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Assessment of deep learning 
segmentation for real‑time 
free‑breathing cardiac magnetic 
resonance imaging at rest 
and under exercise stress
Martin Schilling 1,5, Christina Unterberg‑Buchwald 1,2,3,5, Joachim Lotz 1 & Martin Uecker 1,2,4*

In recent years, a variety of deep learning networks for cardiac MRI (CMR) segmentation have been 
developed and analyzed. However, nearly all of them are focused on cine CMR under breathold. In 
this work, accuracy of deep learning methods is assessed for volumetric analysis (via segmentation) of 
the left ventricle in real‑time free‑breathing CMR at rest and under exercise stress. Data from healthy 
volunteers (n = 15) for cine and real‑time free‑breathing CMR at rest and under exercise stress were 
analyzed retrospectively. Exercise stress was performed using an ergometer in the supine position. 
Segmentations of two deep learning methods, a commercially available technique (comDL) and an 
openly available network (nnU‑Net), were compared to a reference model created via the manual 
correction of segmentations obtained with comDL. Segmentations of left ventricular endocardium 
(LV), left ventricular myocardium (MYO), and right ventricle (RV) are compared for both end‑systolic 
and end‑diastolic phases and analyzed with Dice’s coefficient. The volumetric analysis includes the 
cardiac function parameters LV end‑diastolic volume (EDV), LV end‑systolic volume (ESV), and LV 
ejection fraction (EF), evaluated with respect to both absolute and relative differences. For cine CMR, 
nnU‑Net and comDL achieve Dice’s coefficients above 0.95 for LV and 0.9 for MYO, and RV. For real‑
time CMR, the accuracy of nnU‑Net exceeds that of comDL overall. For real‑time CMR at rest, nnU‑
Net achieves Dice’s coefficients of 0.94 for LV, 0.89 for MYO, and 0.90 for RV and the mean absolute 
differences between nnU‑Net and the reference are 2.9 mL for EDV, 3.5 mL for ESV, and 2.6% for 
EF. For real‑time CMR under exercise stress, nnU‑Net achieves Dice’s coefficients of 0.92 for LV, 0.85 
for MYO, and 0.83 for RV and the mean absolute differences between nnU‑Net and reference are 
11.4 mL for EDV, 2.9 mL for ESV, and 3.6% for EF. Deep learning methods designed or trained for cine 
CMR segmentation can perform well on real‑time CMR. For real‑time free‑breathing CMR at rest, the 
performance of deep learning methods is comparable to inter‑observer variability in cine CMR and is 
usable for fully automatic segmentation. For real‑time CMR under exercise stress, the performance of 
nnU‑Net could promise a higher degree of automation in the future.

The fast and reliable evaluation of cardiac function is an essential part of cardiac MRI (CMR), significant for 
patient diagnostics, disease analysis, therapy evaluation, follow-up, and risk  estimation1,2. The main quantita-
tive parameters of cardiac function are the left ventricular blood volume (LV), the volume of left ventricular 
myocardium (MYO), and the right ventricular blood volume (RV). These parameters are usually calculated by 
acquiring and segmenting a stack of cross-sectional images in short-axis view.

Advances in image reconstruction have enabled the continuous acquisition of high-quality images in real time, 
i.e. during free-breathing and independent of ECG-synchronization3–5. In CMR, real-time MRI has emerged as a 
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viable alternative for patients with  arrhythmia6, for measurements using exercise  stress7–9, as well as for real-time 
guidance in cardiac catheter  interventions10–13.

The delineation of the LV boundary is an important step for the determination of end-diastolic volume (EDV), 
end-systolic volume (ESV), and ejection fraction (EF). However, manual segmentation of images is tedious and 
affected by inter- and intra-observer  variability14–16. In recent years, deep learning methods have been introduced 
into clinical practice for the generation of base contours, which are manually corrected as required. In research, 
a variety of deep learning methods have been developed for segmentation in  CMR17. However, nearly all of 
these methods are focused on conventional breathold cine  imaging18. In real-time MRI, automatic segmenta-
tion becomes more important, because a series of heart beats is acquired instead of a single cine loop. Real-time 
exercise stress studies pose an additional challenge for automatic segmentation due to the tendency for inferior 
image  quality8,19 depending on an increased heart rate and breathing motion. Recent works covering real-time 
 MRI20,21 have used custom neural networks trained specifically for the application on real-time CMR, though 
have faced the problem of limited training data availability.

