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CDYL for infrared and visible light 
image dense small object detection
Huixin Wu 1, Yang Zhu 1* & Shuqi Li 2

To address the phenomenon of many small and hard-to-detect objects in infrared and visible light 
images, we propose an object detection algorithm CDYL (Convolution to Fully Connect-ed-Deformable 
Convolution You only Look once) based on the CFC-DC (Convolution to Fully Connected-Deformable 
Convolution) module. The core operator of CDYL is CFC-DC, making our model not only have a large 
effective receptive field in infrared and visible light images, but also have adaptive spatial aggregation 
conditioned by input and task information. As a result, the CDYL reduces the strict inductive bias of 
traditional CNNs and has long-range dependence for large kernel convolution as well as adaptive 
spatial aggregation, deeply mining of edge and correlation information in images to enhance 
sensitivity to small objects, thereby improving performance in dense small object detection tasks. In 
order to improve the ability of the CFC-DC module to perceive the detailed information of the image, 
we use the Mish activation function, which has a wider minima which improves the generalization. 
The effectiveness as well as the generalization of CDYL is evaluated on an infrared image dataset and 
an UAV image dataset, and it is compared with other state-of-the-art object detection algorithms. 
Compared to the baseline network YOLOv8l, our model achieved a 3.0% improvement in mAP0.5 in 
infrared image detection tasks and a 1.1% improvement in mAP0.5 in visible light image detection 
tasks. The experimental results show that the proposed algorithm achieves superior average precision 
values on both infrared and visible light images, while maintaining a light weight. Code is publicly 
available at https://​github.​com/​yangz​hu1/​CDYL.
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With the application of convolutional neural networks, object detection algorithms have become increasingly 
mature, achieving significant improvements in both accuracy and speed. However, current well performing 
conventional algorithms mainly target ideal scenarios under limited conditions, in situations where real envi-
ronmental factors are constantly changing, the performance is often average, such as the small size of the object 
in high-altitude or wide-angle view, the complex background, the low quality of the infrared and visible light 
images due to poor lighting conditions at night, and the presence of blurring in the infrared image when the 
vehicle is in motion need to be ad-dressed. Moreover, the computation of algorithms is restricted by the limited 
computing power of edge platforms, which poses challenges for their practical application. There-fore, to ensure 
its application on edge devices such as drones or cars, it is necessary to improve the generalization ability of 
object detection algorithms, so that they have ac-curate and stable detection performance in various scenarios.

The object detection algorithms aim to obtain the position and category of targets in the image. Mainstream 
object detection algorithms use convolutional neural networks and can be divided into two categories: two-stage 
models based on candidate regions and one-stage models based on regression. The two-stage model generally 
first generates candidate regions based on the input image, and then classifies and regresses the candidate regions, 
which usually has higher detection accuracy compared to one-stage model, such as RCNN1, Fast R-CNN2, 
Mask R-CNN3, etc. However, one-stage model usually transformer the object detection problem into a regres-
sion problem, based on global regression classification, so there is no need to generate candidate regions in the 
stage, and the category and location information of the target can be directly obtained, such as YOLO[4–9] series, 
SSD[10] series, RetinaNet11, etc. In summary, single-stage algorithms are more suitable for edge devices due to 
their high detection speed.

The definition of small objects is divided into two categories: absolutely small objects with object pixels less 
than 32 × 32 in the COCO dataset and relatively small objects with object size less than 10% of the image size. 
Due to the presence of many dense small targets from the perspective of edge devices such as drones and cars, 
there are still many problems that need to be solved when applying object detection algorithms in these scenarios.
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Most existing object detection algorithms are developed on visible light image datasets, such as VOC12 and 
COCO13, which are greatly affected by lighting. However, there is still a significant gap in the infrared image 
datasets. When the lighting conditions are good, visible light images have richer texture information than infrared 
images, but their detection performance is poor when the lighting conditions are not good. As shown in Fig. 1, 
objects are clear in visible light images during the day, but many objects are invisible in visible light at night, 
while they are more prominent in infrared images. Due to the fact that infrared imaging devices are not easily 
affected by light, using infrared images instead of visible light images has become a solution to the problem of 
low illumination detection. However, compared with visible light images, infrared images have defects such as 
poor contrast and low resolution. The advantages of the two complement each other, making the synergistic use 
of visible light and infrared information a more feasible solution. By combining image information from different 
sensors, the adaptability of object detection algorithms to complex scenes can be improved, thereby improving 
the accuracy of object detection algorithms.

