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Integration of basement 
membrane‑related genes in a risk 
signature for prognosis in clear cell 
renal cell carcinoma
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Clear cell renal cell carcinoma (ccRCC) is characterized by high heterogeneity and recurrence rates, 
posing significant challenges for stratification and treatment. Basement membrane‑related genes 
(BMGs) play a crucial role in tumor initiation and progression. Clinical and transcriptomic data of ccRCC 
patients were extracted from TCGA and GEO databases. We employed univariate regression and 
LASSO‑Cox stepwise regression analysis to construct a BMscore model based on BMGs expression 
level. A nomogram combining clinical features and BMscore was constructed to predict individual 
survival probabilities. Further enrichment analysis and immune‑related analysis were conducted to 
explore the enriched pathways and immune features associated with BMGs. High‑risk individuals 
predicted by BMscore exhibited poorer overall survival, which was consistent with the validation 
dataset. BMscore was identified as an independent risk factor for ccRCC. Functional analysis revealed 
that BMGs were related to cell–matrix and tumor‑associated signaling pathways. Immune profiling 
suggests that BMGs play a key role in immune interactions and the tumor microenvironment. BMGs 
serve as a novel prognostic predictor for ccRCC and play a role in the immune microenvironment and 
treatment response. Targeting the BM may represent an alternative therapeutic approach for ccRCC.
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Renal cancer is among the most commonly diagnosed types of tumors in the urological system. According to the 
statistical data from 2020, there would be an estimated 430,000 new cases and 180,000 new deaths  worldwide1. 
Renal cancer exhibits a diverse range of histological subtypes, with clear cell renal cell carcinoma (ccRCC) being 
the most prevalent subtype, accounting for approximately 70% of malignant kidney  tumors2. ccRCC displays 
highly complex biological behavior, characterized by high recurrence, metastasis rates, and mortality, signifi-
cantly impacting patient  prognosis2–4. With the expanding and deepening understanding of tumor molecular 
mechanisms, researchers have identified numerous molecular biomarkers that can be used for the diagnosis 
and prognostic assessment of ccRCC 5. Biomarkers with high accuracy, specificity, and sensitivity can provide 
significant assistance in the diagnosis, treatment, and prognostic evaluation of ccRCC patients.

The basement membrane (BM) is a dense layer of extracellular matrix in animals, composed of various 
components, primarily consisting of collagen-IV and  laminin6. BM acts with a mechanical stress resistance bar-
rier, determines tissue shape, and creates a diffusion  barrier7. The BM separates epithelial, endothelial, neural, 
and adipose cells from underlying tissues, playing a crucial role in tissue architecture, cell signaling, and barrier 
function  integrity8. The diversity and fundamental functions of over 200 BM-related genes (BMGs) underscore 
their significance as the foundation for human  diseases9. For instance, BM proteins serve as targets for autoanti-
bodies in immune-related  disorders10. Additionally, defects in BM protein expression and turnover contribute to 
pathogenic factors in cancer, diabetes, and  fibrosis11,12. Invasion of the BM is a crucial process in tumor invasion 
and metastasis. Based on the relationship between renal tumor cells and the BM, renal cancer can be classified 
into pre-invasive lesions and invasive lesions, typically associated with distinct prognostic  outcomes13.

In carcinoma, tumor cells invade the BM, lymph nodes, and blood vessels, leading to  metastasis14. The 
integrity of BM function and BMGs have been identified as crucial prognostic indicators in lung cancer, liver 
cancer, breast cancer, and bladder  cancer15–18. Matrix metalloproteinases (MMPs), which can degrade the main 
components of  BM19, have been reported to have a significant correlation with tumor staging in renal cancer, 
particularly an increased expression of  MMP920. Furthermore, other proteases capable of disrupting BM integ-
rity have been found to be significantly upregulated in ccRCC, suggesting the silencing of BMGs as a potential 
therapeutic target for ccRCC 21. Unfortunately, there is limited research integrating BMGs for comprehensive 
analysis and defining their clinical value in the prognosis of ccRCC patients. Accurate BM-related features would 
be highly valuable for predicting the prognosis of ccRCC and improving treatment outcomes.