This study aims to investigate the feasibility of using deep learning methods trained on cine CMR data for 
the automatic segmentation of real-time free-breathing CMR images. It will evaluate the performance of the 
methods under the conditions of both rest and during exercise stress.

Methods
Overview
We analyzed cine and real-time measurements of healthy volunteers (n = 15) acquired at rest and under exer-
cise stress using a highly undersampled radial bSSFP sequence with NLINV  reconstruction22,23 with a temporal 
resolution of 33 ms.

We evaluated segmentations obtained with two deep learning methods, (1) the automatic contour detection 
designed for cine CMR (comDL) that is included in the commercially available software Medis (version 4.0.56.4, 
QMass®8.1, Medical Imaging Systems, Leiden, Netherlands) and (2) nnU-Net24, which was pre-trained on the 
cine CMR dataset of the Automated Cardiac Diagnosis Challenge (ACDC). Segmentations were compared to a 
reference model and standard clinical routine procedure of manually correcting the results obtained with comDL.

The accuracy of segmentation was evaluated for images in end-diastolic and end-systolic phases. The cardiac 
function parameters EDV, ESV, and EF were derived from neural network segmentation and compared to refer-
ence values derived from the manually corrected contours.

A comparison of cine and real-time CMR measurements and representative manually corrected contours 
are presented in Fig. 1.

Dataset
The dataset consists of cine and real-time images from 15 healthy volunteers (7 male; 8 female; aged 55±8 (s.d.)) 
from a consecutive series of exams performed at the Institute for Diagnostic and Interventional Radiology of 
the University Medical Center Göttingen. It is part of a larger dataset acquired in a previous research study on 

Figure 1.  Comparison of different measurement types. Mid-ventricular slices in ED phase of the same 
volunteer for cine and real-time free-breathing at different heart rates (top) and corresponding manually 
corrected segmentation (bottom) in a short axis view are shown. Image quality decreases and reconstruction 
artifacts increase with an increasing heart rate. The left ventricular endocard (red), the left ventricular 
myocardium (green), and the right ventricle (blue) are segmented.
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real-time MRI with the approval of the local ethics committee. Consent for publication was obtained from all 
participants in the study.

All volunteers were measured with the same protocol. The healthy volunteers underwent CMR in supine 
position using a 32-channel cardiac surface receiver coil at 3 T (Skyra, Siemens Healthineers, Germany). Con-
ventional imaging at rest included a balanced steady-state free precession (bSSFP) ECG-gated cine sequence 
to create a short-axis stack covering the entire heart, including both ventricles and atria. Real-time CMR data 
acquisition was performed during free-breathing and without ECG-synchronization at rest and under two dif-
ferent levels of exercise stress. A detailed summary of acquisition parameters of cine and real-time CMR can be 
found in Supplementary Table S1 online.

Real-time acquisiton was based on a bSSFP sequence using a highly undersampled radial encoding scheme 
and iterative image  reconstruction3,23. Exercise stress CMR was performed using a CMR-compatible ergometer 
in the supine position (Lode, Leiden, Netherlands), as previously described  in7.

After performing real-time free-breathing measurements at rest (RT), exercise stress was increased until a 
target heart rate of 110 beats per minute (bpm) was reached. Measurements at this target heart rate are referred 
to as real-time stress (RT stress). Finally, exercise stress was increased to the subjective, maximal exercise stress 
of each person and a measurement was performed (RT max stress). All persons gave written informed consent 
before each CMR examination.