In recent years, visual transformers (ViTs)14,15 have become the preferred choice for large-scale visual basic 
models. Some pioneers16–20 have used ViTs to defeat convolutional neural networks (CNNs) and significantly 
improve the performance of a wide range of computer vision tasks. Through analysis, it was found that the main 
reasons why ViTs can defeat CNNS are as follows:

(1)	 From the operator view21–23, ViTs is able to learn more powerful and robust representations from massive 
data than CNNs, because it introduces long-range dependency and adaptive spatial clustering.

(2)	 From the architecture view21,23,24, ViTs includes a series of advanced components that are not included 
in regular CNNs, such as layer normalization (LN)25. Although recent work has introduced long-range 
dependency into CNNs by using dense convolutions with very large kernels(e.g.,31 × 31), there is still a 
significant gap in performance compared to ViTs.

To address the above issues, in this paper, we investigate the infrared and visible modes of the data, and in 
this work, we design a new core operator called CFC-DC (Convolution to Fully Connected-Deformable Con-
volution). Different from recently improved CNNs with very large kernels such as 31 × 31, the core operator of 
CFC-DC is a deformable convolution25 with a common window size of 3 × 3,

Figure 1.   (a) Is a visible light image, (b) is an infrared image.
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(1)	 Its sampling offset is flexible and can dynamically learn appropriate receptive fields (which can be long or 
short distances) from given data;

(2)	 By adaptively adjusting the sampling offset and modulation scalar based on input data, adaptive spatial 
aggregation can be achieved, reducing the over induction bias of regular convolution;

(3)	 The convolution window is a common 3 × 3, avoiding the optimization problems and expensive costs 
caused by large dense kernels. We also improved the activation function of the baseline network by using 
the Mish26 activation function to enhance the network’s ability to perceive detailed information.

In summary, our main contributions are as follows:

(1)	 A new core operator CFC-DC is proposed, which can retain the long-range dependencies, realize adaptive 
spatial aggregation, and improve the performance of object detection.

(2)	 A new activation function is used to improve the network’s ability to perceive infrared and visible light 
image information without increasing the computational cost.

(3)	 We demonstrate that CDYL (Convolution to Fully Connected-Deformable Convolution You only Look 
once) can efficiently handle both infrared and visible modes of data, enhancing robustness and generaliza-
tion for small object detection.

(4)	 We propose a new lightweight algorithm, CDYL, which can be applied more efficiently in practice.

Related work
Traditional object detection algorithms use a combination of sliding windows, feature extractors, and feature 
classifiers to predict targets. However, due to the limitations of manually designed features, traditional algorithms 
once stagnated. With the development of large-scale datasets and computing resources, convolutional neural 
networks have become the mainstream of object detection. On the basis of AlexNet27, many deeper and more 
effective convolutional neural network architectures have been proposed, such as VGG28, GoogleNet29, ResNet30, 
ResNeXt31, Efficient Net32,33, etc. In addition to architecture design, more complex convolution operations have 
also been developed, such as deep convolution34 and deformable convolution35,36. Deformable convolution has a 
larger receptive field of view and can retain long-range dependency information, which can improve the problem 
of losing target features in deeper networks. By referring to the advanced design of transformers, convolutional 
neural networks have shown good performance in visual tasks, and introducing dynamic weights37 with long-
range dependency.

In recent years, a new visual foundation model has focused on transformer-based architectures. ViTs is the 
most representative model, which has achieved great success in object detection tasks due to its global receptive 
field with long-range dependency. However, the global receptive field is affected by a large amount of computing 
resources, which limits its application on edge devices. To address this issue, PVT15,38 and Linformer39 globally 
focused on the downsampling key and value maps, Deformable convolution is applied in convolutional neural 
networks, DAT deformably focused on the sparsely sampled information in the value map, HaloNet40 and Swin 
tranformer developed a local attention mechanism to achieve adaptive spatial aggregation. In this work, our goal 
is to develop a CNN based foundational model that maintains long-range dependencies at low computational 
costs and achieves adaptive spatial aggregation to better address target detection tasks in infrared and visible 
light images.