In this study, we investigated the association among BMGs and ccRCC prognosis, immune microenviron-
ment, and treatment based on high-throughput expression profiling data related to ccRCC. Firstly, we performed 
subtyping analysis of ccRCC tumor samples based on the expression levels of BMGs. Subsequently, we further 
identified prognostic-related BMGs and constructed a prognostic risk prediction model using these genes. The 
model was validated internally and externally. Finally, we analyzed the immune cell characteristics and functional 
enrichment in different risk groups.

Results
Analysis of ccRCC subtypes based on BMGs
The workflow of the analysis process was shown in Fig. S1. Based on the expression levels of 222 BMGs in KIRC 
samples, a disease subtyping analysis was performed. As shown in Fig. 1A, two distinct and evident subtypes, 
Subtype 1 and Subtype 2, were identified, consisting of 229 and 299 ccRCC samples, respectively. Kaplan–Meier 
method was used to assess survival prognostic differences between different disease subtypes. The results dem-
onstrated significantly different survival prognostic profiles between the subtypes, with the subtype 1 group 
exhibiting worse clinical outcomes (Fig. 1B).

To compare the differences in KEGG signaling pathways and the expression levels of BMGs among different 
subtypes, we identified a total of 46 significantly differentially distributed KEGG pathways (Fig. 1C) and 178 
significantly differentially distributed BMGs (Fig. 1D, with the top 10 upregulated and top 10 downregulated 
genes selected based on fold change differences).

Construction of BMGs‑related prognostic risk prediction model and efficacy assessment
Based on the identified 178 BMGs with significant expression differences in ccRCC subtypes, 84 and 94 progno-
sis-related genes were screened using the KM method and univariate cox regression, respectively. Among these, 
72 genes were found to be overlapping in both gene sets (Fig. 1E). PPI network profiling of the 72 BM genes 
revealed 14 significantly correlated KEGG signaling pathways (Fig. S2A,B). Further regression analysis using 
the LASSO algorithm was performed on the 72 prognostic-related genes set (Fig. S3) to identify the optimal 
combination of relevant genes. Consequently, a total of 12 gene combinations (ACHE, ADAMTS14, COL4A4, 
COL9A3, FREM2, GPC4, ITGA6, ITGA9, MATN4, MUSK, P3H1, TIMP3) were obtained. Furthermore, the 
risk-associated BM score was calculated for each patient in training cohort.

The BMscore was calculated for individual samples in the training and validation sets. According to the 
median BM scores, the samples in the training set and the GSE29609 validation dataset are subdivided into 
2 groups with high and low BMscores, respectively. Correlations between BM score subgroups and clinico-
pathologic variables were summarized in Table 1. In Fig. 2B,C and F,G, the BMscore distributions and survival 
status of the training and validation cohorts are shown, a progressive increase in mortality was observed in both 
cohorts with higher BMscore levels. The effectiveness of BM score grouping in predicting ccRCC prognosis was 
evaluated using Kaplan–Meier analysis. The outcomes demonstrated that samples in the high BMscore group 
had significantly worse overall survival (OS) versus those in the low BMsocre group in both the training and the 
validation cohorts (Fig. 2A,E). The area under the curve (AUC) for the OS curves of BM score at 1-year, 3-year, 
and 5-year intervals were 0.935, 0.844, and 0.848, respectively, in the training set. In the validation cohort, the 
AUC values were 0.808, 0.771 and 0.767 (Fig. 2D,H). These results indicate that BM score can effectively predict 
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Figure 1.  Based on the analysis of BMGs in ccRCC and the identification of prognostic-related BMGs. (A) 
Hierarchical clustering analysis of ccRCC samples based on BMGs. (B) Kaplan–Meier survival curves for 
different subtypes. (C) Display of KEGG signaling pathways with significant distribution differences among 
different subtypes. (D) Top ten significantly differentially expressed BMGs among different subtypes. (E) 
Comparative Venn diagram of prognostic-related BMGs identified through KM and univariate Cox regression 
analysis, resulting in the identification of 72 prognostic-related BMGs.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3893  | https://doi.org/10.1038/s41598-024-54073-1

www.nature.com/scientificreports/

the prognosis of ccRCC. The results of immunohistochemical analysis indicate that the expression levels of 
COL9A3, GPC4, and ITGA6 in renal cancer tissue are higher than those in normal tissue, whereas the expres-
sion levels of FREM2, ITGA9, and P3HI are lower than in normal tissue (Fig. S4). The immunohistochemical 
results for the remaining six proteins are not available in The Human Protein Atlas.

