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scRNA‑seq revealed high stemness 
epithelial malignant cell clusters 
and prognostic models of lung 
adenocarcinoma
GuoYong Lin , ZhiSen Gao , Shun Wu , JianPing Zheng , XiangQiong Guo , XiaoHong Zheng  & 
RunNan Chen *

Lung adenocarcinoma (LUAD) is one of the sole causes of death in lung cancer patients. This study 
combined with single-cell RNA-seq analysis to identify tumor stem-related prognostic models to 
predict the prognosis of lung adenocarcinoma, chemotherapy agents, and immunotherapy efficacy. 
mRNA expression-based stemness index (mRNAsi) was determined by One Class Linear Regression 
(OCLR). Differentially expressed genes (DEGs) were detected by limma package. Single-cell RNA-
seq analysis in GSE123902 dataset was performed using Seurat package. Weighted Co-Expression 
Network Analysis (WGCNA) was built by rms package. Cell differentiation ability was determined by 
CytoTRACE. Cell communication analysis was performed by CellCall and CellChat package. Prognosis 
model was constructed by 10 machine learning and 101 combinations. Drug predictive analysis 
was conducted by pRRophetic package. Immune microenvironment landscape was determined 
by ESTIMATE, MCP-Counter, ssGSEA analysis. Tumor samples have higher mRNAsi, and the high 
mRNAsi group presents a worse prognosis. Turquoise module was highly correlated with mRNAsi 
in TCGA-LUAD dataset. scRNA analysis showed that 22 epithelial cell clusters were obtained, and 
higher CSCs malignant epithelial cells have more complex cellular communication with other cells 
and presented dedifferentiation phenomenon. Cellular senescence and Hippo signaling pathway are 
the major difference pathways between high- and low CSCs malignant epithelial cells. The pseudo-
temporal analysis shows that cluster1, 2, high CSC epithelial cells, are concentrated at the end of the 
differentiation trajectory. Finally, 13 genes were obtained by intersecting genes in turquoise module, 
Top200 genes in hdWGCNA, DEGs in high- and low- mRNAsi group as well as DEGs in tumor samples 
vs. normal group. Among 101 prognostic models, average c-index (0.71) was highest in CoxBoost + RSF 
model. The high-risk group samples had immunosuppressive status, higher tumor malignancy and 
low benefit from immunotherapy. This work found that malignant tumors and malignant epithelial 
cells have high CSC characteristics, and identified a model that could predict the prognosis, immune 
microenvironment, and immunotherapy of LUAD, based on CSC-related genes. These results provided 
reference value for the clinical diagnosis and treatment of LUAD.

Keywords  mRNAsi, Lung adenocarcinoma, Single-cell RNA-seq analysis, Immune microenvironment, 
WGCNA

Lung cancer is a malignant tumor that originates in the mucous membranes or glands of the bronchus and is 
the leading cause of cancer-related death1. According to the latest data from the Global Cancer Survey 2020, 
there were 2,206,771 new cases of lung cancer and 1,796,144 deaths worldwide in 2020, making it the second 
most common cancer and the leading cause of cancer death2. Lung cancer consists of non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC), of which non-small cell lung cancer accounts for about 80–85% 
of lung cancer cases3, lung adenocarcinoma (LUAD) is the most common pathological subtype, accounting for 
about 50% of non-small cell lung cancer. It is characterized by complex mechanisms, strong aggressiveness, and 
poor prognosis4,5. In the last decade, there have been new advances in the treatment of LUAD, including surgical 
treatment, radiotherapy, chemotherapy and targeted combination therapy. However, due to the occult nature 

OPEN

Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian 351100, China. *email: 
crn1995@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54135-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3709  | https://doi.org/10.1038/s41598-024-54135-4

www.nature.com/scientificreports/

of the disease, most of the patients with LUAD were diagnosed at an advanced stage and could not be treated 
with surgery. However, after the use of other drugs for radiotherapy and chemotherapy, the prognosis of LUAD 
patients is still poor, and the 5-year survival rate is less than 20%6. Therefore, exploring the prognostic markers 
of LUAD has become the top priority of current scientific research.