Methods
In this paper, we propose a new object detection network CDYL(Convolution to Fully Connected-Deformable 
Convolution You only Look once) with YOLOv8l as the baseline network, and its backbone network is shown 
in Fig. 2. We use the core operator CFC-DC in the backbone network and neck network, which preserves the 
long-range dependencies of the image and realizes adaptive spatial aggregation. We also use Mish activation 
function to adapt the CFC-DC, which improves the ability of CFC-DC to perceive the information, and therefore 
it can cope with the task of detecting the small objects in the infrared and the visible light images in a better way.

CFC‑DC (convolution to fully connected‑deformable convolution)
Usually infrared and visible light images have insufficient small object features, visible light images have low 
contrast under low illumination, infrared images have low contrast when the ambient temperature is closer to the 
target, it is difficult to distinguish between the target and the background, and motion blur is produced by mov-
ing objects. These factors lead to difficult to detect objects difficult to accurately locate and identify in the image, 
thus affecting the performance of edge devices in a variety of application scenarios. For increasing the effective 
receptive field and edge information mining, there are mainly methods such as applying large kernel convolution 
and increasing network depth. But the large kernel convolution will greatly increase the computational cost.

We all know that models with larger effective receptive field (long-range dependence) usually perform better 
on downstream visual tasks41–43. However, our regular 3 × 3 convolution has a relatively small actual effective 
receptive field and cannot obtain long-range dependencies, limiting the performance of the network. Not only 
that, regular convolution has highly-inductive properties and lacks adaptive spatial aggregation, restricting its 
ability to learn more general and robust patterns from web-scale data.

To address the above issues, we propose a new core operator CFC-DC. As shown in Fig. 3. We used Deform-
able Convolution in CFC-DC module, and the sampling offsets and modulation scales are predicted by passing 
input feature x through a separable convolution(a 3 × 3 depth-wise convolution followed by a linear projec-
tion). CFC-DC consists of two convolutional layers and n Bottleneck layers, with two convolutional layers 
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having a kernel size of 1 × 1, a step size of 1, and padding = 0; We used the mish activation function which being 
unbounded above, and avoiding saturation, which generally causes training to slow down due to near-zero 
gradients drastically. Mish has smoother output, which means smoother loss phenomena, making it easier for 
CFC-DC to optimize and better generalize; The bottleneck layer consists of a convolutional layer with a kernel 
size of 3 × 3 and a step size of 1, and a Deformable Convolution with a kernel size of 3 × 3. The bottleneck layer has 
an additional parameter shortcut, which is of type bool. When the shortcut is true, the structure is shown in Fig. 3 
and applied in the backbone; When the shortcut is FALSE, the structure is shown in Fig. 3 and applied in neck.

CFC-DC solves the shortcomings of regular convolution in terms of long-range dependencies and adaptive 
spatial aggregation. Inheriting the strict inductive bias of convolution, our model is more efficient with fewer 
training data and shorter training time. Based on sparse sampling, compared with previous methods such as 
MHSA and large kernel size of reparameterization, it has higher computational and memory efficiency.

Deformable convolution
In the task of object detection in infrared and visible light images, we introduced Deformable Convolution. In 
the deformable convolution:

(1)	 We detach the original convolution weights wk into depth-wise and point-wise parts, where the depth-wise 
part is responsible by the original location-aware modulation scalar mk , and the point-wise part is the 
shared projection weights w among sampling points;

(2)	 Introducing multi-group mechanism, we split the spatial aggregation process into G groups, each of which 
has individual sampling offsets �pgk and modulation scale �mgk , and thus different groups on a single con-
volution layer can have different spatial aggregation patterns, resulting in stronger features for downstream 
tasks;

(3)	 To alleviate the instability issues, we change element-wise sigmoid normalization to softmax normalization 
along sample points. In this way, the sum of the modulation scalars is constrained to 1, which makes the 
training process of models at different scales more stable.

Deformable convolution can be formulated as Eq. (1):

Figure 2.   The backbone network structure of CDYL.
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where G denotes the total number of aggregation groups. For the g-th group, wg ∈ RC×C′ denotes the location-
irrelevant projection weights of the group, where C′ = C/G represents the group dimension. mgk ∈ R denotes 
the modulation scalar of the k-th sampling point in the g-th group, normalized by the softmax function along 
the dimension K. Xg ∈ RC′×H×W represents the sliced input feature map. �pgk is the offset corresponding to the 
grid sampling location pk in the g-th group.