Identified independent survival prognosis factors and establishment of clinicopathologic 
nomogram
As shown in Fig. 3A–L, all genes comprising the BM score were significantly associated with survival prognosis. 
Differences in expression levels of BM score-associated genes among BM score groups are illustrated in Fig. S5. 
Through exploration discovery using the public database GEPIA, compared with normal kidney tissues, COL4A4, 
COL9A3, FREM2, and P3H1 exhibited significantly different expression levels in ccRCC patients (Fig. S6). As for 
the survival related data, all BM score related BMGs correlated significantly with patient DFS except COL9A3, 
GPC4, and ITGA9 (Fig. S7). The expression profile of the BMGs signature in normal tissues and other tumor 
tissues is depicted in Fig. S8.

In the clinical information of the samples, the distribution of BM score in different groups of age, pathologic 
stage, and neoplasm histologic grade is shown in Fig. 4A–C. There were statistically significant differences in BM 
score between different groups, with an increase in BM score observed with increasing age, pathologic stage, and 
neoplasm histologic grade. To construct a predictive model for ccRCC survival rates, univariate and multivariate 
Cox regression analyses were performed on the clinical information of the training set samples. The outcomes 
were shown in Table 2 and Fig. 4D, revealing four independent prognostic factors: age, pathologic stage, neoplasm 
histologic grade, and BM score. Based on the above analysis results, we developed accurate 1-year, 3-year, and 
5-year OS nomogram based on BMG expression to evaluate ccRCC prognosis (Fig. 4E,F). The AUC value of this 
model was 0.804, while the AUC value of the model using BM score alone was 0.735 (Fig. 4G).

Table 1.  BMGs-related BM score KIRC clinicopathological factors. Bold indicates statistically significant 
values.

Characteristics

BM score

P-valueLow (n = 264) High (n = 264)

Age 0.931

≤ 60 131 133

> 60 133 131

Gender 0.003

 Male 155 189

 Female 109 75

T_stage < 0.001

 T1 169 100

 T2 31 38

 T3 63 116

 T4 1 10

N_stage 0.015

 N0 115 124

 N1 3 13

 Nx 146 127

M_stage < 0.001

 M0 233 187

 M1 17 61

 Mx 14 16

Pathologic_stage < 0.001

 Stage I 167 96

 Stage II 28 29

 Stage III 50 73

 Stage IV 19 66

Neoplasm_histologic_grade < 0.001

 G1 12 1

 G2 147 80

 G3 84 121

 G4 14 61

 Gx 7 1
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Identified and functionally enriched analysis of DEGs based on BM score grouping
Exploring the underlying mechanisms behind the involvement of BMGs in regulating the prognosis of ccRCC, 
a comparison of gene expression patterns between high and low BM score groups was conducted, resulting in 
the identification of 490 DEGs. The volcano map was employed to visualize the intergroup DEGs (Fig. 5A). 
The results of GO profiling indicated that these DEGs were in connection with the extracellular region and the 
G-protein coupled receptor signaling pathway. The results of KEGG analysis showed that the DEGs were linked to 
the JAK/STAT signaling pathway and the IL-17 signaling pathway (Fig. 5B,C). In comparison to the low BMscore 
group, the high BMscore tumor samples exhibited enrichment of genes associated with the “KRAS_SIGNAL-
ING_DN” and “IL6_JAK_STAT3_SIGNALING” pathways (Fig. 5D,E). Supplementary Table 1 and Fig. S9 present 
the most significantly enriched pathway identified through GSEA analysis comparing the BM score groups. These 
results suggest that BMGs associated with OS probably have an essential part in the ccRCC tumor microenviron-
ment and activation of the JAK/STAT pathway. Furthermore, we utilized the STRING online database and the 
Cystoscope plugin “cytoHubba” to identify hub genes related to the IL6_JAK_STAT3 signaling pathway, which 
is associated with BMGs (Fig. S10).