Segmentation
Reference
To create a reference segmentation, manually corrected segmentation was performed using Medis (version 
4.0.56.4, QMass®8.1, Medical Imaging Systems, Leiden, Netherlands). Contours for the left ventricular endo-
cardium, the left ventricular epicardium, and the right ventricle were created on short axis slices in end-diastole 
and end-systole. The segmentation of the left ventricular myocardium is formed by the area between the left 
ventricular epicardium and endocardium. Contours automatically created by the software were then manually 
corrected to create the reference in accordance with the standard procedure used in clinical routine. Contour 
creation followed the contour protocol used for the Automated Cardiac Diagnosis Challenge (ACDC)14: Papil-
lary muscles are included in the cavity and LV endocardial contours follow the limit defined by the aortic valve 
at the base of the LV.

For real-time measurements at rest and under physical stress, images in ED and ES phase in the whole time 
series (120–150 images) were segmented. At rest, the time series spans 3–4 heartbeats. Under physical stress, the 
time series spans 6–9 heartbeats. For real-time measurements at maximal physical stress, only images in ED and 
ES phase among the first 50 images of the time series (2–4 heartbeats) were segmented. For the measurements of 
three volunteers at maximal physical stress, image quality was too poor to create reasonable reference contours.

Neural networks for automatic segmentation
This work evaluates two different neural networks for automatic segmentation. The first is the automatic contour 
creation from the commercial software Medis DL ACD (Medis deep learning automatic contour detection) in 
QMass 8.1. We refer to this method as comDL.

It should be stressed that comDL is intended to be used for cine CMR as a basis for the contours, to be 
manually corrected and checked as described above. Since manual correction is generally not feasible for the 
high number of images acquired using real-time MRI, the scope of this work is to evaluate the performance of 
deep-learning methods for automatic segmentation.

The second neural network evaluated in this work is nnU-Net. It is freely available and offers trained weights 
for various image segmentation challenges in the medical field. The model has already shown great versatility 
and was successfully used for a variety of medical segmentation tasks, e.g. achieving first place for all segmenta-
tion classes in the cardiac segmentation challenge “Automated Cardiac Segmentation Challenge” (ACDC)24.

Preliminary analysis (results not shown) showed that nnU-Net performs better if applied on individual 2D 
images rather than on a stack of 2D images, e.g. a time series of real-time MRI in a single slice or a stack of cine 
images within the same cardiac phase. The benefit of independent normalization of each image increased for 
more challenging segmentation tasks (see Supplementary Table S2 online). The application of 2D nnU-Net was 
identified as the best configuration for this task when compared with 3D nnU-Net and the ensemble of both 
models (see Supplementary Table S3 online).

Consequently, the 2D version of nnU-Net with weights pre-trained on the ACDC dataset was applied on 
single images of the dataset for all cine and real-time measurements.

In March 2023, a new version of nnU-Net was published (nnU-Net V2). As of 2024-01-19, no pre-trained 
weights have been published for the second version and segmentation performance reportedly remains the 
 same25. As such, this work evaluates the first version of nnU-Net.

Evaluation criterion
It evaluates the overlap of a predicted segmentation of a neural network Pk with a reference segmentation Rk for 
each individual segmentation class k and is defined as

DC is a value between 0 and 1, with 0 denoting no overlap between prediction and reference and 1 denoting 
perfect agreement.

(1)DC = 2
Pk ∩ Rk

Pk + Rk

.
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Calculation of heart rates
We also categorized all real-time images based on heart rates, as these differed for RT max stress. For the calcula-
tion of heart rates, we used the three central slices of all slices between the base and apex. In the central slices, the 
left ventricle is present during the entire time series despite respiratory motion, which can cause a displacement 
of the heart in and out of the imaging plane in basal and apical slices. Heartbeats per minute (bpm) are calculated 
based on the duration between two end-diastolic phases.

Cardiac function parameters
End-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) were computed. To minimize 
the influence of respiratory motion on EDV and ESV, images in the ED and ES phase of the cardiac cycle during 
end-expiration were manually selected for each slice. For comDL and nnU-Net, cardiac function parameters 
were calculated based on segmentation of the same selected images. Ventricular volumes were calculated with 
Simpson’s  rule26,27.

