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Correlation enhanced distribution 
adaptation for prediction of fall risk
Ziqi Guo 1, Teresa Wu 2, Thurmon E. Lockhart 3, Rahul Soangra 4 & Hyunsoo Yoon 5*

With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude 
of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. 
Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent 
future falls. However, during the early stage of diagnosis, there is often limited or no labeled data 
(expert-confirmed diagnostic information) available in the target domain (new cohort) to determine 
the proper treatment for older adults. Instead, there are multiple related but non-identical domain 
data with labels from the existing cohort or different institutions. Integrating different data sources 
with labeled and unlabeled samples to predict a patient’s condition poses a significant challenge. 
Traditional machine learning models assume that data for new patients follow a similar distribution. If 
the data does not satisfy this assumption, the trained models do not achieve the expected accuracy, 
leading to potential misdiagnosing risks. To address this issue, we utilize domain adaptation 
(DA) techniques, which employ labeled data from one or more related source domains. These DA 
techniques promise to tackle discrepancies in multiple data sources and achieve a robust diagnosis 
for new patients. In our research, we have developed an unsupervised DA model to align two domains 
by creating a domain-invariant feature representation. Subsequently, we have built a robust fall-risk 
prediction model based on these new feature representations. The results from simulation studies and 
real-world applications demonstrate that our proposed approach outperforms existing models.

Keywords Unsupervised domain adaptation, Machine learning, Classification, Fall risk

Vast volumes of unlabeled data are generated and made available in numerous domains. In the context of machine 
learning, a domain refers to a subset of the larger data space that is relevant for a specific task or application. 
However, acquiring sufficient labeled data can be exceedingly costly and sometimes impractical. For example, 
on average, each pixel-level image in the Cityscapes dataset required 1.5 h to complete the  annotation1. Domain 
adaptation (DA) addresses the limited labeled data issue by aligning two distinct datasets: one from a source 
domain and the other from a target domain. The source domain contains a large amount of labeled data on 
which classifiers can be reliably trained. The target domain broadly refers to a dataset assumed to have different 
characteristics from the source domain, where those classifiers are applied. Several example scenarios require 
domain adaptation (DA). In computer vision tasks, objects might come from multiple sources, each with different 
backgrounds, object styles, and  locations2–6. In activity recognition tasks, sensors might be placed in different 
body  locations7,8. In speech recognition, voices may come from different  speakers9,10. In sentiment analysis, 
various text sources, such as electronics or DVDs, are used for  analysis11,12. In healthcare, acquiring labeled 
data and large samples is even more challenging. For instance, in medical image analysis, the major challenge 
in constructing reliable and robust models is the lack of labeled  data13,14. Clinical outcomes might be sourced 
from different machines and healthcare providers. Variations between different data sources can significantly 
reduce prediction accuracy. These problems are studied in DA, where the model is learned on one dataset (i.e., 
source domain) and then transferred to a target dataset (i.e., target domain) with different distribution properties.

Although machine learning approaches for supervised learning have performed well, they assume that train-
ing and testing data are drawn from the same distribution, which may not always be true. To complement this 
challenge, DA aims to align the target to the source domain by creating a domain-invariant feature representa-
tion. After adaptation, it becomes a standard machine learning problem that assumes test data are drawn from a 
similar distribution as the training data. In this paper, we propose an unsupervised DA method that specifically 
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addresses situations where labeled data are available only in the source domain, and the target domain is unla-
beled, which is common in practice.

According to a literature  review15, existing DA methods can be organized into two categories: (a) feature trans-
formation and (b) instance weighting. Feature transformation either performs feature space alignment by explor-
ing the subspace geometrical structure, such as subspace alignment (SA)16, CORrelation ALignment (CORAL)17, 
and geodesic flow kernel (GFK)5, or distribution adaptation to reduce the distribution divergence between 
domains, such as transfer component analysis (TCA)18 and joint distribution adaptation (JDA)19. Instance 
reweighting reweights the samples from the source domain to the target based on the weighting  methods20,21. 
The challenge with existing methods is degenerated feature  transformation22, where both subspace alignment 
and distribution adaptation can reduce the divergence between domains but not eliminate it. Subspace alignment 
only considers the subspace or manifold structure, failing to achieve complete feature alignment. Conversely, 
distribution adaptation reduces the distribution distance in the original feature space but often distorts features, 
making it more challenging to reduce the divergence. Therefore, exploiting both the advantages of subspace 
alignment and distribution adaptation is significant for further developing DA. This study proposes a novel DA 
method to address this challenge.