Recent studies have shown that tumor growth may be driven by a small group of cells called cancer stem 
cells (CSCs). These cells may generate tumor host cells through self-renewal and multidirection differentiation, 
maintain tumor growth and heterogeneity, and are also called cancer initiating cells. CSCs have a pioneering 
immunosuppressive effect at the time of tumorigenesis, and gradually lose this ability during differentiation into 
astrocytes and oligodendrocytes. In addition, CSCs are believed to be extremely resistant to treatment, leading 
to multiple treatment failures, including immunotherapy. mRNA expression-based stemness index (mRNAsi), 
the stemness index of the transcriptome calculated by the OCLR algorithm, could be used to evaluate stemness. 
Higher mRNAsi scores, as reflected by histopathological grades, are associated with active biological processes 
in CSCs and with more differentiated tumors7.

Single-cell RNA sequencing (scRNA-seq) research has increasingly focused on the natural progression of 
cancer. A mouse model of esophageal squamous cell carcinoma (SQUamous cell carcinoma) induced by chemical 
carcinogen 4-nitroxylin 1-oxide (4-NQ0) was constructed to simulate the animal model of human esophageal 
carcinoma. The evolutionary trajectory of esophageal epithelial carcinoma from normal and precancerous lesions 
to invasive carcinoma was described in detail by single-cell transcriptome sequencing8. Single-cell analysis of 
precancerous lesion samples from gastric, pancreatic, and colorectal cancer showed that precancerous cells were 
also highly heterogeneous, with significant dynamic changes in cell composition and expression program9,10.

This study attempted to use single cell RNA analysis to identify malignant epithelial cells with high CSC, 
search for genes related to CSC, and construct prognostic models, hoping to predict patients’ prognosis, immune 
status, and immunotherapy strategies.

Results
Difference analysis of mRNAsi in transcriptome datasets
As described in method, mRNAsi of samples in TCGA-LUAD dataset were calculated, and higher mRNAsi 
in tumor samples were observed than that in normal samples (Fig. 1A). There were 12,525 upregulated genes 
and 6970 downregulated genes in Tumor vs. Normal (Fig. 1B). Tumor samples in TCGA-LUAD dataset were 
divided into high mRNAsi group (167 cases) and low mRNAsi group (333 cases) based on mRNAsi median 
value (0.4742294). we also found 9184 genes with increased expressions and 10,307 genes with decreased expres-
sions in high group in comparison to low group (Fig. 1C). GO analysis in 19,491 DEGs showed regulation of 
hormone levels, axonogenesis, cell–substrate junction, DNA-binding transcription factor binding were enriched 
(Fig. S1A). KEGG analysis enriched to MAPK signaling pathway, human papillomavirus infection, neuroactive 
ligand-receptor interaction pathways (Fig. S1B).

Moreover, samples in high mRNAsi group had a less survival times than that in low mRNAsi group in 
TCGA-LUAD dataset (p = 0.042) (Fig. 1D), GSE31210 dataset (p = 0.009) (Fig. 1E), GSE50081 dataset (p = 0.043) 
(Fig. 1F). Differences analysis of clinical features between high- and low-mRNAsi group showed Gender, T.Stage, 
M.Stage and Stage had significantly various in TCGA-LUAD dataset (Fig. 1G), Stage and OS in GSE31210 dataset 
(Fig. 1H). but there were no differences in GSE50081 dataset (Fig. 1I).

WGCNA
To further screen mRNAsi related genes, WGCNA analysis was performed using mRNAsi score in TCGA-LUAD 
dataset. When soft threshold = 4 (Fig. S2A), 6 genes modules were determined (Fig. S2B). Correlation analy-
sis between mRNAsi and 6 modules showed turquoise module was higher associated to mRNAsi (cor = 0.81, 
p = 3e−86) (Fig. 2A). A positive phenomenon was observed between gene significance for mRNAsi and module 
membership in turquoise module (cor = 0.81, p = 1e−200) (Fig. 2B). GO and KEGG analysis showed that the 
turquoise module genes were mainly enriched into many biological processes related to cell proliferation, such 
as DNA replication, mitosis, and organelle repair (Fig. 2C).

