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Empirical dynamic modelling 
and enhanced causal analysis 
of short‑length Culex abundance 
timeseries with vector correlation 
metrics
Nikos Kollas 1, Sandra Gewehr 2 & Ioannis Kioutsioukis 1*

Employing Empirical Dynamic Modelling we investigate whether model free methods could be 
applied in the study of Culex mosquitoes in Northern Greece. Applying Simplex Projection and S‑Map 
algorithms on yearly timeseries of maximum abundances from 2011 to 2020 we successfully predict 
the decreasing trend in the maximum number of mosquitoes which was observed in the rural area of 
Thessaloniki during 2021. Leveraging the use of vector correlation metrics we were able to deduce 
the main environmental factors driving mosquito abundance such as temperature, rain and wind 
during 2012 and study the causal interaction between neighbouring populations in the industrial area 
of Thessaloniki between 2019 and 2020. In all three cases a chaotic and non‑linear behaviour of the 
underlying system was observed. Given the health risk associated with the presence of mosquitoes 
as vectors of viral diseases these results hint to the usefulness of EDM methods in entomological 
studies as guides for the construction of more accurate and realistic mechanistic models which are 
indispensable to public health authorities for the design of targeted control strategies and health 
prevention measures.

One of the many negative side effects of climate change, among others, is the increase in the number of zoonotic 
viral diseases transmitted through animal  hosts1. A notable example of this is the common house mosquito (Culex 
spp.). Several species of the genus Culex are known to be principal vectors that can transmit diseases such as the 
ones caused by the West Nile Virus (WNV)2 the St. Louis encephalitis virus and the Japanese encephalitis virus 
for example. In the case of WNV the virus originates in tropical regions and is carried over to other, less warmer, 
areas by infected birds through migration. By feeding on them, mosquitoes become carriers of the disease which 
then transmit the pathogen to humans. At all life stages Culex spp. are ectothermic and therefore climate sensitive. 
Studies have suggested that environmental changes, due to an increase in temperature and precipitation caused 
by global warming, have a significant impact on mosquito populations, facilitating their geographic spread into 
regions with more temperate climates further north and  south3–9. A characteristic example is Culex pipiens. This 
is an ubiquitous mosquito species with a close association to humans and a worldwide distribution, inhabiting 
latitudes as high as Northern Europe and as low as the South Island of New  Zealand10,11, which is a frequent 
vector of pathogens of both human and animal  diseases10,12 . In an effort to assist public health authorities in 
devising appropriate health policies and vector control strategies an increasing number of mathematical models 
have been developed over the past years aimed at studying mosquito abundances and their dependence upon 
environmental  factors13–22.

In this paper we perform a model free analysis of entomological data in the regional unit of Thessaloniki, an 
area which has seen an increase in the number of WNV reported cases in recent  years23. The analysis is based 
on Empirical Dynamic Modelling (EDM). This is a data-driven method aimed at reconstructing the attractor 
manifold of a dynamical system from  observations24–27 capable of assessing the dimensionality and degree of 
non-linearity of the underlying system. Using EDM it is possible to make short-term predictions of the system’s 
 components28–30 and to infer its causal  structure31–33. The technique has been applied successfully in various 
areas of research from  paleontology34–36 and  ecology37–41, to  neuroscience42–44, climate  studies45–48 and even 
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solar weather  prediction49. In a previous study, EDM was employed to uncover the environmental variables 
which drive mosquito abundance of the Aedes genus in French Polynesia based on the idea of Convergent Cross 
Mapping31. A drawback of this method is that it requires timeseries of a long length which, due to budgetary, 
time or other constraints, are usually not readily available. To overcome this challenge we apply the method of 
spatial-State Space Reconstruction (s-SSR)32,72, by combining spatial replicates of the variable in question into a 
composite timeseries, and infer causality from the cross-map skill between variables as a function of time delay 
between cause and effect. In contradistinction to previous applications we employ vector correlation  metrics73 
for measuring the quality of cross mapping which provide an enhancement over usual metrics as they are more 
robust under changes of the embedding  dimension74.

