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A precise model for skin cancer 
diagnosis using hybrid U‑Net 
and improved MobileNet‑V3 
with hyperparameters optimization
Umesh Kumar Lilhore 1, Sarita Simaiya 1, Yogesh Kumar Sharma 2, Kuldeep Singh Kaswan 3, 
K. B. V. Brahma Rao 2, V. V. R. Maheswara Rao 4, Anupam Baliyan 1, Anchit Bijalwan 5* & 
Roobaea Alroobaea 6

Skin cancer is a frequently occurring and possibly deadly disease that necessitates prompt and precise 
diagnosis in order to ensure efficacious treatment. This paper introduces an innovative approach for 
accurately identifying skin cancer by utilizing Convolution Neural Network architecture and optimizing 
hyperparameters. The proposed approach aims to increase the precision and efficacy of skin cancer 
recognition and consequently enhance patients’ experiences. This investigation aims to tackle various 
significant challenges in skin cancer recognition, encompassing feature extraction, model architecture 
design, and optimizing hyperparameters. The proposed model utilizes advanced deep-learning 
methodologies to extract complex features and patterns from skin cancer images. We enhance the 
learning procedure of deep learning by integrating Standard U-Net and Improved MobileNet-V3 with 
optimization techniques, allowing the model to differentiate malignant and benign skin cancers. 
Also substituted the crossed-entropy loss function of the Mobilenet-v3 mathematical framework with 
a bias loss function to enhance the accuracy. The model’s squeeze and excitation component was 
replaced with the practical channel attention component to achieve parameter reduction. Integrating 
cross-layer connections among Mobile modules has been proposed to leverage synthetic features 
effectively. The dilated convolutions were incorporated into the model to enhance the receptive field. 
The optimization of hyperparameters is of utmost importance in improving the efficiency of deep 
learning models. To fine-tune the model’s hyperparameter, we employ sophisticated optimization 
methods such as the Bayesian optimization method using pre-trained CNN architecture MobileNet-V3. 
The proposed model is compared with existing models, i.e., MobileNet, VGG-16, MobileNet-V2, 
Resnet-152v2 and VGG-19 on the “HAM-10000 Melanoma Skin Cancer dataset". The empirical findings 
illustrate that the proposed optimized hybrid MobileNet-V3 model outperforms existing skin cancer 
detection and segmentation techniques based on high precision of 97.84%, sensitivity of 96.35%, 
accuracy of 98.86% and specificity of 97.32%. The enhanced performance of this research resulted in 
timelier and more precise diagnoses, potentially contributing to life-saving outcomes and mitigating 
healthcare expenditures.
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FC	� Fully connected
DL	� Deep learning
CNN	� Convolution neural network
BN	� Batch normalization
SVM	� Support vector machine
ReLu	� Rectified linear unit
TL	� Transfer learning

Skin cancer is considered one of the most widespread and significant forms of cancer globally, with its occurrence 
consistently rising in recent years. The prompt and precise identification of a medical condition is crucial for 
successfully implementing treatment strategies and enhancing patient results. Historically, dermatologists have 
traditionally depended on their professional knowledge and visual examination of skin lesions in order to detect 
possible malignancies. Nevertheless, this procedure is inherently subjective and prone to diagnostic inaccuracies1. 
In response to all these barriers, Computer-Aided Diagnosis (CAD) frameworks significantly improved medical 
dermatology. Deep learning models that fall into the category of "convolutional neural networks," also known 
as "CNNs," have shown remarkable promise for improving the accuracy of skin cancer recognition2. Figure 1 
presents an image of a skin cancer sample.

Melanoma and non-melanoma are the two primary subtypes of skin cancer, distinguished based on the cell 
that is transformed into a cancerous form. Various machine learning and deep learning frameworks and meth-
odologies have been suggested to detect, classify, and segment skin cancer. Examples of these include Support 
Vector Machines (SVM), Decision Trees (DT), Fuzzy C-means, Recurrent Neural Networks (RNN), Convolu-
tional Neural Networks (CNN) and Deep Neural Networks (DNN)3. CNN is a widely employed algorithm for 
automated feature learning and extraction, known for its exceptional performance in detection tasks4. Moreover, 
the training stage for deep learning networks often necessitates a substantial volume of data. Therefore, using 
transfer learning to refine a pre-existing network on comparable tasks can reduce training complexity, expedite 
convergence, and decrease training duration5.

Additionally, it is possible to utilize pre-trained deep learning models as feature extractors without additional 
training, provided they have already been trained on tasks or domains that are similar or related6. The deep 
learning model may acquire features that contain noise, thereby impacting the accuracy of the final classifica-
tion. This can be attributed to the inclusion of non-relevant features and the naturally high dimensionality of 
the characteristics learned. Therefore, utilizing optimization techniques, specifically metaheuristic methods, 
can provide a viable approach for selecting elements. This approach involves identifying and choosing the most 
pertinent features, thereby enhancing the precision of recognition7.

This research paper introduces a comprehensive methodology to handle the complex issues related to skin 
cancer detection. This research presents a novel skin cancer recognition model based on optimized CNN architec-
ture. This research utilizes deep learning and advanced optimization techniques to improve skin cancer detection’s 
precision and effectiveness. The motivation behind this research originates from the critical requirement to deal 
with the primary healthcare problem related to dermatological cancer. Millions of people worldwide have skin 
cancer, and the disease’s incidence is still rising. The prompt and precise identification of a condition or disease 
is crucial to administer the correct therapy and, finally, to preserve human life. Conventional diagnostic tech-
niques, dependent on individual observation, are subjective and may change in precision based on the training 
and experience of the medical professional8.

The presence of subjectivity and the possibility of error underscore the utmost significance of advancing the 
development of more accurate and automated mechanisms for identifying skin cancer. The primary motivation 
behind our research stems from the pressing demand for enhanced techniques in detecting skin cancer. We 
harness their capabilities by harnessing deep learning and optimization methodologies to address this objective. 
Furthermore, the emergence of deep learning methods, i.e., CNNs, has shown the capacity for transformation 
in analyzing healthcare images. The capability of CNNs to identify complicated characteristics from visuals and 
to make decisions based on information presents an exciting chance for improvement in the discipline of skin 
diseases9. The convergence of urgent medical necessity and state-of-the-art technology constitutes the primary 

Figure 1.   Skin cancer sample23.
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impetus for our investigation, compelling us to construct a sophisticated model for identifying skin cancer that 
harnesses the capabilities of deep learning and optimization methodologies.