For intra-observer variability, manually corrected contours for the derivation of the clinical measures of all 
volunteers were created three to six months after the initial segmentation. For inter-observer variability, manu-
ally corrected contours for the derivation of the clinical parameters were created for the first five volunteers by 
a second reader with experience in cardiac segmentation. Single images in the ED and ES phase during end-
expiration were once again chosen from each slice and EDV, ESV, and EF were derived from newly created, 
manually corrected contours.

Previously  reported15 inter-observer variability was chosen as an additional reference for comparison because 
it represents the accuracy of the evaluation in the clinical workflow of cine CMR. Measurements are usually 
evaluated by a single person and the accuracy of the method is determined by the variance between different 
human observers.

Statistics
We evaluated cardiac function parameters through Bland–Altman plots and paired two-sample t-tests. The car-
diac function parameters EDV, ESV, and EF that were derived from comDL and nnU-Net segmentations were 
compared to the respective values derived from manually corrected contours (see Supplementary Figs. S1 and 
S2 online). The comparison includes cine CMR and real-time CMR measurements at rest and under stress of all 
volunteers. Additionally, cardiac function parameters of cine CMR and real-time CMR at rest were compared 
with each other (see Supplementary Fig. S3 online). T-tests were performed under the null hypothesis with a 
significance level of α = 0.05.

Results
Segmentation accuracy
The data for all 15 volunteers could be successfully analyzed for cine CMR and real-time free-breathing CMR 
at rest and under exercise stress. For the measurements of three volunteers at maximal physical stress, image 
quality was too poor to create reasonable reference contours and thus only data of 12 volunteers were analyzed.

For cine CMR, the DC values for both neural network segmentations are comparable (Table 1) and show a 
high correlation with conventional segmentation. Figure 2 shows representative DC cases.

For cine CMR, the nnU-Net performance (Table 1) is comparable to the results achieved on the ACDC test 
 dataset24. The Dice’s coefficients reported here are slightly higher, as might be expected for the application on 
healthy subjects as compared to different pathology groups in the ACDC test dataset.

Real-time free-breathing measurements can be categorized based on the form of acquisition, e.g. at rest (RT), 
under a level of stress selected according to a targeted heart rate of 110 bpm (RT stress) and maximal exercise 
stress (RT max stress), for which the stress level and heart rate varies by volunteer.

Mean heart rate and standard deviation for all volunteers can be found as Supplementary Table S4 online. 
The different real-time free-breathing CMR measurements fall into different heart rate spans, RT—55–77 bpm, 
RT stress—107–120 bpm, RT max stress—121–164 bpm.

The accuracies of nnU-Net and comDL segmentation based on the heart rate categorization are presented 
in Table 1. The nnU-Net model shows good generalizability with high accuracies of segmentation for both RT 
(DC: LV 0.94, MYO 0.89, RV 0.90) and RT stress (DC: LV 0.92, MYO 0.85, RV 0.83). The accuracies for RT 
are in the order of previously  reported15 inter-observer variability for cine CMR. With the exception of the RV 
segmentation for RT, the accuracy of nnU-Net predictions exceeds the accuracy of comDL in real-time CMR.

To better visualize the relationship between heart rate and the neural network segmentation accuracy, Fig. 3 
shows the nnU-Net and comDL Dice’s coefficients by calculated heart rate for real-time CMR. Two outliers are 
visible for the RV segmentation of the nnU-Net. Both data points correspond to the RT and RT stress measure-
ments of the same volunteer. While the RV segmentation performs well for cine and RT it nearly completely fails 
for RT stress and RT maxstress, most likely because of smooth transitions between RV and neighboring tissue. 
A representative comparison can be found as Supplementary Fig. S4 online.

Example failure cases for the nnU-Net are shown in Fig. 4. Images in the basal and apical region of the heart 
were especially prone to segmentation failures.