Unsupervised learning assumes the availability of labeled source data and unlabeled target data. Several 
unsupervised domain adaptation (DA) methods are described in a literature  review23. Domain-invariant feature 
learning methods aim to align the source and target domains by creating a domain-invariant feature representa-
tion, where features follow the same distribution regardless of the input’s source or target domain. Typically, this 
is achieved through a feature extractor neural  network17,24–26. Domain mapping methods, on the other hand, 
use adversarial techniques to create a pixel-level map from one domain to another, often accomplished with a 
conditional  GAN27–29. Normalization statistics methods leverage normalization layers like batch normalization 
commonly found in neural  networks30,31. Existing unsupervised DA methods predominantly emphasize neural 
network-based approaches, but they may perform poorly in cases with a small sample size and a limited number 
of features. This can be attributed to the fact that neural networks typically require large amounts of data to learn 
meaningful representations and can suffer from overfitting when the number of features is limited. Therefore, to 
address this shortcoming, we propose our shallow unsupervised DA approach, Correlation Enhanced Distribu-
tion Adaptation (CEDA).

Domain adaptation has garnered considerable attention in healthcare applications in recent years, particu-
larly in computer-aided medical image  analysis32–34, due to its ability to reuse pre-trained models from related 
domains. Many other healthcare problems also face the challenge of lacking labeled data. This study extends the 
application of domain adaptation, especially unsupervised DA, to sensor-based prognosis.

Of particular interest in this research is fall detection. Falls pose significant threats to the health of older adults 
and can hinder their ability to remain independent. As CDC reports suggest, 3 million older people are treated 
in emergency departments for fall injuries each year, and fall death rates in the U.S. increased by 30% from 2007 
to 2016. Therefore, fall prevention is a critical component of healthcare for the senior community. In the realm 
of fall risk assessment, particularly for older adults, there is a recognized importance of both intrinsic and extrin-
sic factors. Intrinsic factors include muscle  strength35,  balance36, and gait  stability37, whereas extrinsic factors 
involve elements like home hazards and footwear  choices38. Recently, wearable sensors have become invaluable in 
assessing fall risk, especially through the use of accelerometers and gyroscopes to capture a variety of movement 
characteristics. Diverse feature sets have been explored in fall risk assessment, including nonlinear dynamics. 
Measures such as Shannon entropy and frequency analysis, which reflect gait dynamics, have shown significantly 
higher values in individuals prone to falls, indicating their potential as fall risk  predictors39. Nonlinear metrics, 
like multiscale entropy (MSE) and recurrence quantification analysis (RQA) applied to trunk accelerations, have 
demonstrated positive correlations with fall histories, suggesting their utility in identifying individuals at higher 
 risk40. Koshmak et al. employed supervised feature learning to estimate fall risk probabilities, underscoring the 
critical importance of feature selection in effective  assessment41. Additionally, research has highlighted the sig-
nificance of integrating gait and posture analysis for enhanced precision in predicting fall  risks42. Recent studies 
collectively emphasize the substantial potential of wearable sensors in delineating fall risk, particularly through 
examining features like entropy, complexity, multiscale entropy, and fractal  properties43–45.

This study proposes a novel approach for fall prediction using the 10-m walking test. We focus on the chal-
lenge where the fall information for the target group is unknown, while it is known for the other group. As 
they are different groups of people, their characteristic distributions (marginal and conditional) differ. Hence, 
directly using data from one group to train the classification models would not provide accurate predictions for 
the other group.

Methods
Formulation
Without loss of generality, we describe our method by taking a binary classification problem as the running 
example. The proposed formula can be directly applicable to multi-class classification problems. Assume 
source-domain training examples DS =

{−→xi
}

 , −→x ∈ R
D with labels Ls = {yi} , y ∈ {1, , . . . , L}, and target data 

DT =
{−→ui

}
,
−→u ∈ R

d . Both −→x  and −→u  are the d-dimensional feature representations φ(I) of input I.