The primary contributions of our research encompass innovative model architecture, meticulous hyperpa-
rameter optimization, persuasive experimental findings, and significant clinical implications. These collective 
achievements propel the current state of advancement in dermatological examinations and contribute to the 
enhancement of the treatment of patients. The proposed research presents several significant contributions to 
the domain of skin cancer detection and healthcare:

•	 We enhance the learning procedure of deep learning by integrating Standard U-Net and Improved MobileNet-
V3 with optimization techniques, which allows the model to accomplish better differentiation among malig-
nant and benign skin cancers.

•	 Our research focuses on the meticulous examination of hyperparameter optimization, a crucial factor that 
substantially influences the efficacy of deep learning models. Advanced optimization techniques, i.e., Bayes-
ian optimization and grid search, are utilized to optimize the hyperparameter of the model effectively.

•	 The optimization of hyperparameters is of utmost importance in enhancing the efficiency of deep learning 
models. To fine-tune the model’s hyperparameter, we employ sophisticated optimization methods such as 
the Bayesian optimization method using pre-trained CNN architectures, i.e., MobileNet-V3, on the “HAM-
10000 Melanoma Skin Cancer” dataset.

•	 The proposed hybrid MobileNet-V3 model outperforms existing techniques based on high precision of 
97.84%, sensitivity of 96.35%, accuracy of 98.86%, and specificity of 97.32%.

The article is organized in the following way: after an introductory part that provides an overview of the 
motivation and aims, a comprehensive examination of existing literature on skin cancer detection is presented in 
section two. The methodology section three offers a thorough account of the procedures employed for data col-
lection, preliminary processing, and the development of a hybrid architecture specifically designed to detect skin 
cancer. Additionally, it includes a detailed explanation of the process of hyperparameter optimization. Section 
four provides a detailed description of the experimental setup, presents the results and performance indicators 
obtained, and compares them to existing methods. An extensive examination of the consequences, advantages, 
and drawbacks of the proposed method follows. The conclusion section five serves the purpose of combining 
the main findings of the research and highlighting their potential clinical significance.

Literature review
Previous research was investigated concerning the categorization of Skin Cancer using deep learning techniques. 
In the context of the categorization of Skin Cancer utilizing deep learning techniques, scholars generated skin 
lesion images sourced from publicly available websites.

Data augmentation methods were employed alongside five-fold cross-validation methods to enhance the 
dataset. The investigators conducted experiments to evaluate the performance of pre-trained VGG-16, ResNet50, 
and InceptionNet-V3 models in classifying Skin Cancer diseases. The ResNet50 model was selected due to its 
superior accuracy rate compared to the other models. The ResNet50 model achieves an F1 Score of 0.82, as 
reported in reference10. The researchers used the Xception training model with the Grad-Cam and the LIME 
algorithm techniques to predict skin cancer11. The Xception and the DenseNet models have implemented an 
integrated strategy utilizing unity. The research involved the analysis of the efficiency scores retrieved from 
experiments conducted on a publicly accessible dataset. These experiments were carried out using this suggested 
ensemble strategy. The results indicated an average recall, precision, F1 score, and accuracy rate of 86.74%, 85.8%, 
86.24%, and 88.93%, respectively.

The article12 presents research on the utilization of YOLOv4-DarkNet along with active contour techniques 
to localize and segment melanoma. The method was evaluated on the International Skin Imaging Collabora-
tion (ISIC) datasets for 2016 and 2018. The values of one and the reported Jaccard coefficient were 1 and 0.989, 
respectively. The paper13 discusses the topology of FC-DPN segmentation. The construction of the network 
involved the implementation of a dual-path and fully convolutional architecture. In the revised ISIC 2017 test 
dataset, the suggested approach achieved a Jaccard index of 81.32% and an average dice coefficient of 87.2%.

Similarly, for the PH2 dataset, a Jaccard index of 84.3% and an average dice coefficient of 91.76% were 
obtained. The paper discusses a CNN model for the classification of skin cancer14. The dataset was initially 
gathered and subsequently categorized into four distinct groups of skin cancer images. Later, augmentation 
techniques were employed to expand the dataset’s size. During the testing phase, the algorithm developed by the 
researchers achieved an accuracy of 96.28%, surpassing the accuracy of the GoogleNet and MobileNet models 
by 1.76% and 1.12%, respectively.

The application of deep learning techniques for skin cancer detection has been the subject of considerable 
investigation in recent academic literature. Several deep learning techniques, including CNNs, have been utilized 
to categorize skin lesions as either cancerous or non-cancerous precisely. The authors of15 present a unique deep 
learning network called the Dual Optimisation Utilising Deep Learning Network. This network was designed 
for skin cancer identification using dermoscopic images and achieved an impressive precision of 98.76%. This 
paper presents a thorough examination of conventional and deep-learning methodologies employed in the 
prompt identification of skin cancer. It critically evaluates the performance of these techniques and examines the 
datasets utilized for training and testing purposes16. The authors have developed a deep learning system using 
a CNN to detect melanoma lesions. This system has demonstrated superior performance regarding diagnostic 
accuracy compared to existing methods, as reported in reference17. The research proposes using convolutional-
based neural networks with deep reinforcement learning to identify cancer-affected skin. It aims to overcome the 
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challenges related to generalizability by implying the adoption of ensemble models to achieve optimal output, 
as indicated by reference18.

Recent studies have utilized various types of classification and preliminary processing methods to conduct 
morphological change examines on grey-level skin cancer images. These images were obtained from the PH2 
repository and were subjected to classification and clustering procedures using a pre-trained Levenberg-Mean 
neural network6. Transfer learning has been utilized to forecast skin cancer visuals from the HAM10000 database 
precisely using the MobileNet CNN19. The recent research on the application of CNN in predicting skin cancer 
has identified significant challenges in incorporating the entire spectrum of the patient population and vari-
ous melanoma subtypes20. In addition, ongoing efforts are being made to develop optimization algorithms that 
enhance accuracy by adjusting hyperparameters21. Moreover, recent studies have put forth methods to identify 
instances of shortcut development during the training of models based on convolutional neural networks on 
both the ISIC Storage collection. Recent research has also emphasized using comprehensible deep-learning 
techniques for the multi-class separation and categorization of skin lesion images22.