Single cell analysis of CSCs
Single cells in GSE123902 dataset were performed for dimension reduction and annotation analysis, and 8 cell 
subtypes were obtained (Fig. 3A). To identify the malignant tumor components in epithelial cells, we extracted 
epithelial cell subtypes for infercnv analysis, in which only cluster4,16 of epithelial cells were normal epithelial 
cells (Fig. 3B). To further clarify the stem differences in malignant epithelial cells, the malignant epithelial cells 
were extracted for CytoTRACE analysis, and high CSCs malignant epithelial cells and low CSCs malignant 
epithelial cells were defined based on the median CytoTRACE score (Fig. 3C). Cellcghat analysis indicated that 
high CSCs malignant epithelial cells had a more complex cellular communication with other cells (Fig. 3D). 
Pseudo-time series analysis was further used to explore the developmental trajectories of the high CSCs malig-
nant epithelial cells and low CSCs malignant epithelial cells, and the results showed that malignant tumor cells 
developed from low CSCs to high CSCs malignant, indicating that there is a biological process of dedifferentiation 
with the progression of tumors (Fig. 3E,F).

Key subtypes were identified by WGCNA
CellCall analysis on low CSCs malignant and high CSCs malignant vs. other cell subtypes implied that Cellular 
senescence pathway and Hippo signaling pathway were main difference pathways (Fig. 4A). Moreover, cluster1, 
2 only existed in high CSCs malignant group (Fig. 4B). WGCNA analysis indicated that bule module enriched 
in cluster1, 2 (Fig. 4C,D). The pseudo-time series analysis showed that cluster1 and cluster2 were concentrated 
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Figure 1.   mRNAsi differences in the transcriptome of lung adenocarcinoma. (A) mRNAsi was higher in 
tumor samples than that in normal samples in TCGA dataset. (B) Volcano map of differentially expressed genes 
between tumor samples and normal samples in TCGA dataset. (C) Volcano map of differentially expressed 
genes between high- and low- mRNAsi tumor groups in TCGA dataset. (D–F) The survival times in high 
mRNAsi group was shorted than that in low mRNAsi group in TCGA dataset, GSE31210 dataset and GSE50081 
dataset. (G–I) Differences in clinical features of high and low mRNAsi groups in TCGA dataset, GSE31210 
dataset and GSE50081 dataset.
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at the end of differentiation trajectory (Fig. 4E,F), which was consistent with our previous studies and further 
verified the biological characteristics of dry dedifferentiation of LUAD. cluster1 and cluster2 were defined as 
High epi group, and MIF-(CD74 + CD44) were increased in High epi group (Fig. 4G).

Construction of prognosis model based on machine learning
13 key genes were obtained by intersection of top200 genes in hdWGCNA, genes in turquoise module, DEGs 
in high vs. low mRNAsi group and DEGs in tumor vs. normal samples (Fig. 5A). In TCGA-LUAD dataset, 
101 prognosis models were detected by LOOCV frame and c index of 101 models were calculated in TCGA-
LUAD dataset, GSE50081 dataset, GSE3210 dataset. Among which, average c index was highest (0.701) of Cox-
Boost + RFS model (Fig. 5B). 6 hub genes (SUB1, POLD2, ELOVL6, TNNT1, PPIA, IRX2) were screened. KM 
survival analysis demonstrated that samples in high group had a less survival time in TCGA-LUAD dataset, 
GSE50081 dataset, GSE3210 dataset (Fig. 5C–E). In addition, based on single-cell data, hub gene positioning was 
further defined, and the results showed that 6 genes were significantly highly expressed in high CSCs malignant 
epithelial cells (Fig. 5F).

Immune microenvironment landscape analysis basis on prognosis model
ESTIMATE analysis showed that ImmunScore, StromalScore and ESTIMATEScore were enhanced in high group 
that those in low group (Fig. 6A–C). PurityScore was decreased in high group, indicating a higher tumor malig-
nancy (Fig. 6D). Subsequently, CIBROSORT, EPIC, MCP-counter and TIMER analyses also verified that there 
was significant immunosuppression in the high group (Fig. 6E).