Results
Forecasting yearly maximum abundances
As a first test case, we attempt to make out of sample forecasts of the maximum number of mosquitoes expected 
during the course of a year. The data consists of seven replicates of maximum abundances observed between the 
months of April and October from 2011 to 2021. Since the mean flight distance of Culex mosquitoes encountered 
in Europe is only of the order of a few hundred  meters50, the large separation between locations (with a mean 
nearest neighbour distance of approximately 5.51 kilometers) ensures that the populations are isolated from one 
another. We therefore apply s-SSR (see Empirical Dynamic Modelling in Methods) to construct a composite 
state-space. To compensate for annual trends in the data, we first-difference each replicate separately to obtain 
yearly changes in maximum abundances. To determine the best embedding dimension for making predictions, 
we run a Simplex Projection (SP) algorithm (see Simplex Projection in Methods) with data from 2012 to 2019 as 
the input and perform a leave-one-out cross validation method to predict next year’s abundance between 2013 
and 2020. In Fig. 1a we present the forecast skill of the SP algorithm, as a function of dimension E. We observe 
that the forecast skill displays a peak at an embedding dimension E = 3 . For this dimension the forecast skill was 
higher than 97% of a 1000 randomly generated time-series using Ebisuzaki’s  method51 (Table S1 in Supplemen-
tary). Projecting further into the future reveals the chaotic behaviour of the system with a decrease in forecast 

Figure 1.  Leave-one-out forecast skill of predicted versus observed yearly differences in maximum mosquito 
abundance of a SP algorithm (a) as a function of the embedding dimension of the reconstructed state space 
for predictions made one year into the future and (b) as a function of the prediction interval for an embedding 
dimension E = 3 . (c) Forecast skill for predictions one year into the future between a local S-Map model and a 
global AR model as a function of the degree of nonlinearity of the system for an embedding dimension E = 3.

Figure 2.  Left: Locations of spatial replicates and closest neighbour distance between sampling stations ANT, 
AAT, CHA, CHL, KOY, NML and VRA in kilometers (maps made with Google My Maps, Imagery ©2024 
TerraMetrics). Right: SP and S-Map predictions of the difference in the maximum number of mosquitoes 
expected in 2021 compared to 2020 for E = 3 and θ = 2.5 . The mean absolute error between observations and 
predictions, is indicated in the labels.
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skill and a complete lack in predictability after two years (Fig. 1b). Comparing the forecast skill of a local S-Map 
model (see S-Map in methods) with that of a global autocorrelation (AR) model of the same dimension as a 
function of the degree of non-linearity (Fig. 1c) we observe the non-linear nature of the composite time-series 
with a peak at θ ≃ 2.5 , larger 97% of the time when compared to a thousand random surrogates.

Using the optimal values of E and θ determined above we now make out-of-sample forecasts of the maximum 
number of mosquitoes expected in 2021 compared to 2020 for each location. In Fig. 2 we present the predictions 
of the SP and S-Map algorithms. Both algorithms predict a decrease in the maximum number of mosquitoes 
expected at each location. Apart from one station (KOY) where a slight increase was actually observed, this was 
indeed the trend. We observe that the quality of predictions of the S-Map algorithm is better than those given 
by the SP algorithm with a mean absolute error of 420 and 904 respectively for the stations where prediction 
and observation match in trend. Excluding KOY from the library and retraining the algorithms with the same 
parameters shows a slight improvement in predictions with a mean absolute error of 809 for the SP and 403 for 
the S-Map algorithm, although in this case the optimum degree of non-linearity is found to be equal to θ ≃ 4.5 
(Fig. S1 in Supplementary). Running the algorithm again with the corrected degree increases the mean abso-
lute error to 507 which is worse than that for θ ≃ 2.5 but still better than the predictions obtained from the SP 
algorithm (Fig. S2 in Supplementary).