Figure 2.  Construction of a prognostic risk prediction model based on BMGs and its performance evaluation. 
(A) Kaplan–Meier curves related to the prognostic model based on 12 optimal BMGs in the training set. The 
blue and red curves represent the low-risk and high-risk sample groups, respectively. (B,C) Distribution of 
BMscores and survival status in the training set, black dots indicate a state of Live, and red indicates Death. 
(D) ROC curves at 1, 3, and 5 years based on the prognostic model of 12 optimal BMGs in the training set. (E) 
Kaplan–Meier curves related to the prognostic model based on 12 optimal BMGs in the validation set. The blue 
and red curves represent the low-risk and high-risk sample groups, respectively. (F,G) Distribution of BMscores 
and survival status in the validation set, black dots indicate a state of Live, and red indicates Death. (H) ROC 
curves at 1, 3, and 5 years based on the prognostic model of 12 optimal BMGs in the validation set.
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Immune cell type fractions and associated analysis in each subgroup
Assessing the immune profiling of different BM score groups, we applied the ESTIMATE algorithm and observed 
significantly higher stromal scores, immune scores, and estimate scores in the high BM score group compared to 
the low BM score group (Fig. 6A–C). Conversely, the high BM score group exhibited significantly lower tumor 
purity (Fig. 6D). These findings indicate a close association between BMGs and the tumor immune microenvi-
ronment, with the high BM score group showing increased infiltration of immune cells and stromal cells.

Furthermore, we performed immune cell profiling using CIBERSORT, which identified 15 immune cell 
types with significant differences in distribution. The most abundant cell types were T cell CD8+, T cell CD4+ 
memory resting, B cell plasma, NK cell activated, and monocyte (Fig. 6E). To explore the relationship between 
the 12 genes used to construct the BM score model and these 15 immune cell types, we calculated their correla-
tions as shown in Fig. 6F.

Discussion
Renal cell carcinoma with ccRCC histology is characterized by a high diagnostic rate, high recurrence rate, and 
high mortality, posing a severe threat to patients’ lives and causing significant economic  burden3. The competence 
of tumor cells to penetrate the BM by disintegrating BM components largely determines the prognosis of ccRCC 
 patients22–24. Targeted therapy and immunotherapy have become important treatment options for ccRCC patients 

Figure 3.  Kaplan–Meier curves related to the prognostic significance of 12 optimized BMGs. The blue and red 
curves represent the low-expression and high-expression groups. (A) ACHE, (B) ADAMTS14, (C) COL4A4, 
(D) COL9A3, (E) FREM2, (F) GPC4, (G) ITGA6, (H) ITGA9, (I) MATN4, (J) P3H1, (K) TIMP3, (L) MUSK.
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Figure 4.  Identification of independent prognostic factors and construction of a nomogram survival rate 
model. (A–C) Selection of independent prognostic clinical factors: BMscores levels in different groups based 
on Age, Pathologic stage, and Neoplasm histologic grade. (D) Forest plot displaying independent prognostic 
factors. (E) Concordance plot showing the consistency between predicted and actual survival rates at 1, 3, and 
5 years. The x-axis represents the predicted survival rates, and the y-axis represents the actual survival rates. (F) 
Nomogram plot of the prognostic model incorporating BMscore and clinical factors as independent prognostic 
factors. (G) ROC curves for the four independent prognostic factors.
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in current clinical  practice25,26. BM proteins are highly conserved in multicellular organisms. Further understand-
ing the expression patterns and mechanisms of BM proteins in ccRCC patients can help improve prognosis and 
develop new therapeutic targets for ccRCC 27. In this study, we established a BM score based on BMGs. Firstly, we 
classified ccRCC as two subtypes according to the expression levels of 222 BMGs and compared the differential 
genes between the subtypes. We then conducted a cross-comparison between subtype-specific differential genes 
and prognosis-related BMGs, resulting in a total of 72 prognosis-related BMGs. Furthermore, using LASSO and 
multivariate regression analysis, we identified 12 risk-associated BMGs to construct the BM score model. This 

Table 2.  Clinical prognostic factors prognostic correlation. Bold indicates statistically significant values.