Cardiac function parameters
For cine and real-time CMR, the EDV, ESV, and EF were derived from the manually corrected contours for 
manually selected images in the ED and ES phases. The absolute values for each volunteer can be found in Sup-
plementary Table S5 online. The comparison between these values and those derived from the nnU-Net and 
comDL segmentation is presented in Table 2 in form of absolute and relative differences.
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For cine CMR, manual corrections of comDL led to only slight differences in EDV and ESV. For real-time 
CMR, the difference between the nnU-Net segmentation and manually corrected contours compares well to 
intra- and inter-observer variability for real-time CMR as well as to the inter-observer15 variability previously 
reported for cine CMR (Table 2). For nnU-Net, mean relative differences of 2.4% for EDV, 6.6% for ESV, and 
4.6% for EF were obtained for real-time CMR at rest. For nnU-Net, the absolute and relative differences of EDV, 
ESV, and EF are less than the inter-observer variability, although the direct comparability is limited because 
images were newly selected for intra- and inter-observer variability, while the nnU-Net segmentation has been 
compared to the manually corrected contours of the same images. The different selection process of the images 
may influence the variability a lot more than a different delineation of LV within the same image. Relative intra-
observer variability increases from cine CMR to real-time CMR at rest, and again to real-time CMR at stress. 
Relative intra- and inter-observer variability is overall higher for ESV than for EDV, which is in agreement with 
previously reported inter-observer variability. Inter-observer variability is slightly higher for ESV in cine CMR 
than what was previously reported but only increases somewhat for RT and RT stress.

Clinical measures derived with nnU-Net and comDL are compared to references in form of Bland–Altman 
plots (Supplementary Figs. S1 and S2 online). According to paired two-sample t-tests, differences between nnU-
Net and manually corrected contours are significant for ESV and EF for cine CMR ( P < 0.001 ) and not significant 
for EDV ( P = 0.23 ) for cine CMR and for all cardiac function parameters for RT and RT stress ( P > 0.5 ). Dif-
ferences between comDL and manually corrected contours are not significant for EDV for cine ( P = 0.16 ) and 
real-time CMR ( P = 0.61 ) and significant for all other cardiac function parameters of cine, RT and RT stress 
( P < 0.05 ). Individual P values are shown in the Bland–Altman plots.

Figure 2.  Representative segmentations of manually corrected contours and deep learning methods. Mid-
ventricular slices in ES phase of a volunteer for cine and real-time free-breathing at different heart rates (first 
row) with corresponding manually corrected (second row), comDL (third row), and nnU-Net segmentation 
(fourth row). Accuracy of segmentation is measured with Dice’s coefficient (DC). DC for left ventricular 
endocard (LV), left ventricular myocardium (MYO), and right ventricle (RV) are given for each segmentation.
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Although a comparison of cardiac function parameters between cine and real-time CMR was not the focus 
of this work, we note that the data show a higher mean EDV (mean difference 8.9 mL) and a lower mean ESV 
(mean difference -4.1 mL) for cine CMR (see Supplementary Fig. S3 online). These deviations are in the order 
of previously  reported4 differences between cine and real-time CMR. According to paired two-sample t-tests, 
differences between cine and real-time CMR are significant ( P < 0.05 ) for all cardiac function parameters for 
manually corrected contours.

Discussion
In this study of cine CMR and real-time free-breathing CMR at rest and under exercise stress of 15 healthy vol-
unteers, we found that the accuracy of comDL and nnU-Net is in the order of inter-observer variability for cine 
CMR and real-time CMR at rest. Consequently, both methods are viable for a prospective, automated evaluation 

Table 1.  Dice’s coefficients of nnU-Net and comDL segmentation for cine and real-time CMR. The table 
features the mean and standard deviation (in parenthesis) of the Dice’s coefficients for the left ventricular 
endocard (LV), the left ventricular myocardium (MYO), and the right ventricle (RV) for all volunteers. For 
cine CMR, images were separated into end-diastolic (ED) and end-systolic (ES) phase. For RT max stress, only 
data of 12 volunteers were analyzed, because in three cases the image quality was too poor to create reasonable 
reference contours. Mean and standard deviation (in parenthesis) of previously reported values for inter-
observer variability from three different human observers for cine CMR are shown for comparison.