Causal analysis of environmental effects on mosquito abundance
As a second test case we perform a causal analysis of environmental effects on mosquito populations. From 
the full set of possible sampling stations (see Data description in Methods), we select a subset of five replicates 
for which weekly abundances, sampled concurrently from June to September of 2012, were available with 17 
consecutive weeks of entries per station (Fig. 3). Once again the large distance between locations (with a mean 
nearest neighbour distance of 5.59 kilometers) allows us to assume that the stations are independent from 
each other and we can therefore use s-SSR to construct from them a composite state-space. The environmental 
variables considered in the causal analysis, include the day mean of the Land Surface Temperature (LST), the 
accumulated rainfall one week before the date of placement (Rain), the mean hourly magnitude of wind (Wind), 
the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI) and the 
Normalized Difference Water Index (NDWI) at each location. In order to increase the density of points in the 
reconstructed state space and improve the quality of the analysis, min-max normalization for each replicate is 
performed separately.

Taking into consideration the developmental cycle of Culex mosquitoes, which lasts approximately two weeks, 
we predict with the help of the SP algorithm the state of the system two weeks into the future in order to deter-
mine the best embedding dimension. This choice of prediction interval coincides with the first local minimum of 
the mutual information and is also close to zero for the autocorrelation (Fig. 4a). In panel b of Fig. 4 we present 
the forecast ability between observed and predicted values of a leave-one-out bootstrap method. We observe that 
the forecast skill peaks at an embedding dimension E = 7 , which is higher than 99% of a 1000 randomly gener-
ated time-series using Ebisuzaki’s method (Table S2 in Supplementary). Forecasting further into the future shows 
a rapid decline in forecast skill (Fig. 4c) with a complete loss of predicting power after four weeks, a behaviour 
characteristic of a chaotic time-series. The system displays a non-linear behaviour, since the predictions of a local 
S-Map algorithm are more correlated to their corresponding observed values compared to the predictions of an 
AR method (Fig. 4d), with a peak at θ ≃ 4 , higher than 97% of a 1000 surrogate time-series. Although the choice 
for the best embedding parameters is based on making predictions over a period of two weeks, the reconstructed 
manifolds contain time-lagged vectors with a lag of only τ = 1 week. The reason for this choice is the presence 
of different periods in the dynamics. Mosquito populations are expected to influence each other every fortnight 
while changes in abundances due to environmental effects can occur on a weekly  basis52. Performing the above 
analysis with time-lagged vectors with τ = 2 weeks instead of one we find that the appropriate embedding dimen-
sion in this case has changed and is now equal to E = 4 . Nonetheless the characteristic behaviour of the time 
series when making predictions further into the future and its non-linearity remain qualitatively the same (Fig. S3 

Figure 3.  Locations of spatial replicates, CHA, KLC, NML, SIN, VRA and closest neighbour distance in 
kilometers for the causal analysis of environmental effects (maps made with Google My Maps, Imagery ©2024 
TerraMetrics).
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in Supplementary). This is consistent with studies which suggest that what is ultimately important for an EDM 
analysis is not the value of the embedding dimension E or of the time-delay τ separately bur rather the value of 
the embedding time-window53–57 Tw = (E − 1)τ which in both cases here remains constant and equal to Tw = 6.

Causality is now inferred by cross-mapping the reconstructed manifolds of each environmental variable 
with the one obtained from the data on mosquito abundance as a function of the prediction interval (see Cross 
mapping causal analysis in Methods). In Table 1 we display the average cross-map skill of a vector based cor-
relation metric (See Correlation between random vectors in Methods) for predictions up to one month into the 
past and the future (for the forecast skill of each mapping as a function of prediction interval, used to calculate 
the averages, see Fig. S4 in Supplementary). From the positive values we detect LST, Rain and Wind as the main 
causal factors of daily mosquito abundance, with a mean peak in absolute prediction interval of half a week for 
temperature and one week for both precipitation and wind (Fig. S5 in Supplementary).