Mish activation function
In the task of object detection in infrared and visible light images, we introduced Deformable Convolution. In 
order to better adapt to CFC-DC and improve its ability to perceive information, we chose the Mish26 activation 
function, which is a smooth, continuous, self-regularized, and non-monotonic activation function mathemati-
cally defined as:

The value range of Mish is [ ≈ −0.31,∞ ], and the first derivative of Mish can be defined as:

where ω = 4(x + 1)+ 4e2x + e3x + ex(4x + 6) and δ = 2ex + e2x + 2 . Mish uses the self-gating property where 
the non-linear function of the input. Due to the preservation of a small amount of negative information, Mish 
eliminated by design the preconditions necessary for the Dying ReLU phenomenon. This feature will enable 
our core operator to have better performance and information flow while preserving long-range dependency, 
thereby enhancing the network’s expressive power.
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Figure 3.   CFC-DC (Convolution to fully connected-deformable convolution) module structure diagram.
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Having a smooth profile also plays a role in better gradient flow, as shown in Fig. 4, the landscapes were 
generated by passing in the co-ordinates to a five-layered randomly initialized neural network which outputs 
the corresponding scalar magnitude. A smooth output landscape means a smooth loss landscape, which will 
improve the training speed and generalization ability of our network. Therefore, it is more suitable for infrared 
and visible light scenes.

VFL (varifocal) loss function
Accurately sorting a large number of candidate detection boxes is crucial for achieving high performance in 
dense small object detectors. Previous work used classification scores or a combination of classification and 
prediction localization scores to sort candidate boxes. However, neither of these options will generate reliable 
rankings, which will reduce detection performance. In this study, we used the VFL loss function44, which is 
expressed as follows:

where p is the predicted ICAS(IoU-aware classification score) and q is the object score. For a foreground point, q 
for its ground-truth class is set as the IoU between the generated bounding box and its gt_IoU and 0 otherwise, 
whereas for a background point, the object q for all classes is 0.

This loss only reduces the loss contribution from negative examples (q = 0) by scaling their losses with a factor 
of pγ and does not down-weight positive examples (q > 0) in the same way. This is because compared to negative 
examples, positive examples are extremely rare, and we should retain their valuable learning signals.

Experiments
In this section, we will provide a detailed introduction to the experiments conducted: In section “datasets” and 
“Implementation details”, we mainly introduced the dataset and parameter information used in this experi-
ment. In section “Ablation study”, we conducted a series of ablation studies to demonstrate the effectiveness of 
the proposed algorithm. In section “Comparison of detection results of different object detection algorithms 
on FliR_Adas_v2 and VisDrone 2019”, We demonstrated the comparison of detection results of different object 
detection algorithms on FliR_Adas_v2 and VisDrone 2019.

datasets
We used two datasets to validate the effectiveness and generalization of CDYL for infrared and visible light image 
detection tasks. We apply LWIR type infrared image detection in the infrared image dataset.

Infrared image dataset: we use the FliR_Adas_v2 public dataset. This dataset is captured by a camera on a 
car, with the scene of the car driving on the street. The training set consists of 10,742 images, of which 10,000 
are from short video clips, and 724 are from a 140 s video segment, including 16 categories: person, bike, car, 
motor, bus, train, truck, light, hydraulic, sign, dog, deer, skateboard, roller, scooter, and other vehicles and the 
number of instances of each class as shown in Fig. 5. In categories with more instances, there are 50,130 peo-
ple, 7982 bicycles, 73,650 cars, 15,900 lights, and 22,060 signs. The test set consists of 1,144 images, including 
11 categories: person, bike, car, motor, bus, truck, light, hydrant, sign, stroller, other vehicle. According to the 
distribution of the aspect ratios of objects with the same center point in the FliR_Adas_v2 training dataset(as 
shown in Fig. 6), it can be observed that the aspect ratios of objects are mainly distributed within 0.4 of the input 

(4)VFL(p, q) =

{

−q(q log(p)+ (1− q) log(1− p)) q > 0
−αpγ log(1− p) q = 0

Figure 4.   The loss landscapes of Mish.
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image size. Additionally, there is a dense distribution of extremely small objects within 0.05 of the image size. 
The challenges in object detection in the FliR_Adas_v2 dataset are as follows:

(1)	 low contrast between the detected object and background;
(2)	 a large number of objects in a single image;
(3)	 small objects with object size less than 10% of the image size;
(4)	 image blurring caused by vehicles during motion.