Clinical characteristics

Uni-variable cox Multi-variable cox

HR [95% CI] P value HR [95% CI] P value

Age 1.029 [1.016–1.042] < 0.001 1.030 [1.016–1.045] < 0.001

Gender 0.950 [0.697–1.295] 0.745 – –

Pathologic M 4.320 [0.961–5.904] 0.081 – –

Pathologic N 3.414 [0.812–6.434] 0.053 – –

Pathologic T 1.918 [1.628–2.260] < 0.001 0.741 [0.549–1.001] 0.054

Pathologic stage 1.884 [1.652–2.150] < 0.001 1.967 [1.554–2.490] < 0.001

Neoplasm histologic grade 2.304 [1.880–2.824] < 0.001 1.383 [1.102–1.736] 0.005

BMscore model 3.497 [2.487–4.919] < 0.001 2.430 [1.703–3.468] < 0.001

Figure 5.  Identification and functional enrichment analysis of DEGs based on BMscore. (A) Volcano plot 
depicting DEGs between different groups. (B) GO enrichment analysis of BMscore-based groups. (C) KEGG 
pathway analysis of BMscore-based groups. (D,E) GSEA analysis displaying enriched signaling pathways in the 
high BMscore group.
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model successfully stratified ccRCC patients into two groups, and its prognostic value and accuracy were vali-
dated in two independent cohorts. Functional enrichment and immune status analysis indicated a significantly 
different immune microenvironment and functional states across both groups.

Previous studies have found a correlation between BMGs and the invasiveness of tumor cells, indicating their 
involvement in pathological processes such as tumor proliferation, metastasis, and  invasion28. This suggests 
that BMGs can serve as disease biomarkers for predicting the prognosis and treatment outcomes of ccRCC. 
We constructed a BMscore model comprising 12 BMGs, and the prognosis between BMscore and ccRCC was 
significantly associated, with patients in the high BM score group exhibiting significantly lower overall survival 
(OS) compared to the low BM score group. The AUC values of BM score for predicting 1-year, 3-year, and 5-year 
OS were 0.935, 0.844, and 0.848, respectively. Furthermore, the efficacy of the BM score was validated in the 
verification cohort. These findings indicate that the BM score is capable of accurately predicting the prognosis 
of ccRCC patients, and its performance surpasses that of other BMGs-related prediction models based on the 
TCGA and GEO  database21,27.

In our constructed BM score model, the expression levels of all BMGs showed significant correlation with 
ccRCC prognosis. Some BMGs, including  ACHE29,  ADAMTS1430,  COL4A431,  MATN432,  P3H133, and  TIMP334, 
have been found to be associated with ccRCC in previous studies. COL4A4, in particular, has been implicated in 
the construction of prognostic models based on BMGs in ccRCC 21,27. COL4A4 is exclusively present in the BM 
and is a major structural component of the glomerular basement  membrane35. It is located in the region 2q35-
q37 with a gene span composed of 113 kb and 48  exons35. The composition of the BM score integrates both the 
subtypes of ccRCC based on BMGs and the association with prognosis. Furthermore, by incorporating analysis 
with clinical pathological factors, our model has been demonstrated as a reliable and independent predictor of 
OS. Finally, we developed a nomogram that combines the BM score with pathological stage, histologic grade, 
and age. This nomogram provides a pragmatic instrument for monitoring the survival of individual cases.

To elucidate the underlying mechanisms linking BMGs to tumor progression, we performed differential 
expression analysis based on the BM score to identify DEGs. Further functional enrichment analysis was con-
ducted to gain insights into the biological processes involved. The results of GO analysis revealed that the 
DEGs were enriched in terms associated with tumor cell invasion and the BM, such as “Extracellular region,” 