n = 15 LV MYO RV

nnU-Net cine ED 0.98 (0.00) 0.91 (0.02) 0.92 (0.05)

nnU-Net cine ES 0.92 (0.04) 0.91 (0.03) 0.88 (0.06)

nnU-Net cine 0.95 (0.02) 0.91 (0.02) 0.90 (0.03)

nnU-Net RT 0.94 (0.02) 0.89 (0.02) 0.90 (0.03)

nnU-Net RT stress 0.92 (0.03) 0.85 (0.03) 0.83 (0.11)

nnU-Net RT max stress (n = 12) 0.91 (0.03) 0.83 (0.04) 0.79 (0.16)

comDL cine ED 0.98 (0.02) 0.97 (0.02) 0.92 (0.06)

comDL cine ES 0.95 (0.05) 0.95 (0.04) 0.88 (0.08)

comDL cine 0.97 (0.03) 0.96 (0.02) 0.90 (0.06)

comDL RT 0.93 (0.04) 0.88 (0.05) 0.92 (0.05)

comDL RT stress 0.79 (0.15) 0.72 (0.15) 0.79 (0.14)

comDL RT max stress (n = 12)
0.70 (0.21) 0.62 (0.19) 0.69 (0.18)

0.94 (0.04) 0.88 (0.02) 0.87 (0.06)

Inter-observer cine (n = 50)15
0.92 (0.04) 0.87 (0.03) 0.88 (0.05)

0.93 (0.04) 0.88 (0.02) 0.89 (0.05)

Figure 3.  Dice’s coefficient of real-time CMR measurements plotted against heart rate. DC values of LV, 
MYO, and RV are calculated for (a) nnU-Net and (b) comDL segmentation in respect to manually corrected 
contours. Each data point presents the average DC of a segmentation class for a single real-time measurement 
of a volunteer. Real-time CMR at rest, under exercise stress and maximal exercise stress are presented by their 
average calculated heart rate.
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with little or no manual correction. For real-time CMR under exercise stress, nnU-Net is usable as a basis for 
manually corrected contours.

In our study, comDL contours are the basis for manually corrected contours, which act as reference. These 
automatically created contours require little manual correction, confirming the good performance of comDL for 
cine CMR. However, our study showed comDL to be less accurate than nnU-Net for real-time CMR, especially 
for RT stress and RT max stress. These results might be expected from the perspective that comDL was designed 
and most likely optimized for cine CMR, for which it performed very well.

nnU-Net shows better generalizability for real-time CMR than comDL, having its segmentation accuracy 
decrease less between real-time and exercise stress measurements. For measurements under exercise stress, nnU-
Net may have reached the limit of its applicability for fully automatic segmentation. Although its performance 
remains quite good, as demonstrated by high Dice’s coefficients and a low mean absolute difference in ESV, the 
mean difference in EDV is significantly larger than intra-observer variability. While the accuracy of nnU-Net 
might not yet be sufficient for fully automatic segmentation, it shows promising results for an increased degree 
of automation in the future.

In this work, we observed the highest degree and frequency of deviations between reference and neural 
network segmentation in the basal and apical regions of the heart. These regions were also identified as the 
most problematic factor for neural network segmentation in the evaluation of  ACDC14. Due to the ambiguity 
of slice positions, which can still include or exclude certain segmentation classes, comDL and nnU-Net showed 
some difficulty in correctly segmenting these areas. One approach to this issue is the usage of multiple neural 
networks individually trained on specific heart  regions28. This however requires manually labeling input data 
prior to segmentation.

One previous study concerning the segmentation of real-time free-breathing CMR with deep learning neural 
networks is the work by Yang et al.20, which created a custom neural network based on the U-Net29 architecture 
and also trained on the ACDC dataset. They evaluated their network on end-systolic and end-diastolic phases 
in the end-expiration state of healthy volunteers. Our results for real-time free-breathing CMR show a higher 
segmentation accuracy for comDL and nnU-Net compared to results  of20 (DC: LV 0.919, MYO 0.806, RV 0.818), 
showing the progress of segmentation networks for real-time CMR.