Visible light image dataset: This paper uses the VisDrone2019 public dataset45, which consists of 6,471 train-
ing images, 548 validation images, and 3,190 test images (including 1580 images from VisDrone2019-DET-test-
challen and 1610 images from VisDrone2019-DET-test-dev). The dataset is captured by various drone cameras 
and covers a wide range, including location (from 14 different cities across thousands of kilometers in China), 

Figure 5.   The number of instances of each class in FliR_Adas_v2 dataset.

Figure 6.   Training set object size of FliR_Adas_v2 dataset.
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environment (urban and rural), objects (pedestrians, vehicles, bicycles, etc.), and density (sparse and crowded 
scenes). And it contains 10 classes of detection targets, namely pedestrian, people, bicycle, car, van, truck, tricy-
cle, awning-tricycle, bus, and motor, and the number of instances of each class as shown in Fig. 7. In categories 
with more instances, there are 142,300 cars, 69,800 pedestrians, 24,320 people, 23,390 vans, and 36,600 motors. 
According to the distribution of the aspect ratios of objects with the same center point in the VisDrone2019 
training dataset(as shown in Fig. 8), it can be observed that the aspect ratios of objects are mainly distributed 
within 0.3 of the input image size. Additionally, there is a dense distribution of extremely small objects within 
0.05 of the image size. The challenges in object detection in the VisDrone2019 dataset are as follows:

(1)	 random changes in object size and shape;
(2)	 small objects with object size less than 10% of the image size;
(3)	 the object is often obstructed by other objects, resulting in only partial object information being visible;
(4)	 images typically have large scales and high resolutions, requiring higher computational power;

Figure 7.   The number of instances of each class in VisDrone2019 dataset.

Figure 8.   Training set object size of VisDrone2019 dataset.
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(5)	 contains various types of objects and complex background environments.

Implementation details
This experiments were conducted on an Ubuntu 18.04 system with an Intel(R) Xeon(R) Gold 6320R CPU 
@2.10 GHz,128 GB RAM, NVIDIA GeForce RTX 3090 GPU, and torch version 2.0.0. Parameter settings during 
training: the image resolution for training models is 640× 640 . We use mosaic data augmentation and mixup 
data augmentation; we set lr = 0.01 and training 90 epochs.

Ablation study
To demonstrate the effectiveness of CDYL, we chose YOLOv8l as the baseline network and added CFC-DC to the 
backbone network and neck network. The experimental results on the infrared dataset are shown in the Table 1, 
and the experimental results on the visible light dataset are shown in the Table 2.

Through ablation experiments, it was concluded that in infrared image object detection tasks, the baseline 
network reaches 53.4% in mAP0.5. The activation function of the baseline network is replaced by the Mish 
activation function, which achieved a 0.5% improvement in mAP0.5. This indicates that the Mish activation 
function makes the network more sensitive to the detailed information of infrared images. After replacing the 
core operator with CFC-DC, the network achieved a 2.7% improvement in mAP0.5 compared to the baseline 
network, indicating that our proposed core operator significantly improved the defects of regular convolution 
in infrared image object detection tasks; On the basis of the core operator being CFC-DC, adding the Mish 
activation function reduces network computation while achieving a 56.4% in mAP0.5, which achieved a 3.0% 
improvement higher than the baseline network. This shows that CDYL has positive performance in infrared 
target detection tasks.

In the visible light image target detection task, the baseline network reached 41.8% in mAP0.5, and the acti-
vation function of the baseline network was replaced by the Mish activation function. The network achieved a 
0.6% improvement in mAP0.5 without increasing computational complexity, indicating that the mish function 
is more sensitive to the information of small targets in the visible light image. After replacing the core opera-
tor with CFC-DC, achieved a 0.7% improvement in mAP0.5 compared to the baseline network while reducing 
network computation, indicating that our proposed core operator has improved perception ability for complex 
image information compared to regular convolution and has a larger receptive field; Adding a Mish activation 
function on top of the core operator CFC-DC reduces network computation while achieving a 42.9% in mAP0.5, 
achieving a 1.1% improvement in mAP0.5 compared to the baseline network. It can be seen that CDYL has posi-
tive performance in visible light image object detection tasks.