Predicting skin diseases using AI holds enormous promise for better early detection and treatment results23. 
This study offered a new way to improve skin disease prediction models by addressing class imbalance utilizing 
data balancing using class weighting and transfer learning approaches. They have also investigated the useful-
ness of data balancing using class weighting to boost TL performance for skin disease prediction. Experiments 
and performance evaluations have yielded important insights and outcomes, proving that the suggested method 
works. Optimized kernel-enhanced Resnet-dropped extended short-term memory technique for varicose vein 
disease detection was addressed in24. After processing 11,350 photos of leg veins, the experiment was evaluated 
using metrics such as accuracy, precision, kappa, mean square error (MSE), and time complexity. With a time 
complexity of 25.36 ms, a kappa of 95.77%, a precision of 98.69%, and an MSE of 1.73, the suggested model 
attained an accuracy of 98.5%.

Although skin cancer is dangerous, it is successfully treatable if caught early. A procedure is involved in the 
suggested approach25. Improving the quality and extracting useful information from the raw photos is the first 
step in the pre-processing phase. The next step is to feed the pre-processed pictures into a GRU Network, a deep-
learning model that excels at capturing sequential information. The GRU Network was fine-tuned by the author 
using an improved version of the Orca Predation Algorithm (OPA). In comparison to previous approaches, the 
GRU/IOPA system achieved better results in terms of accuracy (0.96), sensitivity (0.95), specificity (0.97), PPV 
(0.95), and NPV (0.96). When compared to more conventional methods, these findings show that the suggested 
technique is superior in detecting skin cancer.

In order to better identify skin lesions or cancer, researchers have built an upgraded machine-learning 
framework26. This study segments and categorizes skin diseases and cancers using a machine-learning framework 
and an optimization method derived from fruit flies. The proposed method provides enhanced classification 
efficiency with a 98% accuracy rate, 99% specificity, 96% sensitivity, 95% JSI, and 99% DSC.

In27, we looked at a framework for multi-class skin disease classification that uses an LSTM, a sophisticated 
CNN, and MobileNet-V2 to improve the reliability and accuracy of cancer diagnoses. The proposed method 
leverages CNNs’ self-learning discriminative features from unprocessed skin photos and long short-term memory 
(LSTM) capability to manage multi-class classification problems. The hybrid model showed promise in the 
experiments for improving the accuracy and efficiency of skin disease classification across a variety of categories.

The authors of28 laid up a two-pronged approach to skin lesion categorization. First, during the image pre-
processing phase, two distinct techniques were suggested for picture segmentation and feature extraction. Finally, 
S-MobileNet, a model for a deep convolutional neural network, is being developed with the intention of clas-
sifying seven distinct skin lesion types. When it comes to skin lesion picture classification in the HAM10000 
dataset, the suggested deep learning-based S-MobileNet model is the way to go, according to experimental results.

In29, the authors provide a deep-learning architecture that can identify Melanoma and multi-class skin can-
cers. Four main phases make up the suggested architecture: pre-processing images, extracting and fusing features, 
selecting features, and finally, classification. Using the picture luminance data, a new method for enhancing 
contrast was suggested. The next step is to train two pre-trained deep models, DensNet-201 and DarkNet-53, 
using transfer learning to modify them with respect to a residual block at the end. The last step in the classifica-
tion process was to use machine learning classifiers on the features that were chosen. For this experiment, we 
used two datasets: ISIC2018 and ISIC201929,30. This dataset achieved the highest precision of 85.4%, whereas 
the other achieved 98.80%. Table 1 presents a comparative analysis of existing skin cancer research using a deep 
learning model.

Materials and methods
Skin cancer dataset
This research utilizes the online ‘HAM-10000’ skin cancer dataset33. The dataset HAM-10000, referred to as 
’Human against the machine’, with 10,000 images used for training, is a collection of images of skin lesions 
utilized in skincare research. The dataset comprises visual representations of diverse dermatological disorders, 
encompassing Melanoma, nevus, and several related afflictions. The provided dataset is used to classify and 
diagnose skin diseases. As mentioned earlier, deep learning models trained on the dataset can discern different 
types of skin cancer, including malignant tumours that may exhibit malignant characteristics.

This dataset contains 10,015 dermatoscopic images with size (450*600) pixels. The dataset comprises seven 
diagnostic Skin cancer categories. The dataset classes include classes from zero to six, names as ‘melanoma’, ‘mel-
anocytic nevus’, ‘basal cell carcinoma’, ‘actinic keratosis’, ‘benign keratosis’, ‘dermatofibroma’ and ‘vascular lesion’. 
Figure 2 presents the details of skin cancer classes and counts, and Fig. 3 illustrates the gender-wise distribution of 
skin cancer infection, including a 54% male, 45.5% Female and 0.5% unknown patient distribution in the dataset.
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Table 1.   Comparison of existing research for skin cancer analysis.

References Method Dataset Outcome
Hyperparameter 
optimization

1 ResNet50, VGG-16, MobileNet HAM10000 dataset Precision 83.97% and 88.25% Grid search
2 DenseNet and Xception ISIC 2018 Precision 84.37% and 87.17% Random search
3 Shuffle-Net, GoogleNet, MobileNet-V2 ISIC 2020 Precision 89.37%, 90.24% and 89.07% Hyper-opt
4 VGG-19, Res-Net 50, Resnet-152v2 PH-2 Precision 85.08 and 87.62% Scikit optimize
5 VGG-16, VGG-19 ISIC 2020 Precision 83.75% and 84.92% Optuna

6 EfficientNet-V2,
VGG-19 Melanoma Skin Cancer Dataset Precision 86.24% and 87.91% Search space

7 DenseNet, MobileNet-V3 DERMIS Dataset Precision 91.47% and 89.78% Grid search
8 Efficient-Net, ResNet-50 ISIC 2020 Precision 90.77% and 89.64% Random search
9 Inception-V3, Xception ISIC-2019 and ISIC-2020 Precision 89.81% and 87.54% Hyper-opt
10 VGG-16 and VGG-19 ISIC 2016 Precision 86.22% and 89.38% Scikit optimize
11 GoogleNet, Efficient-Net ISIC 2018 Precision 88.74% and 90.51% Optuna

Proposed Model Standard U-Net and MobileNet-V3 HAM10000 Precision of 97.84% Bayesian optimization and 
grid search

Figure 2.   Skin cancer classes and counts.

Figure 3.   Gender-based skin cancer distribution.
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Data pre‑preprocessing
A critical first step in getting a skin cancer dataset ready for training a skin cancer identification framework 
is data preliminary processing. In addition to promising that the data is in a format appropriate for training, 
proper data pre-processing can enhance model performance31. The skin cancer dataset is pre-processed using 
the following crucial steps.