Relationship between 6 hub genes and immunity, pathways immunity, pathway
The ESTIMATE and MCP-counter methods were used to evaluate the immune scores of samples from GSE75214 
dataset, and the ssGSEA method was used to evaluate the scores of 28 immune cells corresponding to each sam-
ple. Next, the Pearson correlations between 6 hub genes and these immune scores were calculated and visualized, 
among which, except SUB1 and IRX2, other 4 genes were negatively correlated with major immune killer cells 
(Fig. 7A). The Pearson correlations between 11 pathways scores and 6 hub genes indicated that all genes were 
negatively to APICAL_JUNCTION pathway (Fig. 7B).

Figure 2.   Weighted Co-Expression Network Analysis (WGCNA). (A) The module-trait relationships 
between mRNAsi and 6 modules. (B) Correlation analysis between gene significance for mRNAsi and module 
membership in turquoise module. (C) GO and KEGG analysis of genes in turquoise module.
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Predictive analysis of chemotherapy drugs and immunotherapy
In TCGA-LUAD dataset, drug sensitivity prediction analysis of prognostic model showed low-risk group was 
benefit from AS601245, Nilotinib, AZD6482, AP.24534 (Fig. 8A–D). The high-risk group showed better sensitivity 
to Docetaxel, JNK.9L, Bortezomib, and Paclitaxel (Fig. 8E–H), which provided a direction for later treatment. 
In IMvigor210 dataset, patients in the high-risk group treated with PD-L1 had a worse prognosis (p = 0.0023, 
Fig. 8I). RiskScore of SD/PD samples were higher than that in CR/PR samples (Fig. 8J). High-risk group had more 
PD/SD samples (Fig. 8K). In stage III-IV patients, the high-risk group had a worse prognosis (p = 0.0016, Fig. 8L).

Discussion
Today, CSCs are seen as drivers of tumor establishment and growth and are often associated with aggressive, 
heterogeneous, and treatment-resistant tumors11–14. In colon cancer, recent studies in mice have shown that 
even differentiated intestinal epithelial cells may act as potential CSCS15. Epithelial cell adhesion molecules 
(EpCAM, CD326) are expressed on CSCS of multiple tumor types, including colon and liver cancer16,17. CSC 
is found in almost all solid tumors18. Motivated by these observations, In LUAD, we hypothesize that CSC is 
associated with malignant epithelial cells. Using transcriptome data of LUAD, it was found that tumor samples 
had higher mRNAsi, and samples in the high-dry group had worse prognosis. WGCNA analysis showed that 
turquoise modules were highly correlated with mRNAsi and were associated with biological processes such as 
cell proliferation. scRNA analysis identified 12 clusters of epithelial cells, and malignant tumor cells developed 
from Low CSCs to High CSCs. hdWGCNA indicated that blue modules are significantly enriched in cluster1 
and Cluster2, and there are differentiation trajectories at the end.

Cellcall analyzed the pathway differences between High CSCs malignant and low CSCs malignant and other 
cell subpopulations, the results showed that cellular senescence and Hippo signaling pathway were the major 
difference pathways. Dysregulation of the Hippo signaling pathway is associated with cancer progression, 
including aberrant expression and activity of YAPs and TAZs, and deficiencies in large tumor suppressor kinase 
1/2 (LATS1/2)19–21. The role of YAP/TAZ in cancer stem cells and tumour recurrence is supported by recent 
evidence22,23. In addition, Hippo signaling pathway is mainly concentrated in endothelial cells, which may be 
closely related to angiogenic mimicry24,25. A CSC-like phenotype can be acquired by epithelial-mesenchymal 
transition (EMT) programs or by escaping from senescence26. These results suggest that Cellular senescence and 
Hippo signaling pathway may be involved in the deterioration of epithelial cells.