In order to compare the performance differences between the CFC-DC and convolution with large kernel 
size, we chose a 7× 7 convolution kernel for the experiment when the parameter and computational complexity 
of CFC-DC were lower than 7× 7 convolution kernel. The experimental results are shown in Table 3.

Through the experimental results, it was concluded that 7× 7 convolution kernel has increased the number 
of parameters by 67% and the computational complexity by 64% compared to CFC-DC. In infrared and visible 
light image detection tasks, CFC-DC achieved 2.5% and 1.6% improvement in mAP0.5 respectively compared 
to 7× 7 convolution kernel. Although convolution with large kernel size has a larger receptive field, its detection 
performance is not significantly improved compared to baseline networks and CFC-DC, and its performance 
is even worse in visible light detection tasks. The improvement of network performance by CFC-DC is not 
related to the increase in parameter quantity, but rather preserves long-distance dependencies in the network 
and achieves adaptive spatial aggregation.

Table 1.   Ablation experiments on FliR_Adas_v2.

Baseline Mish CFC-DC SiLu Modality mAP0.5 Flops

✓ ✗ ✗ ✓

IR

53.4 164.9G

✓ ✓ ✗ ✗ 53.9 164.9G

✓ ✗ ✓ ✓ 56.1 158.8G

(Ours)✓ ✓ ✓ ✗ 56.4 158.8G

Table 2.   Ablation experiments on VisDrone2019.

Baseline Mish CFC-DC SiLu Modality mAP0.5 Flops

✓ ✗ ✗ ✓

RGB

41.8 164.9G

✓ ✓ ✗ ✗ 42.4 164.9G

✓ ✗ ✓ ✓ 42.5 158.8G

(Ours)✓ ✓ ✓ ✗ 42.9 158.8G
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The experimental results show that:

(1)	 CDYL has positive performance in target detection tasks in both infrared and visible light images, and has 
positive generalization ability.

(2)	 CFC-DC can preserve long-range dependencies and achieve spatial adaptive aggregation, reducing com-
putational costs and improving network efficiency without affecting detection accuracy.

Comparison of detection results of different object detection algorithms on FliR_Adas_v2 and 
VisDrone 2019
To demonstrate the effectiveness of CDYL in object detection tasks in infrared and visible light images, we 
conducted a series of comparative experiments. In the infrared image object detection task, because we used 
YOLOv8l as the baseline network, we first selected some advanced real-time object detection methods for experi-
ments, including YOLOX-l. And, we also selected some object detection methods with slightly lower real-time 
performance but higher accuracy for experiments, including Faster R-CNN and Mask R-CNN. We used the same 
training setting as CDYL, using the same learning rate, SGD optimizer, and resolution on the FliR_Adas_v2 
dataset. The learning rate is set to 0.01, and the final results are shown in the Table 4.

From the results in the Table 4, it can be seen that our algorithm has positive detection performance on 
infrared datasets, with a 56.4% in mAP0.5. Compared to the two-stage algorithms Faster R-CNN and Mask 
R-CNN, our algorithm has achieved 11.9% and 9.4% improvement in mAP0.5, respectively. Compared to the 
baseline networks YOLOv8l and YOLOX-l, our algorithm has achieved 3.0% and 7.9% improvement in mAP0.5, 
respectively. From this, it can be seen that our algorithm has positive performance in dealing with infrared image 
object detection tasks.

We also selected some networks that performed well in visible light image object detection tasks, including 
YOLOv5l, Faster R-CNN, and CDNet. We used the same training setting as CDYL to train and test on the Vis-
drone2019 dataset, and the results are shown in the Table 5.

From the results in the Table 5, it can be seen that CDYL performs well in visible light target detection tasks, 
with a 42.9% in mAP0.5 on the test set, achieving a 21.1% improvement in mAP0.5 compared to Faster R-CNN, 
and achieving a 1.1% improvement in mAP0.5 compared to the baseline network YOLOv8l.

