3–5 cohorts (releases) reared at different times and from different egg stock were used for each species. Cohort 
sizes varied from 50 to 300 individuals, depending on adult availability. Adults were released into a 1.5 × 2.0 × 1 m 
mosquito mesh tent containing the BG-I trap station.  CO2 was supplied to the trap station from a 6 kg cylinder at 
a rate of 300 mL/min. Released mosquitoes were captured for a period of 24 h or until no free-flying mosquitoes 
could be observed in the tent. No collection bag was attached to the end of the trap body to allow for the possible 
re-capture of mosquitoes. Training datasets were generated for females only.

Data processing
The BG-I signal was analysed and processed using the  librosa66,  scipy67 and  peakutils68 Python libraries. Three 
different data feature classes where generated from the BG-I signal, including Mel Frequency Cepstral Coef-
ficients (MFCC)69, Power Spectral Density (PSD)70, and Fundamental  frequency46. MFCC is derived from the 
Fourier transformation of the signal and is a representation of the short-term power spectrum of a sound. PSD 
describes how the power of a signal is distributed over  frequency70. Fundamental frequency is defined as the 
lowest frequency of a periodic waveform and is equivalent to the fundamental WBF. All three feature classes 
have been used in previous optoacoustic  studies3,46,71,72. In general, fundamental and harmonic frequencies were 
determined by harmonic analysis of the Fourier series which also enabled us to reliably identify PSD peaks based 
on multiples of the fundamental frequency estimate.

After initial signal processing, feature data was preprocessed in two ways prior to model training. First, 
various levels of data scaling, or standardization, were tested by applying different scalers (e.g., standard scaler, 
normalizer, and robust scaler) to each dataset prior to classification. Second, each data transformation method 
was tested without and in combination with principal component analysis (PCA). The use of PCA can reduce 
the number of input variables which can result in a simpler predictive model with better  performance73.

Free‑flight capture experiments
The ability of the BG-I station to accurately differentiate and record sympatric species was tested under free-flight 
conditions using two different combinations of species, or release scenarios. The first scenario consisted of the 
urban, container-inhabiting congeneric species Ae. aegypti and Ae. albopictus in the presence of the commonly 
co-collected Cx. quinquefasciatus. The second scenario included the non-congeneric species Ae. aegypti, An. 
stephensi, and Cx. quinquefasciatus. Twelve releases of each grouping were performed during which captured 
mosquitoes were collected, counted manually, and results compared to the clustering results of the preferred 
classification algorithm. During each individual experiment, 20 females of each species in the necessary com-
binations were released into a mosquito mesh tent (1.5 × 2.0 × 1 m) containing the BG-I trap station. The one 
exception being the release of 40 females of Cx. quinquefasciatus during each replicate. The larger addition of 
Cx. quinquefasciatus was used to ensure adequate captures of this species as our colonized Cx. quinquefasciatus 
population maintains natural crepuscular peaks in host-seeking activity and collections at other times of the day 
can be low. Captured mosquitoes were collected in 120 min intervals and all remaining mosquitoes removed 
by aspiration. Only female mosquitoes were released during free-flight experiments. Experiments occurred 
between the hours of 0900–1900, with the majority of releases occurring between 1200 and 1300. All free-flight 
experiments occurred under controlled environmental conditions (27.0 ± 0.5 °C, 80.0 ± 5.0% RH, and 12:12 
(L:D) h photo regime). A collection bag was attached to the end of the trap body for all free-flight experiments.
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Post‑capture analysis
Captured mosquitoes were chilled at − 20 °C for 30 min before being counted and morphologically identified. 
Manual species counts were then compared to model predictions of BG-I recordings for each capture interval 
to determine the difference (%) between remote and manual counts and classification error rates. Three levels of 
post-capture data cleaning were compared to determine which produced the greatest consensus between remote 
and manual counts. The three levels are (1) no data cleaning (i.e., raw files analysed), (2) low-level data cleaning 
to remove recordings with low signal power (< 0.2 × 1000), and (3) full data cleaning to remove recordings with 
low signal power, those with low harmonic detection (< 3 defined harmonics), and those with low-frequency to 
power ratios (< 1.0). Signal power was calculated in the time domain using the root mean square (RMS)  method74 
or in the frequency domain (including frequency bands) using Parseval’s  theorem75. The calculation of RMS 
power and frequency band power ratios allows for the identification of signals that have low power or a large 
low-frequency content obscuring the true wingbeat signal.

Model selection, training and validation
During the training and validation phase, we evaluated the performance of a particular model for each release 
scenario based on classification accuracy as determined from cross-validation using 80–20% data splitting 
(training-validation sets). Validation was performed using the scikit-learn python  package76. The number of 
training iterations exceeded 30 in all cases. The two parent algorithms tested included XGBoost, a decision-
tree-based ensemble machine learning algorithm that uses a gradient boosting  framework77, and Multilayer 
Perceptron (MLP), a class of feedforward artificial neural  network78. Each parent algorithm was trained at all 
levels of data scaling and transformation (i.e., PCA) for an individual feature type. A summary of tested models 
is presented in Table S1.

Performance of each validated model was assessed against experimental replicates as well as experimental 
aggregates (i.e., the sum of collections per release scenario). Due to the lack of replication of experimental aggre-
gates, variance in model performance and classification accuracy was assessed using multiple validated models 
trained from randomly sampled subsets of the training data (n = 5, 75% data retention).

Statistical analyses
Linear mixed-effects models were used to determine the importance of model type, feature type, and data scaler 
on classification performance. Species was included as a random effect in the models to account for species-level 
differences in classification accuracy. Analysis of variance was used to determine if the percent difference of 
physical and BG-I species counts was influenced by the level of data cleaning employed. Prior to analysis, assump-
tions of normality and homogeneity of variance were determined using the Shapiro-Wilks  test79 and Bartlett’s 
 test80, respectively. Distributions of test results across replicates was found to satisfy assumptions of normality 
(W = 0.87–0.98, p = 0.07–0.98) and homogeneity of variance (χ2 = 1.39–2.08, p = 0.36–0.50). The null hypothesis 
for all significance tests was one of no difference among the variables, models, and/or parameters being assessed. 
The absolute departure of automated and physical species counts was calculated as Percent Error using the for-
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× 100 , in which a represents the physical (actual) collection total and p represents the pre-

dicted collection total for each replicate or aggregate collection being analysed. All statistical analyses were 
performed using R version 4.0481. Data visualization and cleaning, model training, and post-capture analyses 
were performed using a custom Python-based (Python Software Foundation, version 3.9) data visualization and 
analysis platform.

Data availability
Data supporting the findings of this study are available in the Supplementary Data 1. The Python code file is 
available as a Supplementary Data 2. The python code file may also be found at https:// github. com/ mweber- bg/ 
BGWin gbeat Analy zerCC. 
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