Causal interaction of neighbouring populations
We now carry out a causal analysis of neighbouring populations. The data in this case consists of four replicates 
of daily abundances sampled every week between the months of May and September of 2019 and 2020 with 
19 and 21 consecutive weeks of entries respectively. In Fig. 5 we display, for each location, the autocorrelation 
and mutual information of the daily abundance as a function of time. For three out of the four locations (ASF1, 
ASF2, ASF4) the figure suggests that the choice for the best embedding parameters should be based on predic-
tions made one week into the future. The remaining location (ASF3) shows a gradual decrease in autocorrelation 
indicating a difference in dynamics so is excluded from the subsequent analysis. To avoid annual trends, we make 
the data stationary by first-differencing each time-series to obtain weekly changes of abundances. Forecasting 
each replicate one week into the future we choose E = 3 as the most suitable common embedding dimension 
(Fig. 6a). The observed forecast skill, for this dimension, compared to the one obtained from a thousand serially-
correlated random timeseries generated with Ebisuzaki’s method was higher 99% , 88% and 91% of the time 
(Table S3 in Supplementary). Making predictions further into the future suggests that all three locations exhibit 
chaotic behaviour, with a decrease in forecast skill and an inability of making any predictions beyond two weeks 
(Fig. 6b). Running an S-Map analysis of the data as a function of the degree of nonlinearity of the time-series we 
could detect a non-linear behaviour in only two out of the three locations, ASF1 and ASF4, with θ ≃ 0.75 ( 89% 
of the time higher) and θ ≃ 1.25 ( 96% of the time higher) respectively.

In Table 2 we present the average cross-mapping skill of past and future predictions, between locations, for a 
vector correlation based metric (see Fig. S7 in Supplementary for the forecast skill of each mapping as a function 
of the prediction interval). We observe that ASF1 causally affects ASF2 with a mean peak in absolute predic-
tion interval of approximately 4 weeks, while at the same time ASF2 affects location ASF4 with a mean peak in 
absolute prediction interval of 1 week. The latter location is also causally affected by ASF1. The mean absolute 
peak of 4.5 weeks in the prediction interval suggests in this case the existence of an indirect causal link between 
the two locations through ASF2.

Figure 4.  (a) Autocorrelation and mutual information of daily mosquito abundance as a function of time. (b) 
Leave-one-out forecast skill of SP algorithm as a function of the embedding dimension of the reconstructed state 
space for predictions two weeks into the future and (c) as a function of the prediction interval for an embedding 
dimension E = 7 . (d) Leave-one-out forecast skill as a function of the degree of non-linearity of a local S-Map 
model versus a global AR model for predictions two weeks into the future and an embedding dimension E = 7.
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Discussion
The influence of human activity on the environment, either through increased invasion of animal habitats or 
changes in climate, is expected to result in an increase in the number of vector borne viral diseases such as yel-
low fever, Zika, chikungunya and West Nile Virus for  example1. In light of this threat, techniques for accurately 
modeling and predicting the abundance of vectors carrying the virus, as in the case of mosquitoes, is important 
to public health authorities since it will allow them to anticipate possible future outbreaks and take appropriate 

Figure 5.  Left: Locations of replicates, ASF1,ASF2,ASF3,ASF4 and closest neighbour distance in meters (maps 
made with Google My Maps, Imagery ©2024 TerraMetrics). Right: Autocorrelation and mutual information of 
daily mosquito abundance as a function of time.

Figure 6.  Leave-one-out forecast skill of SP algorithm (a) as a function of the embedding dimension of the 
reconstructed state space for predictions one week into the future and (b) as a function of the prediction interval 
for an embedding dimension E = 3 . (c) Difference in forecast skill for predictions one week into the future 
between a local S-Map model and a global AR model as a function of the degree of nonlinearity of the system 
for an embedding dimension E = 3 (the forecast skill of the AR model is indicated in the labels).