Figure 6.  Comparison of immune cell subtyping and drug sensitivity analysis based on BMscore. (A–D) 
Distribution plots of various ESTIMATE scores in different risk groups. (E) Box plots display the proportion of 
different immune cell types in samples from different risk groups. (F) Heatmap showing the correlation between 
12 prognostic-related BMGs and 15 immune cell types with significant distribution differences.
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“Serine-type endopeptidase inhibitor activity,” and “Negative regulation of peptidase activity.” Additionally, the 
KEGG pathway enrichment analysis showed that the DEGs were mainly involved in the JAK-STAT signaling 
pathway and IL-17 signaling pathway. The GSEA method identified enrichment of gene sets including “KRAS_
SIGNALING_DN” and “IL6_JAK_STAT3_SIGNALING,” which aligns with the findings from KEGG enrichment 
analysis, suggesting a close association between the DEGs related to the BM score and the JAK/STAT3 pathway. 
The JAK/STAT3 pathway regulates cellular proliferation, differentiation, and apoptosis, and it has been shown to 
be significantly associated with ccRCC 36. Inhibition of the JAK/STAT3 pathway can limit ccRCC  progression37. 
Our findings suggest that activation of the JAK/STAT3 pathway may be one of the mechanisms underlying the 
progression of ccRCC with a high BM score.

Despite the clear association between BM and ccRCC established in current research, it remains unclear 
whether tumor immunity is regulated by BMGs. Based on the BM score, we categorized samples into high and 
low risk groups, previous results indicating that higher BMscore are associated with poorer prognosis. Analy-
sis of the tumor microenvironment revealed that the high-risk group exhibited significantly higher immune 
infiltration and matrix cell abundance compared to the low-risk group, as indicated by stromal scores, immune 
scores, and estimate scores. Immune annotation analysis revealed significant differences in various immune 
cells between the groups, with a significantly lower abundance of resting CD4+ memory T cells observed in 
the high-risk group. This suggests a potential mechanism for the observed immunotherapy resistance in these 
patients. Additionally, there were differences in various types of T cells at the intergroup level. T cells are major 
participants in immune-mediated cancer control and response to immunotherapy, and BM is involved in regu-
lating various functions of T  cells38,39.

This study provides a preliminary exploration of the prognostic value of BMGs in ccRCC, aiming to establish 
a theoretical foundation for future research. However, our investigation has certain limitations. Firstly, the sam-
ple size in the validation dataset of this study is relatively small, warranting validation of BMscore with a larger 
independent dataset to ensure reliability. Secondly, further experiments are needed to validate the hypotheses 
generated in this study. We are currently undertaking prospective research to confirm our findings and plan to 
conduct additional foundational experiments to elucidate the value of BMGs in ccRCC more comprehensively 
in the future.

In summary, this study comprehensively analyzed the transcriptomic characteristics associated with the BM 
in ccRCC patients, elucidating the role of BMGs in ccRCC. We established and validated a risk prognostic model 
that can predict the survival outcomes of ccRCC patients. Furthermore, we explored the potential mechanisms 
underlying the progression of ccRCC associated with BMGs and investigated the differences in gene expression, 
functional enrichment and immune status among patients with different risk levels. Overall, this study provides 
valuable insights into the significance of BMGs in ccRCC and their implications for prognosis and treatment. 
The findings contribute to a better understanding of the molecular mechanisms underlying ccRCC and offer 
potential targets for personalized therapies.

Material and methods
Data source
Based on the Xena database (https:// xenab rowser. net/ datap ages/), gene expression profile data related to Kidney 
Clear Cell Carcinoma (KIRC) was acquired. This data consists with 607 samples with gene expression values 
represented as standardized log (FPKM + 1, 2). Phenotype data, such as stage factors, and the survival status of 
the KIRC cohort, were also collected. Among the KIRC tumor samples, there were 528 samples with available 
clinical prognosis information. This subset of data was used as the training dataset for the current analysis.

The Gene Expression Omnibus (GEO) is a publicly curated genomic  database40. From GEO, expression 
profile data for ccRCC with the accession number GSE29609 was downloaded. This dataset includes 39 ccRCC 
tumor samples with available clinical prognosis information. This dataset will be used as the validation dataset.

Acquisition and subtype analysis of BMGs
Collected BMGs from the literature and obtained a total of 222  genes41. Consensus clustering analysis based on 
the expression consistency of BMGs utilized the R package “ConsensusClusterPlus”42, the clustering results were 
optimal when the value of k was set to 2. Evaluated the survival prognostic correlation among different disease 
subtype sample groups using the Kaplan–Meier.