A prognostic model was constructed based on machine learning and six key genes (SUB1, POLD2, ELOVL6, 
TNNT1, PPIA, IRX2) were screened. Several studies have shown that POLD2 is aberrantly expressed in multiple 
cancers, including ovarian carcinoma27 and glioblastoma28. Accumulating evidence has demonstrated that 

Figure 3.   scRNA analysis in GSE123902 dataset. (A) 8 type cells were annotated in GSE123902 dataset. (B) 
Identification of malignant components in epithelial cells using Infercnv package. (C) Cytotrace package 
identified the high and low cancer stemness cell groups in malignant epithelial cells. (D) Cell communication 
analysis among high and low CSC malignant epithelial cells with other immune cells. (E,F) Pseudotemporal 
analysis of high and low CSC malignant epithelial cells.
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ELOVL6 is high-expressed and serves as a negative clinical predictor in a plenty of carcinomas29,30. TNNT1 has 
been reported to contribute to the progression of colorectal cancer31 and breast cancer32, colon adenocarcinoma33. 
PPIA has been implicated in a broad range of pathological processes, including inflammatory diseases, aging and 
the progression of cancer metastasis34. Previous studies have demonstrated that overexpression of PPIA plays 
key roles in different types of cancer, including hepatocellular carcinoma, lung cancer, pancreatic cancer, breast 
cancer, colorectal cancer, squamous cell carcinoma and melanoma35.

This study inevitably has some limitations. Firstly, our research data came from a public database, not our 
own. Although the validation set is sufficient to support the conclusions of our study, further validation of the 
prognostic and therapeutic effects of this model from our own center using a large sample size is needed in the 
future. Then, further functional experiments will be required to elucidate the biological mechanisms of these 
genes in lung adenocarcinoma stemness and TME landscape, and to determine whether they could be targeted 
to improve the effectiveness of immunotherapies and chemotherapies, Thirdly, the stem cell dataset (PCBC 

Figure 4.   Hub cluster in CSC malignant epithelial cells through hdWGCNA. (A) CellCall analysis determined 
pathway differences between high and low CSC malignant epithelial cells. (B) The distribution of 12 clusters 
in high and low CSC malignant epithelial cells. (C,D) hdWGCNA found that blue modules were significantly 
enriched in cluster1 and custer2. (E,F) Pseudotemporal analysis of cluster1 and custer2. (G) Cellchat analysis 
showed communication differences of high CSC malignant epithelial cells.
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dataset) of prostate cancer was applied to lung adenocarcinoma, which does not have pluripotent stem cell data 
sets, is worthy of further study and exploration of its appropriateness and universality.

Figure 5.   Construction of prognosis model. (A) Venn diagram of differentially expressed genes. (B) 101 
prognostic prediction models were built by machine learning constructs. (C–E) KM survival curve of prognosis 
model in TCGA dataset, GSE31210 dataset and GSE50081 dataset. (F) Hub gene localization in single cell 
subpopulation.
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In summary, analysis of both scRNA-seq and bulk RNA-seq in LUAD samples showed the CSC characteristics 
of the cancer transformation process from epithelial cell. Based on differentially correlated CSC-related genes, we 
constructed prognostic and immune-related models. We suggested that our stemness model has future clinical 
implications for prognostic evaluation and may help clinicians to select likely responders for prioritised use of 
current immune checkpoint inhibitors.

Methods
Data acquisition and processing
The GSE123902 single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo), and samples were obtained from 8 patients with primary lung adenocarcinoma, 3 
patients with brain metastases, 1 patient with bone metastases, 1 patient with adrenal metastases, and 4 patients 

Figure 6.   Immune microenvironment analysis. (A) ImmuneScore differences between high- and low-risk 
group. (B) StromalScore differences between high- and low-risk group. (C) PurityScore differences between 
high- and low-risk group. (D) ESTIMATEScore differences between high- and low-risk group. (E) CIBROSORT, 
EPIC, MCP-counter, TIMER analysis between high- and low- risk group.

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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Figure 7.   Correlation analysis between hub genes and immunity/pathways. (A) Correlation analysis between 
hub genes and immunity in TCGA dataset. (B) Correlation analysis between hub genes and pathways in TCGA 
dataset.