Table 1.  Average cross-map skill of past ( Tp ≤ 0 ) and future ( Tp ≥ 0 ) predictions between weekly mosquito 
abundances and Land Surface Temperature (LST), accumulated rainfall one week before the date of 
placement (Rain), mean hourly magnitude of wind (Wind), Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Moisture Index (NDMI) and Normalized Difference Water Index (NDWI) for a vector 
correlation based metric. The quantities in parentheses indicate the value of the prediction interval (in weeks) 
where the cross mapping is maximized.

Tp ≤ 0 Tp ≥ 0 Tp ≤ 0 Tp ≥ 0

Culex xmap LST 0.37 (0 w) 0.31 Culex xmap NDVI −0.02 (−3 w) −0.21

LST xmap Culex 0.20 0.37 (1 w) NDVI xmap Culex −0.02 0.11 (3 w)

Culex xmap Rain 0.32 (−1 w) 0.26 Culex xmap NDMI −0.02 (−3 w) −0.23

Rain xmap Culex 0.45 0.49 (1 w) NDMI xmap Culex −0.17 −0.07 (4 w)

Culex xmap Wind 0.27 (−2 w) 0.09 Culex xmap NDWI −0.13 (−4 w) −0.20

Wind xmap Culex 0.29 0.33 (0 w) NDWI xmap Culex 0.18 0.18 (0 w)
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preventive measures. Model free methods make no assumptions about the structure of the system under study 
and are therefore more general than their mechanistic counterparts. Applying EDM techniques on Culex data we 
were able to correctly predict the decreasing trend in the maximum number of mosquitoes observed during 2021 
in a number of stations in the rural area of Thessaloniki. Using the same methodology it was also demonstrated 
that it is possible to deduce land surface temperature, the accumulated precipitation and the mean hourly wind 
as the key environmental causal factors driving mosquito abundance. This is consistent with other studies which 
indicate the same variables as the most important for the dynamics of mosquito populations with time lags similar 
to the ones reported  here7,14–17,58–65. Temperature is a particularly important factor as it directly influences the 
mortality rate and life span of mosquitoes?66–68. Abundances peak at temperatures between 20 and 30◦ C, corre-
sponding to a short time in larval  developments2,12, while high levels of mortality are found outside the 15 to 34◦ C 
range. Performing a causal analysis on data in the industrial area of Thessaloniki we also detected interactions 
between neighboring populations. These were expected due to the short distance between the sampling stations 
(with a mean distance between closest neighbors of 714.5m) and can often be attributed to non-oriented dis-
persal of mosquitoes when searching for hosts, food, mates and places for oviposition or  shelter50,69. Knowledge 
about interaction dynamics is useful information for the design of intervention strategies. Instead of chemically 
controlling a larger area for example one could focus attention locally only on those locations which causally 
affect mosquito abundance in others (such as ASF1 in our example) saving both valuable time and resources.