Identification and enrichment analysis of differential genes among subtypes
Based on the whole-genome expression data of KIRC samples, conducted KEGG pathway enrichment analy-
sis among disease subtypes using the R package “GSVA”43. Selection of differentially expressed genes (DEGs) 
with R package “limma” based on comparisons between disease subtypes, with a cutoff criteria of |Log2 (fold 
change)| ≥ 1.0 and a P-value < 0.05.

Selection of prognosis‑associated BMGs
The median expression levels of BMGs showing significant differential expression among different subtype 
groups were used to divide the samples into high and low expression groups. Kaplan–Meier analysis was then 
employed to identify BMGs that were significantly associated with prognosis at the expression level grouping 
level. Univariate Cox regression analysis was conducted to select BMGs that were significantly associated with 
prognosis at the expression level. A significance threshold of P < 0.05 was used for gene selection. The intersec-
tion of the genes selected by both methods was visualized using a Venn diagram to identify BMGs that were 
significantly associated with prognosis.

https://xenabrowser.net/datapages/
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Risk model for ccRCC construct and validation
For the purpose of investigating the potential significance of BMGs in the prognosis of ccRCC patients, we 
applied the Least Absolute Shrinkage and Selection Operator (LASSO) method to the training set KIRC cohort 
for regression analysis of survival-related BMGs. Based on the LASSO regression coefficients of the selected 
optimized gene combination and the expression levels of target genes in the dataset, we constructed the BM 
score model as follows and calculated the final risk score: 

In the KIRC training set and the validation dataset GSE29609, we calculated the BM score values for each 
sample using the calculation formula. The median BM score was used as the cut-off value to classify the patients 
into high-risk and low-risk groups. Kaplan–Meier curves were used to reflect the survival performance of the 
patients in each group. The predictive ability of the BM score model was evaluated using time-dependent receiver 
operating characteristic (ROC) curve analysis.

Establishment of clinicopathologic nomogram
In the analysis of the KIRC training dataset, clinicopathological parameters and BM scores were integrated with 
the samples to identify independent prognostic clinical factors using univariate and multivariate Cox regression 
analysis. The identified independent prognostic factors were then combined with risk information derived from 
a prognostic prediction model to construct nomogram using the “rms”  package44. Furthermore, the prediction 
capabilities of each factor were evaluated via the generation of ROC curves.

Identified DEGs and enrichment analysis according to BM score
The DEG was filtered by using the R package “limma” between the high- and low-BM score  groups45. |Log2 (fold 
change)| ≥ 1.0, and P-values < 0.05 were used as the cut-off criteria. Gene ontology (GO) annotation and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG)46 pathway enrichment analyses were conducted using the 
R package “clusterProfiler”47. GSEA was used to identify Hallmark pathways significantly associated with BM 
score groups, and P value < 0.05 was chosen for the threshold of significant enrichment of associated Hallmark 
pathways. The GEPIA website was applied to analyze the differences in disease-free survival (DFS) and expres-
sion levels of BM score model genes between KIRC and control  groups48. And we utilize the GEPIA database to 
assess the expression profile of BM score model genes in normal tissues and other tumor tissues. The immuno-
histochemical staining of prognostic genes was obtained from The Human Protein  Atlas49 (https:// www. prote 
inatl as. org/). The immunohistochemical intensity results were obtained from the HPA website.

Potential impact of BM score on the immune microenvironment of ccRCC 
Estimate the tumor purity of KIRC samples using the “ESTIMATE” R  package50. Employ CIBERSORT to assess 
the degree of immune cell infiltration among different BM score groups, including the proportions and CIBER-
SORT indices of 22 tumor-infiltrating immune cells, and visualize the results through bar plots and  heatmaps51. 
Utilize Chi-square tests to determine if there are any significant differences among the groups based on the 
associated scores.

Protein–protein interaction and identification of hub genes
Protein–protein interaction (PPI) predictions were retrieved from the STRING  database52. The obtained PPI 
network was visualized using the Cytoscape software, and the “cytohubba” plugin was employed for modular 
 analysis53. The top 10 hub genes were identified, defined as genes that are associated with the expression of other 
 genes54.

Data availability
All the data used in this study were publicly available at The Cancer Genome Atlas portal (TCGA, https:// portal. 
gdc. cancer. gov/) and Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/).
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