Table 3.   Comparison of detection performance between CFC-DC and 7× 7 convolution kernel.

Baseline CFC-DC 7 × 7 convolution Modality Parameter(M) Flops(G) mAP0.5

✓ ✗ ✗

IR

43.6 164.9 53.4

✓ ✓ ✗ 62.5 158.8 56.4

✓ ✗ ✓ 104.5 260.6 53.9

✓ ✗ ✗

RGB

43.6 164.9 41.8

✓ ✓ ✗ 62.5 158.8 42.9

✓ ✗ ✓ 104.5 260.6 41.3

Table 4.   Detection results of different methods on FliR_Adas_v2.

Method Modality mAP0.5 Latency

Baseline

IR

53.4 12.6 ms

YOLOX-l 48.5 12.7 ms

Faster R-CNN 44.5 21.3 ms

Mask R-CNN 47.0 20.9 ms

CDYL (ours) 56.4 10.6 ms

Table 5.   Detection results of different methods on VisDrone2019.

Method Modality mAP0.5 Latency

Baseline

RGB

41.8 13.6 ms

YOLOv5l 37.9 15.1 ms

Faster R-CNN 21.8 24.6 ms

CDNet 34.2 22.9 ms

CDYL (ours) 42.9 11.3 ms
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According to the experimental results in Tables 4 and 5, our algorithm has the lowest latency in infrared 
and visible light target detection tasks, reaching 10.6 ms and 11.3 ms respectively, and has the highest efficiency 
while ensuring high accuracy.

To verify the generalization of CFC-DC, we added this module to other object detection networks. We have 
selected some networks that perform well in infrared and visible light image object detection. The experimental 
results are shown in the Table 6.

Through the experimental results, we can see that in infrared image target detection, Mask R-CNN applied 
CFC-DC achieving a 1.6% improvement in mAP0.5, and in visible light image target detection, CDNet applied 
CFC-DC module achieving a 1.4% improvement in mAP0.5. The experiment shows that CFC-DC performs well 
in other object detection networks and it has good generalization ability.

Through the above comparative experiments, CDYL has shown positive performance in both infrared and 
visible light image object detection tasks, and has significantly improved accuracy compared to the current 
popular object detection networks. CDYL exhibits high efficiency and generalization.

We also compare the parameter size, computation amount, as shown in Table 7. Our algorithm has more 
parameters than other networks, but its computation amount is lower, which is of great significance for applica-
tion on edge devices with limited computing power such as drones or cars.

Part of the image detection results are shown in the Figs. 9 and 10. For cars and people with a large sample 
size, both the baseline network and our algorithm can effectively detect them, and our algorithm has a higher 
confidence level; For targets that are difficult to detect, the original baseline network may skip over or false detect 
some targets, but our algorithm can detect them more effectively.

Conclusion
We propose a new dense small object detection algorithm CDYL for infrared and visible light images, which 
can be well applied in object detection tasks. Both infrared and visible light images have their own advantages. 
By fusing the two types of images, rich details of visible light images can be obtained, and the anti-interference 
ability of infrared images can be obtained, thus obtaining better applications.

Table 6.   The generalization of CFC-DC.

Methods CFC-DC Modality mAP0.5

Mask R-CNN
✗

IR
47.0

✓ 48.6

CDNet
✗

RGB
34.2

✓ 35.6

Table 7.   The parameter size, computation amount of different algorithms.

Method Parameter(M) FLOPs(G)

Baseline 43.6 164.9

YOLOX-l 54.2 155.6

YOLOv5l 46.1 107.8

CDYL (ours) 62.5 158.8

Figure 9.   Detection results of YOLOv8l and our proposed algorithm in visible light images. (a) Are for our 
proposed algorithm, (b) are for YOLOv8l. Red circles indicate false detection or missed detection.
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We have proposed a new core operator CFC-DC based on the requirements of the task, and added the most 
suitable Mish activation function to this core operator. A large number of infrared and visible light image object 
detection experiments have verified that CDYL has positive performance. Compared to the baseline network, 
our proposed algorithm has achieved 3.0% improvement in mAP0.5 on infrared images and 1.1% improvement 
in maAP0.5 on visible light images. Its low computing cost also ensures its application on edge devices with 
limited computing power.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the confiden-
tiality involved in this study but are available from the corresponding author on reasonable request.
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