Though model free methods are advantageous, since they don’t suffer from any assumptions that need to be 
made in the construction of a mechanistic model, one of their main drawbacks is their need for long time-series 
with 30 or more consecutive observations (as a general rule of thumb). In order to apply these methods in eco-
logical studies, where the available time-series are usually of a short length, it is necessary to combine several of 
them into a composite state-space using s-SSR. Any inferences based on these models will only therefore apply 
on a larger scale (depending on the mean closest neighbour distance between replicates) rather than on a local 
level. Our analysis on the causal effects of environmental factors, for example, suggested the possibility that veg-
etation, moisture and water content were also causal factors, but these were excluded as such on the basis that 
the average forecast skill of mapping the abundance manifold onto the manifold obtained from each of these 
environmental observables was less than zero in both past and future directions. The reason for this can be traced 
back to the composite nature of the reconstructed state space. Vegetation, moisture and water conditions differ 
considerably for each location while those for temperature, rainfall and wind are practically the same (Fig. S6 
in Supplementary). The inability of making abundance predictions beyond a certain period, apart from the 
nonlinearity of population dynamics, is also related to the chaotic behaviour of weather. Due to Takens theorem 
the manifold reconstructed by time-lagged vectors of abundance observations is homeomorphic to the actual 
state-space of the system which includes environmental variables as degrees of freedom. Any limitations in the 
forecast ability of the later, with a horizon of approximately two weeks, will similarly affect the forecast ability 
of abundances. Despite these drawbacks EDM can serve as a useful guide in the construction of more accurate 
models. In all three cases considered here, each time-series exhibited a chaotic and (with the exception of series 
ASF2) non-linear behaviour. Comparing the autocorrelation and mutual information of Figs. 4 and 5 we also 
observe a change of period in the dynamics from two weeks to one week. Any realistic model should be capable 
to take these effects into account and qualitatively reproduce them. Future research on the relation between the 
dynamical characteristics (such as embedding dimension, the degree of non-linearity or the optimal time lag) 
of data used to train mechanistic models with the mathematical structure and choice of parameters of the latter, 
could possibly assist in that direction.

Methods
Data description
Data on mosquito abundances were obtained from EcoDevelopment SA. as part of the EarlY WArning System 
for Mosquito borne disease (EYWA) dataset, developed for the EuroGEO Action Group “Earth Observation for 
Epidemics of Vector-borne Diseases”, under the coordination of the National Observatory of Athens/BEYOND 
Centre of Earth Observation Research and Satellite Remote Sensing. The values of the Normalized Difference 
Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI), the Normalized Difference Water 
Index (NDWI), the day mean of the Land Surface Temperature (LST), the accumulated rainfall one week before 
the date of placement (Rain) and the mean hourly magnitude of wind (Wind) at each location were obtained from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites.

Table 2.  Average cross-map skill of past ( Tp ≤ 0 ) and future ( Tp ≥ 0 ) predictions of weekly changes in 
mosquito abundance between neighboring locations for a vector correlation based metric. The quantities in 
parentheses indicate the value of the prediction interval (in weeks) where the cross mapping is maximized.

Tp ≤ 0 Tp ≥ 0 Tp ≤ 0 Tp ≥ 0

ASF1 xmap ASF2 −0.12 0.03 (5 w) ASF1 xmap ASF4 −0.17 0.00 (3 w)

ASF2 xmap ASF1 0.12 (−3 w) 0.22 ASF4 xmap ASF1 0.08 (−6 w) −0.11

ASF2 xmap ASF4 −0.19 0.06 (1 w)

ASF4 xmap ASF2 0.26 (−1 w) 0.14
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Empirical dynamic modelling
EDM is based on Takens’s theorem which states that it is possible to construct an embedding of the manifold 
from lagged vectors of a single observed time-series X24–27

where τ is a time-lag which can be determined by the first zero of the autocorrelation function or the first local 
minimum of the mutual  information70,71. Taking advantage of the topological structure of the reconstructed 
‘shadow’ manifold it is possible to make predictions about the evolution of the  system28–30 and infer its causal 
 structure31–33. For series of a short length, as is usually the case in ecological studies, one can construct a com-
posite state-space from spatial replicates using spatial State Space Reconstruction32,72 (s-SSR), discarding from 
the analysis any embedded vectors with overlap between their components.