Data augmentation
Since there are unequal numbers of images in each category, data balancing is used to balance all types before 
the training procedure. Data augmentation techniques are used for data balancing. In this process, the follow-
ing ranges are used: (a) rotation 25 degrees; (b) width and height shifting 15%; (c) shearing 15%; (d) employing 
flipping in both the vertical and horizontal directions; and (5) adjusting brightness within the [0.9: 1.5] range. 
Data augmentation is also applied to the images during the learning and optimization stages to prevent over-
fitting and boost diversity. Table 2 presents the parameters used for the skin cancer dataset. After pre-processing, 
the images of (450*600) pixels were converted into 192*256 pixels. Figure 4 presents data augmentation results. 
Table 3 shows the data count after the data pre-processing steps for class 0 to class 6.

Table 2.   Parameters used for skin cancer data augmentation.

Technique Value Augmentation

Zoom range 0.4 Spatial

Horizontal Flip ‘TRUE’ Spatial

Vertical flip ‘TRUE’ Spatial

Shear-range 15 Spatial

Filling mode “NEAREST” point Spatial

Rotation-range 25 degree Spatial

shearing 15% Spatial

Brightness adjustment 80,150 Pixel

CLAHE Clip Limit value = 4.0 Pixel

Figure 4.   Data augmentation (a) image resizing, (b) zooming.

Table 3.   Data count after pre-processing.

Class type Label type Actual data After Re-sampling

Class-0 ‘Melanoma’ 6715 7000

Class-1 ‘Melanocytic Nevus’ 1000 3000

Class-2 ‘Basal Cell Carcinoma’ 1000 3000

Class-3 ‘Actinic Keratosis’ 500 1500

Class-4 ‘Benign Keratosis’ 250 1500

Class-5 ‘Dermatofibroma’ 300 1500

Class-6 ‘Vascular Lesion’ 235 1500

Total 10,015 19,000
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We use Eq. (1) for horizontal flipping operation, i.e., x-axis, 2 for rotation and 3 for shifting, 4 for shearing, 
and 5 for zooming. In these equations, h represents the rotating angle, tx represents the amount of shifting in 
tandem with the x-axis, ty represents the shifting in tandem with the y-axis, shx represents the shear factor in 
tandem with the x-axis, shy represents the shear factor together the y-axis, and Cx represents the zoom factor 
together the x-axis, and Cy represents the zoom factor in tandem the y-axis32. Here, FM is the flipping Matrix, 
RM is the rotation Matrix, SM is the shifting Matrix, SheM is the shearing Matrix, and ZM is the zooming Matrix.

Proposed model architecture
The proposed model is based on Standard U-Net and Improved MobileNet-V3 with optimization techniques, i.e., 
the Bayesian optimization method. Standard U-Net performs semantic segmentation activities in the proposed 
model, and MobileNet-V3 is used as a Feature Extractor. We also utilize a Bayesian optimization method for 
hyperparameter optimization. This method can identify the most promising hyperparameters by prioritizing 
those that have shown favourable outcomes in previous results. Figure 5 shows the architecture of the proposed 
hybrid model.

Improved MobileNet‑V3
In the proposed hybrid model, the existing MobileNet-V3 model is improved. The Improved MobileNet-V3 
worked as an encoder in the proposed skin cancer prediction and segmentation model. The steps below enhanced 

(1)FM =

[

1 0 0

0 cosθ −sinθ
0 sinθ cosθ

]

(2)RM =

[

cosθ sinθ 0

−sinθ cosθ 0

0 sinθ 1

]

(3)SM =





1 0 0

0 1 0

tx ty 1





(4)SheM =





1 shy 0

shx 1 0

0 0 1





(5)ZM =





cx 0 0

0 cy 0

0 0 1





Figure 5.   Architecture of proposed hybrid model.
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the MobileNet-V3 structure for skin cancer recognition and segmentation. Figure 6 presents the architecture of 
the proposed MobileNet-V331.

Architectural level Improvements: The following fundamental changes were performed at the existing 
MobileNet-V3 architecture32.

•	 Deeper Model A deeper MobileNet-V3 model’s depth (layer counts) is determined by the model’s structural 
preferences. MobileNet-V3 is available in two predetermined sizes: "large" or "small," with "large" featuring 
more layers and greater capacity than "small." The "large" variant of MobileNet-V3 generally includes 157 lay-
ers. Depthwise separable convolution layers and flipped residuals using growing and squeeze-and-excitation 
(SE) segments are formed.

•	 Wider Model MobileNet-V3 predominantly employs the flipped residual block and SE block. A depthwise 
convolution component is subsequently followed by a point-wise convolution layer to form the inverted 
residual block. The point-wise convolution changes the width (number of channels). Adjust the point-wise 
convolution layer output channels to widen a layer. This is typically accomplished by multiplying the total 
amount of channels through a scaling factor. Modulating channel-wise dependencies is done with the SE 
block. Although it cannot naturally regulate layer width, it can be utilized on layers to enhance model per-
formance and adjust to particular tasks. Fully connected layers (FCL), Global average pooling (GAP), and 
element-wise scaling (EMS) comprise the SE block. The number of channels present in the map of input 
features is used as a criterion to establish the size of the SE block. MobileNet-V3 allows you to modify the 
range of channels within the starting convolutional layer with the last classification layer to adjust the total 
width of the resulting model for skin cancer analysis.

•	 Attention Method We substituted the crossed-entropy loss function of the Mobilenet-v3 mathematical frame-
work with a bias loss function that enhanced accuracy. The model’s SE component was replaced with the 
adequate channel attention (ECA) component to achieve parameter reduction. Integrating cross-layer con-
nections among Mobile modules has been proposed to leverage synthetic features effectively. The dilated 
convolutions were incorporated into the model to enhance the receptive field.

Regularization method.  The following Regulization techniques were applied to improve the MobileNet-V3 
model32.

•	 Dropout Implement dropout layers inside the MobileNet-V3 structure to prevent overfitting throughout 
training. Dropout arbitrarily eliminates a portion of the neurons throughout each forward pass to improve 
the model’s generalization ability.

•	 L2 regularization’s weight decay Applying a weight decay component to the model’s loss function for the 
L2 regularization’s weight decay step. Weight decay promotes the reduction of model weights, preventing 
unnecessary complexity and overfitting.