New methods have been developed for cardiac segmentation in recent years, e.g. the usage of transformers 
within neural networks for segmentation is a more recent idea than the use of convolutional neural networks 
and might be an essential element for future  research30. A combination of nnU-Net with  transformers31 shows 
promising results, especially in an ensemble with the unmodified nnU-Net. However, the highest performance 
of deep learning neural networks for segmentation in the field of CMR is still achieved by convolutional neural 
networks, often based on the U-Net or the nnU-Net30. Therefore, it seems reasonable to have nnU-Net as the 
state-of-the-art method, in particular because of its accessibility through pre-trained weights.

The development and application of deep learning methods is an active research topic in  radiology32–34. 
Standards for the reporting of artificial intelligence methods were established for the medical field as a whole 
 in35 and the topic was specifically discussed for CMR  in36,37.

For cardiac segmentation, deep learning methods have already been successfully integrated into clinical 
routines and have substantially reduced the number of manual corrections needed. With recent progress, a fully 
automatic workflow seems feasible even for real-time CMR, but essential steps are still missing. If the evalua-
tion of real-time free-breathing measurements should work analogously to cine CMR, images within the same 

Figure 4.  Example segmentation failures of nnU-Net for real-time CMR under exercise stress. Incomplete 
segmentation of the right ventricle in the apical region (first and second column). Anatomically incoherent 
segmentation of the myocardium and right ventricle in the basal region (third and fourth column).



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3754  | https://doi.org/10.1038/s41598-024-54164-z

www.nature.com/scientificreports/

respiratory motion state must be evaluated across slices. The identification of the respiratory state would need 
to be automated, e.g. with the help of an external device like a respiratory belt, or by automatic analysis of the 
images. Based on the respiratory motion state, images in the correct cardiac phase can then be automatically 
selected based on LV area. To keep manual corrections to a minimum, additional priors in the form of confidence 
maps, such as uncertainty  maps38, could be used to quantify the need of manual correction. For patients with 
arrhythmia, arrhythmic heartbeats would need to be distinguished automatically from regular (sinus) rhythm.

Some limitations of our study must be noted. Firstly, extrasystolic heartbeats within the selected images 
were not excluded, as the limited duration of the time series did not always allow the monitoring of prior and 
subsequent heartbeats to fully exclude an extrasystole. However, this only affects the validity of the resulting 
cardiac function parameters, not the comparison between the manually corrected contours and the deep learning 
methods, as the same images have been evaluated for all methods. Secondly, only a relatively small number of 
healthy volunteers were included in this study and the validity for clinical application on patients still needs to 
be demonstrated. Thirdly, no detailed methodological information can be provided for comDL, as it is part of a 
commercial software. It still serves as a reference to the clinical standard. Finally, only two deep-learning methods 
have been compared, which limits the generalizability of the results to machine learning methods in general. We 

Table 2.  Cardiac function parameters from deep learning methods compared to references.. Cardiac function 
parameters derived from comDL and nnU-Net segmentation are compared to reference values obtained 
with manually corrected segmentation. The table features the differences of the cardiac function parameters 
of the left ventricular end-diastolic volume (EDV), the left ventricular end-systolic volume (ESV), and the 
left ventricular ejection fraction (EF) of cine and real-time CMR of all volunteers. The mean and standard 
deviation (in parenthesis) of the difference are reported for (a) the absolute and (b) the relative difference. 
Intra- and inter-observer variability are given for values which were derived from manually corrected contours 
of newly selected images. Previously reported values for inter-observer variability from three different human 
observers for cine CMR are presented for comparison.