Simplex projection
Simplex  projection28 is a k-nearest neighbours regression algorithm. For any observation X(t) one can predict a 
feature F(X(t)) as the weighted average of its E + 1 closest neighbours

where

is the weight of the i-th closest neighbour X(ti) to X(t) with euclidean distance di , and d̄ is the mean distance 
from all of its neighbours. Choosing F(X(ti)) = X(ti + Tp) in Eq. (2) one can employ the algorithm to make 
forecasts, by tracking where each neighbour will end up after Tp time steps in the reconstructed state space. Mak-
ing predictions one time step into the future it is possible to get an estimate for the best embedding dimension 
E by requiring the cross-validation between observed and predicted time-series to be  maximized28. The same 
algorithm can also be used to distinguish between measurement error and chaos in the time-series. Making 
predictions further into the future for a chaotic system results in a sharp decrease in forecast skill compared 
to a noisy series for which the ability of making predictions as a function of the prediction interval Tp remains 
relatively  constant28–30.

S‑map
The S-Map algorithm can be used to test for non-linearity in a candidate time-series30. For every observation 
X(t) , an E + 1 order autoregressive model is employed to forecast the value of the time-series Tp time steps ahead 
as the scalar product of an E + 1 dimensional vector of coefficients Ct with X(t)

The model is trained on a locally weighted set of lagged vectors

where d(t′) is the euclidean distance of X(t) from X(t ′) and d̄ is the mean distance. If θ > 0 then the training set 
is different for each prediction, with vectors closer to X(t) contributing more to the model. This corresponds to 
a different vector of coefficients Ct each time which can be calculated through a singular value decomposition or 
a least-squares approach. For θ = 0 , Ct is the same for every prediction and the model is global and equal to an 
autoregression algorithm of the same order. If the quality of predictions improves with the local model compared 
to the predictions obtained from the global model then the time-series can be considered to be non-linear with 
the degree of non-linearity represented by the parameter θ.

Cross mapping causal analysis
If X and Y are part of the same dynamical system then it is possible to infer whether a cause and effect relation-
ship exists between the two variables by cross mapping their respective ‘shadow’ manifolds constructed from 
time lagged vectors of their  observations31–33. By choosing F(X(ti)) = Y(ti + Tp) as a feature of the Simplex 
algorithm, it is possible to predict Y from X (in this case the prediction interval Tp can take both positive as well 
as negative values). Causality can now be ascertained from the correlation between predicted and observed 
values as a function of Tp . If the mean correlation for positive values of Tp is greater than that for negative values 
this means that past values of X are better at predicting future values of Y so it can be inferred that the former 
variable causally affects the latter, X ≺ Y  . If on the other hand the mean correlation for negative values of Tp is 
greater that that for positive values then Y ≺ X.

(1)X(t) = �X(t),X(t − τ), . . . ,X(t − (E − 1)τ )�

(2)F̂(X(t)) =

E+1
∑

i=1

wiF(X(ti)),

(3)wi =
exp

[

−di/d̄
]

∑

j exp
[

−dj/d̄
] , i = 1 . . . ,E + 1

(4)X̂(t + Tp) = Ct · X(t).

(5)
{

X̃(t ′) = e−θd(t′)/d̄
X(t ′), t �= t′

}

, θ ≥ 0
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Correlation between random vectors
Setting F(X(ti)) = Y(ti + Tp) as a feature of the Simplex algorithm, it is possible to predict the full lagged vec-
tor of Y, not only its first component. In order to assess the quality of predictions Ŷ in this case we employ the 
following linear correlation coefficient which is suitable for use with random vectors

where �XY denotes the covariance matrix between random vectors X and Y . It is proven that the above definition, 
which is a measure of the mean euclidean distance between the two sets of vectors, satisfies all of the properties of 
Pearson’s correlation  coefficient73 which it reduces to in the univariate case. Recently, it was shown that the use of 
vector metrics provides a marked improvement of the causal structure of a non-linear system over other  metrics74.

Data availibility
The data that support the findings of this study are available from Ecodevelopment S.A. but restrictions apply to 
the availability of these data, which were used under license for the current study, and so are not publicly avail-
able. Data are however available from the corresponding author upon reasonable request and with permission 
of Ecodevelopment S.A.
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