Normalization method.  The following Normalization techniques were applied for improvements in the 
MobileNet-V3 model.

Figure 6.   Architecture of proposed MobileNet-V3.
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•	 Batch Normalization To stabilize training, employ batch normalization layers to normalize the activations 
throughout each mini-batch. Batch normalization can boost the model convergence process and boost train-
ing.

•	 Layer Normalization We have applied a layer normalization method that helps

Standard U‑Net architecture
The Standard U-Net architecture is a convolutional neural network specifically developed for semantic seg-
mentation tasks. The algorithm demonstrates exceptional proficiency in partitioning regions of interest within 
medical images, rendering it highly suitable for the analysis of skin cancer. The Standard U-Net architecture 
is distinguished by incorporating skip connections and embedded skip procedures, which efficiently capture 
multi-scale context-relevant data33.

Four Standard U-Net patterns, identical to U-Net, are used to complete the segmentation assignment. Batch 
normalization and GeLU for the hidden activation mechanism are utilized in the additional configuration, while 
the architecture described in10 is used in the initial setup. Batch normalization (BN) mainly creates batches of 
a specific size. Along with batch normalization and the GeLU hidden activation function, the third and fourth 
patterns use VGG-19 and DenseNet-201 as their backbone. In the case of configuration four, deep supervision 
is not enabled. Figure 7 presents the standard U-Net architecture.

Bayesian optimization method
Bayesian optimization is an approach that employs probabilistic algorithms to search accurately for the most 
practical combination of hyperparameters to support a model built using deep learning. It functions by analyzing 
an ambiguous objective function within this instance, which evaluates the model’s effectiveness as a Gaussian 
procedure, enabling it to make well-informed choices about where to start sampling the target function subse-
quently. The following describes the operation of Bayesian optimization in the hyperparameter optimization 
for skin cancer6.

•	 Step 1: Initial Random Sampling To create an initial substitute framework for the objective function, Bayesian 
optimization usually begins with a few random specimens taken through the hyperparameter space. The 
function’s behaviour can be partially understood because of these arbitrary specimens.

•	 Step 2: Surrogate Model The algorithm generates a probabilistic substitute model using the initial specimens, 
generally a Gaussian procedure (GP). The GP prototypes the objective function’s allocation and predicts 
the function’s behaviour throughout the hyperparameter area. This substitute model encompasses average 
forecasting and an uncertainty determination (variance) at every point within the hyperparameter space.

•	 Step 3: Acquisition Function Bayesian optimization utilizes an acquisition function for identifying the subse-
quent objective function specimen location. Typical acquisition functions consist of Probability of Improve-
ment (PI), Expected Improvement (EI), and Upper Confidence Bound (UCB). These features balance exami-
nations (sample collection in spaces of uncertainty) and exploitation (sampling in spots that are likely to 
produce more effective results).

Conv (3*3)

Conv (3*3)

Up Sampling  (2*2)

X

Upscale (n-1)

Skip Connection

BN, ReLU

BN, ReLU

Figure 7.   Standard U-Net architecture.
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•	 Step 4: Next Sample Selection The acquisition function directs the selection of the subsequent collection of 
hyperparameters to be assessed. The method chooses hyperparameter values that maximize the acquisition 
function, indicating promising regions within the hyperparameter space for enhancing the objective function.

•	 Step 5: Evaluate Objective Function The chosen hyperparameters are utilized for training and evaluating a 
deep learning framework via the skin cancer dataset. The objective function (including model precision and 
loss) gets calculated according to the model’s efficiency.

•	 Step 6: Update Surrogate Model: After assessing the objective function based on the chosen hyperparameter, 
the procedure upgrades the substitute model (GP) along with the newly acquired data point, including the 
evaluation results, to minimize uncertainty within the substitute model.

•	 Step 7: Iteration Steps 3 through 6 are carried out for an established amount of iterations or until convergence 
is achieved. The method improves the substitute model iteratively and chooses a hyperparameter to enhance 
the model’s accuracy.

•	 Step 8: Final Result The Bayesian optimization method produces the hyperparameters, which generate the 
best objective function importance according to the model’s behaviour.

Transfer learning
ImageNet is used as a pre-training dataset for the MobileNet-V3 model, and then the Ham-10000 skin can-
cer dataset is used to fine-tune the model’s parameters. Transfer learning enables the predictive algorithm to 
utilize features acquired within a broader context before becoming proficient in the skin cancer recognition 
assignment34.

Pseudo code for the proposed model
Algorithm 1 presents the steps for skin cancer analysis with the hybrid U-Net and MobileNet-V3 models35.
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Step 1: Data Preparation
1.1 Load 'HAM-10000', skin cancer dataset
  1.2 Data Pre-process
    1.2.1 Apply (Image resize, Image normalization, Image augmentation)

Step 2: Data Splitting
2.1 Split dataset into training, testing validation, Ration (70% training, 15% validation, 15% 
testing)

Step 3: Model Definition
3.1 Model Initialization
  3.1.1 Create a model class with MobileNet-V3 and U-Net architecture
 3.1.2 Set Hybrid_model = Hybrid_UNet_MobileNet_V3()
 3.1.3 Apply data pre-processing
        Resize image
        Set input_shape = (224, 224, 3)
       Set output_classes = 7  # Multi class classification

Step 4: Hybrid Model Implementation
4.1 Set the hybrid_model
  4.1.1 Set Optimizer: 'Adam'
  4.1.2 Set Loss_function: Multi_Class_Cross-Entropy
 4.1.3 Set Metrics = Accuracy

Step 5: Apply Model Training
  5.1 Set model hyperparameters
      Set batch_size = 8, num_of_epochs = 100
 5.2 Apply training for the hybrid model
   5.2.1 Train hybrid_model on a skin training dataset
  5.2.2 hybrid_model.fit(X_training, Y_training, batch_size=batch_size, epochs=num_epochs,
                       validation_data=(X_validation, Y_validation))
Step 6: Skin Cancer Model Evaluation
  6.1 Evaluate hybrid_model on the testing dataset
 6.2 testing_loss, testing_accuracy = hybrid_model.evaluate(X_testing, Y_testing)

Algorithm 1.   Skin Cancer  analysis with Hybrid U-Net and MobileNet-V3.