Proposed method
We propose the Correlation Enhanced Distribution Adaptation (CEDA) model, which combines and improves 
upon the CORrelation ALignment (CORAL) and Joint Distribution Adaptation (JDA) approaches, outperform-
ing each of these methods individually. In the following section, we will provide a brief introduction to these two 
approaches: CORrelation ALignment (CORAL) and Joint Distribution Adaptation (JDA).
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(1) CORrelation ALignment (CORAL)17 transforms the source features to the target space by aligning the 
second-order statistic, the covariance. The covariances differ in the original source and target domain 
distributions. The researchers propose conducting source decorrelation to remove the feature correlation 
of the source domain and then constructing target re-correlation by adding the correlation of target fea-
tures to the source domain. After these two steps, the two distributions are well aligned, and the classifiers 
trained on the adjusted source domain work well in the target. However, this method aligns the source 
distributions as a whole to the target domain, neglecting the significance of individual samples.

(2) Joint Distribution Adaptation (JDA)19 aims to find a feature transformation that jointly minimizes the 
difference in marginal and conditional distributions between domains. Although no labeled data exists 
in the target domain, this method generates pseudo-target labels by applying a classifier ƒ trained on the 
adapted labeled source to the unlabeled target. Iterative label refinement is used to improve the classifier 
and labeling quality. However, it has limitations in generating accurate pseudo labels for the target domain."

Our proposed method begins by employing CORAL as the first step for source decorrelation, which involves 
removing the feature correlation of the source domain and adding the correlation of the target to the source 
domain. This integrated adaptation aims to roughly align the source samples to the target domain. However, due 
to the presence of distribution noise, some samples may not be correctly aligned, leading to suboptimal results. 
To ensure accurate alignment for all samples, a further meticulous adaptation is performed. In the second step 
of our proposed method, we apply Joint Distribution Adaptation (JDA) to the adjusted source samples obtained 
from the first step. JDA has a limitation of generating pseudo-target labels in the first iteration, which can result 
in an inappropriate adjustment in the conditional distribution. To overcome this challenge, we utilize CORAL 
to provide an initial adjusted source sample for JDA. The transformed target samples are then classified using a 
1-Nearest Neighbor (1NN) classifier, trained with the transformed new source samples.

Moreover, CORAL serves as a nonparametric model that does not require any parameter tuning, making 
it highly advantageous for unsupervised learning. It aligns the distribution of source and target features in an 
unsupervised manner. In our approach, CORAL transforms the source feature XS  to the target space XT by 
aligning the second-order statistic, the covariance. After obtaining new XS by multiplying the CORAL adapta-
tion matrix (A_CORAL) with XS , we train a standard classifier ƒ (nearest neighbor in our case) on the new XS 
to generate the initial pseudo-target labels ŷT for the target. Subsequently, we build an MMD (Maximum Mean 
Discrepancy) matrix M (Gretton et al., 2008):

which is adopted as the distance measurement for the objective of reducing the difference between marginal 
distributions Ps(Xs) and Pt(XT ). An MMD matrix {MC}

C
c=1 is then constructed based on class labels, used as the 

distance measurement for minimizing the difference between conditional distribution, as follows:

Next, the optimal adaptation matrix A is calculated by solving Eq. (3) for the k smallest eigenvectors, and 
Z := ATX:

A standard classifier f  is trained on (AT
SXs, yS) to generate ŷT := f (AT

TXT ) . If we use this labeling ŷT as the 
pseudo-target labels and run JDA iteratively, we can alternate improving the labeling quality until convergence. 
The model will return adaptation matrix A , embedding Z , adaptive classifier ƒ, with the input of source data XS , 
ys , target Data XT ; #subspace bases k , regularization parameter �.

The algorithm is summarized in the following pseudo-code:
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Input: Source Data S, s, Target Data T; #subspace bases , regularization parameter λ. 

Output: Adaptation matrix , embedding , adaptive classifier ƒ

begin 

= ( ) + ( ( ,2))

= ( ) + ( ( ,2))

=
―

1
2 ∗

1
2

            The new adjusted source features: Sadj = S CORAL

Train a standard classifier ƒ on ( Sadj, ) to generate initial pseudo-target labels ≔ƒ (

)

Construct MMD matrix 0 by Eq. (1) 

repeat 

Construct MMD matrix { } =1 by Equation (2). 

Solve the generalized eigen decomposition problem in Equation (3) and select the 

 smallest eigenvectors to construct the adaptation matrix , and ≔ . 