(a) Absolute difference

n = 15 EDV [mL] ESV [mL] EF [%]

nnU-Net cine 1.8 (1.5) 3.7 (2.9) 2.5 (2.2)

nnU-Net RT 2.9 (2.1) 3.5 (3.6) 2.6 (2.6)

nnU-Net RT stress 11.4 (16.3) 2.9 (1.8) 3.6 (4.5)

comDL cine 1.0 (0.7) 3.0 (2.7) 1.8 (1.4)

comDL RT 6.0 (5.4) 5.4 (4.9) 4.0 (5.4)

comDL RT stress 32.7 (28.5) 7.3 (5.0) 26.3 (47.0)

Intra-observer cine 2.8 (3.9) 1.4 (1.9) 1.5 (1.6)

Intra-observer RT 3.5 (4.2) 4.5 (4.5) 2.9 (2.3)

Intra-observer RT stress 4.1 (3.3) 4.3 (3.9) 3.5 (2.2)

Inter-observer cine (n = 5) 4.4 (4.9) 8.5 (7.9) 4.5 (3.4)

Inter-observer RT (n = 5) 4.8 (3.1) 11.1 (7.6) 7.1 (4.8)

Inter-observer RT stress (n = 5)
11.5 (6.6) 9.4 (8.9) 5.1 (5.1)

6.1 (4.4) 4.1 (4.2) 3.1 (2.1)

Inter-observer cine (n = 50)15
8.8 (4.8) 6.7 (4.2) 3.0 (2.4)

4.8 (3.1) 7.1 (3.8) 3.8 (1.8)

 (b) Relative difference

n = 15 EDV [%] ESV [%] EF [%]

nnU-Net cine 1.2 (1.0) 6.7 (5.2) 4.2 (3.9)

nnU-Net RT 2.4 (2.4) 6.6 (10.1) 4.6 (4.2)

nnU-Net RT stress 7.2 (9.0) 5.5 (3.6) 5.9 (6.8)

comDL cine 0.7 (0.5) 5.2 (3.9) 2.9 (2.4)

comDL RT 4.7 (6.1) 8.1 (5.8) 7.3 (10.2)

comDL RT stress 22.8 (22.9) 14.2 (11.6) 42.1 (75.9)

Intra-observer cine 1.7 (2.3) 2.7 (3.8) 2.5 (2.7)

Intra-observer RT 2.4 (2.6) 6.3 (5.2) 5.2 (4.2)

Intra-observer RT stress 2.9 (2.5) 7.6 (5.4) 5.9 (4.1)

Inter-observer cine (n = 5) 3.2 (3.6) 15.9 (12.4) 7.1 (5.4)

Inter-observer RT (n = 5) 3.1 (1.8) 17.5 (10.5) 11.9 (8.5)

Inter-observer RT stress (n = 5)
8.3 (4.5) 16.9 (14.5) 9.2 (10.0)

4.2 (3.1) 6.8 (7.5) 5.1 (3.7)

Inter-observer cine (n = 50)15
6.3 (3.3) 12.5 (8.5) 4.9 (3.8)

3.4 (2.2) 11.7 (5.1) 6.6 (3.2)
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hope to address this with the publication of image data and code to enable the testing and comparison of other 
deep-learning methods on the same data.

Conclusion
In this study, we assessed the feasibility of automatic cardiac segmentation on real-time CMR using deep learning 
methods. Two deep learning methods originally designed or trained for segmentation of cine CMR were evalu-
ated for cine and real-time MRI in comparison to a manually corrected reference segmentation. The segmentation 
accuracy is superior in cine CMR compared to real-time CMR at rest and diminishes further for real-time CMR 
under exercise stress. The accuracy for real-time CMR at rest is in the range of reported inter-observer variability 
of cine CMR for both networks. In this work, comDL shows very good performance for segmentation on cine 
CMR but less applicability for real-time CMR compared to nnU-Net. For real-time CMR at rest, cardiac function 
parameters obtained with nnU-Net segmentation are in the range of intra-observer variability. For real-time 
CMR under exercise stress, the performance of the deep learning methods - while still not sufficient for a fully 
automatic segmentation - is promising.

Data availability
Cine and real-time CMR images, comDL and manually corrected contours, nnU-Net segmentation, and 
manually selected end-expiration indexes are available at Zenodo under https:// zenodo. org/ recor ds/ 10117 943 
(DOI:10.5281/zenodo.10117943).

Code availability
Code for the reproduction of figures and results is available under https:// github. com/ mrire con/ dl- segme ntati 
on- realt ime- cmr.
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