Performance measuring parameters
We use parameters like accuracy, precision, F-measure,  the area under the curve (AUC), and confu-
sion metrics6,31–33 to determine how to determine the present model and the one we have suggested works. The 
components of the confusion matrix, including TP (true positive), TN (true negative), FP (false positive), and 
FN (false negative), have been utilized in its construction. The subsequent passage comprehensively explains 
the previously referenced statistics34.

•	 Precision (Prc) This illustrates the proportion of individuals who test positive correctly (true positives) and 
incorrectly (false positives) concerning the total number of positive individuals as described in Eq. (6).

•	 Recall (RC) or Sensitivity The calculation of recall, also known as true positive rate35, involves dividing the 
number of true positives by the total number of instances that ought to be considered anticipated as positive, 
as described in Eq. (7).

(6)Prc = [
TP

(TP + FP)
]
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•	 F-Measure (FMs) The F-score, often referred to as the ’F1 score’ or ’F-measure’36, serves as an empirical metric 
for assessing the effectiveness of a deep learning model. The integration of recall and precision results in an 
integrated score, as described in Eq. (8).

•	 Accuracy (ACR) The evaluation of classification models often involves the consideration of various metrics, 
with accuracy being one of them37. In a more formal context, accuracy can be defined as the proportion of 
correct predictions our model makes, as described in Eq. (9).

•	 Area Under the Curve (AUC) AUC refers to measuring the extent or size of two areas under a curve, which 
refers to the region bounded by the curve and the coordinate axes33,38. To determine this area, one can divide 
it into infinitesimally small rectangles and sum their areas. By incorporating the limit of this summation, as 
the rectangles become infinitely small, the total area under the curve can be calculated.

Ethical approval and consent to participate
No ethical approval is required, and the authors consent to participate in the paper.

Experimental results and evaluation
This section covers the simulation results of the existing and proposed model.

Experimental setup
The proposed and existing techniques, i.e., MobileNet, Resnet-152v2, VGG-16, MobileNet-V2, and VGG-19, were 
implemented using software and hardware components. Table 4 presents the parameters used in experimental 
analysis for proposed and existing models. Table 5 shows the Configuration parameters of Standard U-Net 
architecture used in a proposed hybrid model for image segmentation39–43.

(7)RC = [
TP

(TP + FN)
]

(8)FMs = {2 ∗ [
Prc × RC

Prc + RC
]}

(9)ACR = {
(TP + TN)

[(TP + FN)+ (TP + FP)]
}

Table 4.   Experimental Parameters for Proposed Model.

Parameters Details

Batch size 8

Data augmentation strategies Flipping, zooming, translations and rotations,

Normalization 0, 1

Regularization L2 regularization (Weight decay)

Optimizer ‘Adam optimizer’

Dropout rate 0.1

Epochs 100

Image input size (224 × 224)

Hyperparameter optimization Bayesian optimization

Transfer learning MobileNet-V3

Loss function Multi-class categorical cross-entropy function

Learning rate 0.2

Growth rate 24

Split ratio Training: testing: validation 70: 15: 15

Shuffling in database “YES”

Brightness range [0.2, 2.25]

Rotation 0 to 15 Degrees

Table 5.   Configuration parameters of Standard U-Net.

Model Activation function Stack down Stride Backbone Stack up Batch normalization Pooling Pooling

Standard U-Net ReLu 2 1 None 2 ‘TRUE’ ‘TRUE’ ‘FALSE’
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Simulation results and discussion
The HAM-10000 Skin cancer dataset serves as the training ground for the proposed model and several existing 
deep learning models, i.e., MobileNet, Resnet-152v2, VGG-16, MobileNet-V2, and VGG-19. The dataset was 
divided into training, testing and validation with a ratio of 70:15:15. The experimental results and discussion 
are as follows.

Table 6 presents the experimental results of the testing dataset for 100 epochs for existing and proposed 
models. The combined utilization of the U-Net and MobileNet-V3 models yielded exceptional results in clas-
sifying skin cancer diseases.

Table 7 presents the experimental results of the validation dataset for 100 epochs for existing and proposed 
models. The proposed model demonstrated validation results with an accuracy of 98.03%, wherein the precision, 
recall, and F1-score all surpassed 94%.

Visualization of simulation results
Figures 8, 9, 10 present a visualization of simulation results for the proposed model on the “HAM-10000” skin 
cancer dataset. Figure 8 presents the Confusion Matrix of the Proposed Model, Fig. 9 illustrates the Model Accu-
racy and Loss of the Proposed Model, and Fig. 10 shows an ROC Curve of the Proposed Model. Figures 11, 12 13 
present a visualization of simulation results for the MobileNet Model on the “HAM-10000” skin cancer dataset. 

Table 6.   Experimental results of Testing for 100 epochs.

Model Precision % Recall % F-1 Score % Accuracy % ROC-AUC %

MobileNet1 91.25 89.18 88.34 92.45 96.25

Resnet-152v22 90.34 88.57 87.65 92.57 95.32

VGG-165 90.78 89.27 88.95 92.89 94.21

MobileNet-V23 92.36 90.78 89.36 94.47 91.78

VGG-1910 93.65 91.47 90.65 94.89 93.54

Proposed model 97.84 95.27 97.32 98.86 98.45

Table 7.   Experimental results for validation (100 epochs).

Model Precision % Recall % F-1 Score % Accuracy % ROC-AUC %

MobileNet1 90.18 89.03 87.89 92.02 95.89

Resnet-152v22 90.03 88.14 87.02 92.07 95.03

VGG-165 90.07 89.02 88.03 92.05 94.01

MobileNet-V23 91.98 90.01 89.01 94.03 91.07

VGG-1910 93.01 90.09 88.04 94.08 93.02

Proposed model 97.32 94.07 97.03 98.03 97.09

Figure 8.   Confusion matrix of proposed model.
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Figure 9.   Model accuracy and loss of proposed model.

Figure 10.   ROC curve of proposed model.

Figure 11.   Confusion matrix of existing MobileNet model.
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Figure 11 presents the Confusion Matrix of the MobileNet Model, Fig. 12 illustrates the Model Accuracy and 
Loss of the MobileNet Model, and Fig. 13 shows an ROC Curve of the MobileNet Model.

Figures 14, 15, 16 present a visualization of simulation results for the MobileNet-V2 Model on the “HAM-
10000” skin cancer dataset. Figure 14 presents the Confusion Matrix of the MobileNet-V2 Model, Fig. 15 
shows the Model Accuracy and Loss of the MobileNet-V2 Model, and Fig. 16 illustrates an ROC Curve of the 
MobileNet-V2 Model.