Figure 8.   Prognostic model to predict the efficacy of chemotherapy drugs and immunotherapy. (A–H) IC50 
differences of chemotherapy drugs between high- and low- risk groups. (I) The survival times in high-risk group 
was worse in IMvigor210 dataset. (J) Differences in RiskScore between CR/PR and PD/SD responses in the 
IMvigor210 cohort. (K) Distribution of immunotherapy response between high- and low- risk groups in the 
IMvigor210 cohort. (L) The high-risk group of III-IV patients had a worse prognosis.
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with normal lung tissue, a total of 41,384 cells were obtained. PercentageFeatureSet function R package Seurat 
(https://​satij​alab.​org/​seurat/) is used to calculate the percentage of mitochondria, ribosomes and erythrocytes. 
Cells were selected with more than 300 expressed genes, less than 15% mitochondrial gene expression and less 
than 1% erythrocyte gene proportion. Then, the combined scRNA-seq data was normalized, and the Top 2000 
highly variable genes were found by FindVariableFeature function R package Seurat, and the ScaleData function 
R package Seurat was used to scale all genes, and the RunPCA function was used to reduce the dimensionality of 
the Top 2000 highly variable genes selected. Batch correction is then performed using the harmony algorithm. 
The “FindNeighbors” and “FindCluster” functions (resolution = 0.8) R package Seurat are used to cluster cells 
when dim = 20. Next, we use the RunUMAP method for further dimensionality reduction. Finally, we screened 
the marker genes (Table 1) of subpopulation using the FindAllMarkers function, annotated and visualized them 
using references36 and cellmarker2.037. Tumor cell identification was performed using the inferCNV package. 
and mimetic time-series analysis of tumor cell subpopulations using the Monocle2 package38.

In addition, transcriptome data of LUAD and pancarcinoma with survival information were obtained from 
the University of California Santa Cruz (UCSC) database (https://​xenab​rowser.​net/). And the GSE31210439, 
GSE50081540 datasets were downloaded from the GEO database for subsequent transcriptome level validation. 
All the data required for this study can be searched through public databases. According to the group information, 
DEseq2 R package41 was used for differential expression analysis under adj.pvalue < 0.05, |log2FC| > 1. The 
intersection of the above differential expression genes will be taken as the next step.

Tumor stemness calculation
mRNA expression based stemness index (mRNAsi) reflects the gene expression characteristics of stem cells. 
mRNAsi developed predictive models for multipotent stem cell samples (ESC and IPSC) from the PCBC dataset 
by using One Class Linear Regression (OCLR)42. Then the model is applied to the GEO datasets to calculate 
the stemness score of each sample and finally evaluate the stemness degree of each sample, which divided the 
samples into high and low stemness groups. DEseq2 R package was used to analyze DEGs between samples with 
high mRNAsi and low mRNAsi with condition was p.al < 0.05, |log2FC| > 1. The ComplexHeatmap package43 
and ggplot2 package were respectively used to draw heatmaps and volcano maps.

Functional enrichment analysis
Gene Ontology (GO) analysis is a common method to conduct large-scale functional enrichment studies, 
including biological process (BP), molecular function (MF), and cellular component (CC). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG)44–46 is a widely used database for storing information about 
genomes, biological pathways, diseases and drugs. GO annotation analysis and KEGG pathway enrichment 
analysis of differential genes were performed using clusterProfiler R software package47, and the critical value of 
FDR p < 0.05 was considered to be statistically significant.

Weighted co‑expression network analysis (WGCNA)
Weighted Co-Expression Network Analysis (WGCNA)48 is a systems biology method used to describe patterns of 
genetic associations between different samples. The samples with missing values and discrete samples are deleted. 
Selecting the optimal soft threshold β (β = 4) was selected to construct a WGCNA. In addition, the weighted 
adjacency matrix is transformed into a topological overlap matrix (TOM) to estimate the connectivity of the 
network. Then, the hierarchical clustering method is used to construct a clustering tree to determine that the 
module size is set to 80, and the threshold of similarity module merging is set to 0.35. Later, Pearson’s correlation 
between module eigengene and mRNAsi was performed to obtain mRNAsi related module.

CytoTRACE
CytoTRACE49 presents a new framework for calculating cell differentiation capacity that utilizes gene counting 
to significantly improve cell differentiation at the single-cell level. Unlike most existing lineage trajectory analysis 
methods, CytoTRACE can predict relative states and directions of differentiation in a way that is independent 
of the presence of continuous developmental processes in a particular time scale or data, and independent 
of the presence or absence of continuous developmental processes in a particular time scale or data. Herein, 
CytoTRACE is used to calculate cell stemness score in tumor epithelium, and the epithelium is divided into High 
CSCs epi group and Low CSCs epi group according to the median stemness score.