Train a standard classifier ƒ on ( T
S Sadj, ) to update pseudo-target labels ≔ƒ (

)

until Convergence 

Return an adaptive classifier ƒ trained on ( T
S Sadj, )

Algorithm.  CEDA for unsupervised DA.

Simulation study
This section uses simulation data to demonstrate the proposed method’s performance under several scenarios. 
The simulation data are generated as follows: the source and target domain data are sampled from a multi-
dimensional normal distribution with randomly selected parameter setting. We consider a binary classifica-
tion. In the source domain, the simulation data Xs ∼ N (µs ,�s) with corresponding responses Ys ∈ {0, 1} and 
Xt ∼ N (µt ,�t),Yt ∈ {0, 1} for the target domain.

Impact of sample size on model performance
In the simulation setup, while maintaining the sample mean and covariance values, change the number of sam-
ples in each class. Each dataset is constructed by randomly selecting parameter values within predefined ranges. 
Specifically, the mean vector μ is randomly drawn from a uniform distribution within the  interval2,5 for red class 
 and4,9 for blue class, across each dimension. Similarly, the covariance matrix Σ is generated by first randomly 
selecting diagonal elements from a uniform distribution within the  range1,3 for source  samples4,6, for target, 
and then applying a random orthogonal transformation to introduce off-diagonal covariance components. The 
dimension for each class is the same and is randomly selected from a uniform distribution within the  interval2,20. 
The scatter plots of the sample distributions and the classification accuracies are illustrated in Fig. 1.

Impact of overlap between classes on model performance
We test the effects of overlap between two classes on the classification accuracies of each model by changing the 
mean and covariance and maintaining the number of samples at 100. In the experiment setup for this case, we 
use the fixed set of parameters for normal distribution.

For source: µ1 =

[
2.5

7.5

]
 and �1 =

[
3 0

0 1

]
 , µ2 =

[
7

4

]
 and �2 =

[
2 0

0 1

]
,

For target:
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Figure 1.  Scatter plots of source samples (in upper plots) and target samples (in lower plots). We visualize the 
first and second dimension. Two colors (red and blue) represent two classes. (a–d) Have 50, 100, 200, and 500 
samples, respectively. (e) Denotes the classification accuracies at different sample sizes.
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(a)  µ1 =

[
3

6

]
 and �1 =

[
8 0

0 2

]
 , µ2 =

[
13

0

]
 and �2 =

[
6 0

0 1

]
,

(b) µ1 =

[
3

6

]
 and �1 =

[
8 0

0 2

]
 , µ2 =

[
8

1

]
 and �2 =

[
6 0

0 1

]
,

(c) µ1 =

[
3

6

]
 and �1 =

[
8 0

0 2

]
 , µ2 =

[
8

2

]
 and �2 =

[
6 0

0 2

]
,

(d) µ1 =

[
2.5

6

]
 and �1 =

[
8 0

0 2

]
 , µ2 =

[
7

4

]
 and �2 =

[
6 0

0 2

]
,

The scatter plots of sample distributions and the classification accuracies are illustrated in Fig. 2.

Impact of noise on model performance
In this simulation study, the effect of noise on the classification accuracy of each model is tested. The mean 
vector μ, covariance matrix Σ, and dimension n are generated as described in “Impact of sample size on model 
performance”. We generate 100 samples for each class, with noise added to each sample.

The noises ǫ are sampled from a uniform distribution, U[a,b]

(a) E ∈ [−1, 1]

(b) E ∈ [−2, 2]

(c) E ∈ [−3, 3]

(d) E ∈ [−4, 4]

The scatter plot in Fig. 3 illustrates the sample distribution, and the classification results.

Summary of three experiments
In the three experiments, we tested the robustness of our proposed model by (1) increasing the number of sam-
ples in each class, (2) increasing the level of overlap between the two classes, and (3) increasing the noise within 
each class. The results indicate that our method achieves the highest accuracies compared to JDA and CORAL 
under the majority of scenarios. The marginal or inferior performance of the proposed method in Figs. 1 and 2 is 
primarily due to the challenging nature of the datasets under certain conditions, such as significant class overlap. 
These scenarios are notoriously difficult for most DA methods, and our results reflect these inherent challenges.