Figures 17, 18, 19 present a visualization of simulation results for the VGG-16 Model on the “HAM-10000” 
skin cancer dataset. Figure 17 presents the Confusion Matrix of the VGG-16 Model; Fig. 18 illustrates the Model 
Accuracy and Loss of the VGG-16; Fig. 19 shows an ROC Curve of the VGG-16 Model.

Figures 20, 21, 22 present a visualization of simulation results for the VGG-19 Model on the “HAM-10000” 
skin cancer dataset. Figure 20 presents the Confusion Matrix of the VGG-19 Model; Fig. 21 illustrates the Model 
Accuracy and Loss of the VGG-19; Fig. 22 shows an ROC Curve of the VGG-19 Model. Figures 23, 24, 25 pre-
sent a visualization of simulation results for the Resnet-152v2Model on the “HAM-10000” skin cancer dataset. 
Figure 23 presents the Confusion Matrix of the Resnet-152v2 Model; Fig. 24 illustrates the Model accuracy and 
loss of the Resnet-152v2; Fig. 25 shows an ROC Curve of the Resnet-152v2 Model. Based on the analysis of the 
results, it’s clearly proven that the proposed model has better simulation outcomes than existing models.

Results and discussion
The HAM-10000 Skin cancer dataset is utilized for the proposed model and several existing deep learning models, 
i.e., MobileNet, Resnet-152v2, VGG-16, MobileNet-V2, and VGG-19. Table 6 presents the experimental results of 
the testing dataset for 100 epochs for existing and proposed models. The combined utilization of the U-Net and 
MobileNet-V3 models yielded exceptional results in classifying skin cancer diseases. The model demonstrated 
a set of validation results with an accuracy of 98.86%, wherein the precision, recall, and F1-score all surpassed 
95%. The model’s capability to distinguish between cancerous and non-cancerous tumours is demonstrated by 

Figure 12.   Model accuracy and loss of Existing MobileNet model.

Figure 13.   ROC curve of existing MobileNet model.
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Figure 14.   Confusion matrix existing MobileNet-V2 model.

Figure 15.   Model training, validation accuracy and loss existing MobileNet-V2 model.

Figure 16.   ROC curve of existing MobileNet-V2 model.
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Figure 17.   Confusion matrix of existing VGG-16 model.

Figure 18.   Model training, validation accuracy and loss existing VGG-16 model.

Figure 19.   ROC curve of existing VGG-16 model.
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Figure 20.   Confusion matrix of existing VGG-19 model.

Figure 21.   Model training accuracy and validation of existing VGG-19 model.

Figure 22.   ROC curve of existing VGG-19 model.
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Figure 23.   Confusion matrix of resnet-152v2.

Figure 24.   Training and validation accuracy, loss results of resnet-152v2.

Figure 25.   ROC-curve of resnet-152v2.
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the ROC-AUC score of 98.45%, indicating excellent performance. The model consistently demonstrated a strong 
performance on the test set, achieving an accuracy rate of 98.45%.

The evaluation metrics, precision, accuracy, recall, ROC-AUC and F1-score, exhibited remarkable perfor-
mance on the testing dataset, surpassing 95% for each metric. The ROC-AUC result of 98.45% reaffirms the 
model’s robustness compared to the proposed model, existing MobileNet achieved, reaching 89% for each perfor-
mance metric. Resnet-152V2 was achieved, surpassing 88% for each performance metric; VGG-16 was achieved, 
exceeding 89% for each performance metric. MobileNet-V2 achieved, exceeding 90% for each performance 
metric, and VGG-19 achieved, surpassing 90.50% for each performance metric. These results indicate that the 
proposed model achieved outstanding results over existing deep learning models.

Table 7 presents the experimental results of the validation dataset for 100 epochs for existing and proposed 
models. The proposed model demonstrated validation results with an accuracy of 98.03%, wherein the preci-
sion, recall, and F1-score all surpassed 94%. The model’s capability to distinguish between cancerous and non-
cancerous tumours is demonstrated by the ROC-AUC score of 97.09%, indicating excellent performance. The 
evaluation results show precision, accuracy, recall, ROC-AUC, and F1-score, exhibiting remarkable performance 
on the validation dataset, surpassing 94% for each metric. The ROC-AUC result of 97.09% reaffirms the model’s 
robustness. As compared to the proposed model, the existing model, i.e., MobileNet achieved, surpassing 87% 
for each performance metric, Resnet-152V2 achieved, surpassing 87.02% for each performance metric VGG-16 
achieved, reaching 88% for each performance metric, MobileNet-V2 achieved, exceeding 89% for each perfor-
mance metric, and VGG-19 achieved, surpassing 88.50% for each performance metric. These results indicate 
that the proposed model achieved outstanding results over existing deep learning models.

Figures 8, 9, 10 present a visualization of simulation results for the proposed model, Figs. 11, 12, 13 pre-
sent a visualization of simulation results for the MobileNet Model, Figs. 14, 15, 16 present a visualization of 
simulation results for the MobileNet-V2 Model, Figs. 17, 18, 19 shows a visualization of simulation results for 
the VGG-16 Model, Figs. 20, 21, 22 present a visualization of simulation results for the VGG-19 Model on the 
“HAM-10000” skin cancer dataset. Similar Figs. 23, 24, 25 present a visualization of simulation results for the 
Resnet-152v2Model on the “HAM-10000” skin cancer dataset. Based on the analysis of the results, it’s clearly 
proven that the proposed model has better simulation outcomes than existing models. Existing models such as 
MobileNet, VGG-16, MobileNet-V2, ResNet-152v2, and VGG-19 did not perform as well as the Hybrid U-Net, 
and Improved MobileNet-V3 model with hyperparameter optimization did on the "HAM-10000 Melanoma Skin 
Cancer dataset." There are several reasons for this.

•	 Architecture of U-Net The U-Net architecture has gained recognition for its efficacy in the field of image 
segmentation, particularly in tasks related to skin cancer detection, where the objective is to delineate skin 
tumours from the tissue that surrounds them accurately. The U-Net’s capacity to effectively capture intricate 
details and delineations contributes to enhanced feature extraction and superior classification outcomes.

•	 Improved MobileNet-V3 MobileNet-V3 is a CNN architecture that has been specifically developed to prior-
itize both efficiency and accuracy. The enhanced iteration of the dataset takes into account alterations and 
refinements that render it better suited for the unique attributes of the skin malignancies dataset.