Table 1.   Marker genes of immune cells.

Cells Marker genes

T cell PTPRC, CD3′, CD3E, CD4, CD8A

B cell CD19, CD79A, MS4A1

Mast cell IGHG1, MZB1, SDC1

Myeloid cell C1QA, C1QB, S100A9, S100A8, MMP1

Fibroblast FGF7, MME, DCN, LUM, GSN

Endothelial cell PECAM1, VWF

Epithelial cell EPCAM, KRT19, KRT7

https://satijalab.org/seurat/
https://xenabrowser.net/
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High dimensional WGCNA
High dimensional WGCNA (hdWGCNA) was used for WGCNA in single-cell RNA-seq. After set the threshold 
of scale-free topology model fit as > 0.85, soft threshold was selected as 4 for the best connectivity. Based on TOM, 
average-linkage hierarchical clustering method was used to cluster genes under the height = 0.25, deepSplit = 2, 
and minModuleSize = 300 standards. Pearson’s correlation was conduct between gene module and mRNAsi.

Cell communication
CellCall50 is a toolkit that collects ligand-receptor-transcription factor (L-R-TF) axis data sets based on the KEGG 
pathway to infer intercellular communication networks and internal regulatory signals by integrating intracellular 
and intercellular signals. We used CellCall to further clarify the specific pathway between the high-low rating 
group and other SCLC subtypes.

R package CellChat (V1.6.0)51 used the data of single cells and our cell classification for cell communication 
analysis, used the built-in CellChat CellChatDB. Human as a reference to analyze the interactions between cells, 
and analyzed the relationship between 32 pathways.

Correlation analysis between key genes and immunity/pathways
ESTIMATE algorithm52, obtaining public website (https://​sourc​eforge.​net/​proje​cts/​estim​atepr​oject/), used to 
estimate StromalScore and ImmuneScore based on specific biomarkers associated with stromal cell and immune 
cell infiltration in tumor samples. Then the Pearson correlation of key genes to them was calculated.

The MCP-counter53 method enables robust quantification of the absolute abundance of eight immune cells 
and two stromal cell populations (T cells, CD8 T cells, Cytotoxic lymphocytes, B lineage, NK) cells, Monocytic 
lineage, Myeloid dendritic cells, Neutrophils) in heterogeneous tissues from transcriptome data. Then the Pearson 
correlation of key genes to them was calculated.

Gene set variation analysis (GSVA)54 is a nonparametric, unsupervised gene-set enrichment method that 
estimates pathway or hallmmarker scores based on transcriptome data. The ssGSEA method in R package GSVA 
was used to obtain the genes of 28 kinds of immune cells from the literature and calculate the scores.

In addition, 50 HALLKMARK pathways in h.all.v7.5.symbols.gmt were obtained from the GSEA website, 
and the pathway scores of samples were calculated using ssGSEA method, and then the correlation between key 
genes and them was calculated.

Construction and validation of prognostic model
To develop a model with high accuracy and stable performance, we integrated 10 machine learning algorithms 
and 101 algorithm combinations. The comprehensive algorithms include random survival forest (RSF), Elastic 
network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, Cox Partial least squares regression (plsRcox), supervised 
Principal Component (SuperPC), generalized enhanced regression model (GBM), and survival support vector 
machine (Survival-SVM). The signature generation procedure was as follows: (a) univariate Cox regression 
identified prognostic related differentially expressed genes in the TCGA-LUAD cohort; (b) The prognostic 
genes were then combined with 101 algorithms to fit the prediction model based on the leave-one cross-
validation (LOOCV) framework in the TCGA-LUAD cohort; (c) All models were detected in two validation 
datasets (GSE31210, GSE50081); (d) For each model, the Harrell Consistency Index (C-index) is calculated 
on all validation datasets, and the model with the highest average C-index is considered to be the optimal. The 
survminer R package was used to plot the survival curve of the high- and low- risk group.

Statistical analysis
Statistical analyses were performed using R version 3.4.0. P values were two-sided, and P < 0.05 was considered 
statistically significant. The pRRophetic package55 was used to predict chemotherapy drugs in the high-low risk 
group.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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