•	 Feature extraction by Hybrid Model The hybrid models were created by integrating the advantageous fea-
tures of both U-Net and MobileNet-V3. The provided system offers precise segmentation masks, whereas 
MobileNet-V3 efficiently extracts features from the segmented regions. The integration of these characteristics 
enhances the model’s comprehension of images related to skin cancer.

•	 Optimization of Hyperparameter The utilization of hyperparameter optimization techniques enables the 
refinement of the model’s parameters and structural decisions, specifically tailored to the skin cancer data-
set. In comparison with models with standard hyperparameters, this led to better performance and broad 
applicability.

Ablation analysis
We performed ablation research to determine the effect of critical parameters in the proposed skin cancer 
analysis model. To check the proposed model performance, we have conducted an ablation analysis with various 
conditions, which include (a) with and without Hybrid U-Net, (b) with and without MobileNet-V3, (c) with 
and without Augmentation, (d) with and without Batch Normalization, (e) with and without Hyperparameters. 
After methodically removing and testing with every single subsequent component eliminated, the following 
observations were found.

Various factors on the skin dataset were compared in the ablation analysis, as shown in Table 8 and Fig. 26. 
For example, when it came to identifying complicated characteristics inside skin lesions, performance metrics 
dropped when the Hybrid U-Net was not used. There has been a significant gain in accuracy, suggesting that the 
Hybrid U-Net is vital in lowering the model’s false positive rate and improving its capacity to detect cancerous 
tumours accurately. Improving MobileNet-V3 is crucial for efficient feature extraction since its absence signifi-
cantly reduced total accuracy. There is strong evidence from the improved accuracy that Improved MobileNet-V3 
helps cut down on false positives.

Results showed that model resilience was reduced in the absence of data augmentation, highlighting the need 
for dataset augmentation for improved generalizability. Increases in accuracy and F1-score demonstrate how data 
augmentation enhances the model’s capacity to categorize cancerous tumours accurately. A decrease in overall 
model performance and a slowdown in training convergence were the outcomes of removing batch normalization 
layers. Improving the model’s capacity to distinguish between benign and malignant lesions and stabilizing the 
training process are both achieved using batch normalization, as seen by the significant gains in accuracy and 
F1-score. We found that the model’s sensitivity to distinguishing between benign and malignant lesions is greatly 
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affected by the ideal values of the hyperparameters. These enhanced precision and accuracy show how critical 
hyperparameter adjustment is for getting the most out of a model. All of the steps and parts of our skin cancer 
diagnostic methodology are vital, as these results show. In addition to shedding light on the model, the ablation 
research provides valuable information for making future upgrades and enhancements. Here are some practical 
ways to improve the model’s diagnostic accuracy and reliability: observe the changes in performance measures.

Conclusion and future works
The proposed research integrates Hybrid U-Net and Improved MobileNet-V3 features to formulate a new hybrid 
model for skin cancer detection. Our model, showcasing superior diagnostic accuracy, emphasizes the pivotal 
roles of Hybrid U-Net and Improved MobileNet-V3 through a comprehensive assessment involving an ablation 
study and a comparison with state-of-the-art models. Beyond delivering a high-performing model, the study 
offers insightful directions for future research, contributing to the advancements in automated skin cancer 
detection. The observed enhancements, coupled with our competitive standing against current models, suggest 
a potentially significant therapeutic impact. According to the authors, this study introduces new possibilities for 
research and development in medical image analysis, promising faster and more accurate skin cancer diagnostics.

This research introduces an innovative skin cancer detection method incorporating U-Net and MobileNetV3 
architecture, employing hyperparameter optimization strategies. By combining advanced deep learning tech-
niques and meticulous parameter optimization, the result is a highly accurate and efficient system for diagnosing 
skin cancer. This work significantly improves skincare and medical services by providing a valuable tool for skin 
specialists and doctors to enhance the timely detection of skin malignancies and improve patient outcomes. The 
proposed model is compared with existing models, namely MobileNet, VGG-16, MobileNet-V2, Resnet-152v2, 
and VGG-19 on the "HAM-10000 Melanoma Skin Cancer dataset".

To fine-tune the model’s hyperparameter, we employ sophisticated optimization methods such as the Bayes-
ian optimization method using the pre-trained CNN architecture MobileNet-V3. Empirical findings demon-
strate that the proposed optimized hybrid MobileNet-V3 model outperforms existing skin cancer detection 
and segmentation techniques, achieving high precision (97.84%), sensitivity (96.35%), accuracy (98.86%), and 
specificity (97.32%). The enhanced performance of this research can lead to timelier and more precise diagnoses, 
potentially contributing to life-saving outcomes and mitigating healthcare expenditures. The developed model 
holds significant potential in terms of clinical relevance, as suggested by its precision and recall scores, making 
it a valuable tool for dermatologists in the early detection of skin cancer. The elevated accuracy level presents a 
potential avenue for mitigating misdiagnoses and improving patient outcomes.

In the proposed model, computational demands during training and inference may arise as a consequence 
of integrating two complicated designs. This limitation should be taken into account, particularly in situations 
when resources are limited. Also, interpretability is a common issue for deep learning models like the proposed 
model. In clinical situations, the model’s interpretability is limited because, despite its good performance, com-
prehending the precise elements underlying the classification judgments might be difficult.

In order to reduce computing complexity, future studies should concentrate on improving the model. To 
improve the practicality of deployment, it may be worthwhile to investigate model compression approaches or 
lightweight designs. Solving problems with interpretability might be crucial. Healthcare providers may gain con-
fidence and knowledge of the model’s decision-making process with the use of explainable AI approaches. Future 
research in the area of automated skin cancer detection will be guided by this balanced approach, which adds to 
the current conversation in the field. Future research should explore incorporating supplementary clinical data, 
developing interpretability methods tailored for medical professionals, and addressing the ethical implications 

Figure 26.   Comparative analysis of ablation analysis for different parameters on skin dataset.
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associated with implementing artificial intelligence models for skin cancer diagnosis. Our commitment to inno-
vation remains central as we aim to make a significant impact within dermatology. While the proposed model 
exhibits exemplary performance on the HAM-10000 dataset, it is crucial to recognize that real-world medical 
records may show unforeseen variations. Additional validation is necessary to extend the model’s capabilities to 
datasets and situations in healthcare that have not been previously encountered.

Data availability
The data supporting the research results of the present research can be obtained by contacting the correspond-
ing author.  
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