Application in fall risk prediction
In this section, we demonstrate the application of the proposed model to predict fall risk using the dataset 
obtained  from46. The human subject experimental procedures followed the principles outlined in the Declara-
tion of Helsinki and gained approval from the Institutional Review Board (IRB) at Virginia Tech (VT), (with 
assigned protocol codes 11-1088 and study approval date as 10-04-2013). The research took place across four 
distinct community centers in Northern Virginia—Dale City, Woodbridge, Leesburg, and Manassas. The study 
employed consistent equipment, specifically Inertial Measurement Units (IMUs), on various days. All research 
activities were performed in accordance to VT-IRB regulations and guidelines and all participants provided 
written consent before beginning the study. Participants wear a wearable measurement device and perform a 
10-m walking test, from which we extract 50 features related to linear and nonlinear gait parameters for fall risk 
prediction in two cohorts. The first cohort comprises 171 community-dwelling older adults with known fall 
information within the last six months. The second cohort consists of 49 osteoporosis patients. All participants 
underwent the same 10-m walking test following the same guidelines. The challenge is to accurately predict the 
fall risks of each individual in one group while transferring knowledge from the other group of new patients.

Data preprocessing
The dataset comprises 50 features, including 28 linear features (e.g., average step time and walking velocity) and 
22 nonlinear features (e.g., anterior–posterior-signal root mean square and vertical-signal maximum line from 
recurrence quantification analysis). The feature correlations are identical in the two data sources. The feature 
correlation heatmap (Fig. 4) reveals several highly correlated features. To address potential issues with unstable 
predictive models and cope with small sample size problems, feature selection and dimension reduction are 
necessary before applying DA.

Feature selection dimension reduction

(1) Principal components analysis (PCA)47

  PCA is a widely used technique for dimension reduction by projecting sample points onto the first few 
principal components (PCs) to obtain lower-dimensional data while preserving as much variation as pos-
sible. In this case study, we calculate 10 PCs from the 28 linear features and 12 PCs from the 22 nonlinear 
features, and then combine them into 22 PCs. This approach helps minimize the correlation between 
features within each category of linear and nonlinear features.
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(2)  Filter features based on mutual  information48

  Mutual information measures the mutual dependence between two variables by quantifying the "amount 
of information" shared between them. It is equal to zero if and only if two random variables are independ-

Figure 2.  Scatter plots of source samples (upper plot) and target samples (lower plot). Two colors (red and blue) 
represent two classes. (a–d) Depict increasing overlap between classes. (e) Denotes classification accuracies at 
different amounts of overlap.
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ent, with higher values indicating a higher dependency. We select the top 10 features from the original set 
of 50 features based on mutual information.

Figure 3.  Scatter plots of source samples (upper plot) and target samples (lower plot). We visualize the first and 
second dimension. Two colors (red and blue) represent two classes. (a–d) Illustrate class samples with increasing 
noise. (e) Denotes classification accuracies at different amounts of overlap.
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Experiment results
The statistics of the two domains also illustrate that the two data sources have different characteristics of features, 
shown in Fig. 5. Therefore, we must adapt them for better use. Table 1 presents the classification results of directly 
applying models trained on the source domain to the target domain. We utilized seven classic classification 
models: support vector machine (SVM)2, logistic regression (LR)49, decision tree (DT)50, k-nearest neighbors 
(KNN)51, random forest (RF)52, gradient boosting machine (GBM)53 and extreme gradient boost (XGBoost)54. 
To minimize bias caused by a single method, we calculated the average of five classification accuracies.

The experiments were conducted as follows: First, we performed a stratified train and test split on the source 
samples (171 samples) in an 80%:20% proportion. To address the imbalance in the training data, we applied the 
synthetic minority over-sampling technique (SMOTE)6 and random under-sampling technique for resampling 
the training set. Next, we used cross-validation to tune the optimal parameters in the classifiers. The classification 
model with the best parameter setting was trained on the training set and used to predict the labels for both the 
training and testing sets. Subsequently, we applied the model trained on the source dataset to the target samples. 
We conducted 15 experimental trials with different train-test splits and calculated the average accuracies as the 
performance measurement. The results showed that the average testing accuracy decreased from 0.7 to 0.56, 
indicating that directly applying the trained model from the source domain does not yield satisfactory results 
for the target domain.

In accordance  with19, we utilize the 1-Nearest Neighbor Classifier (1NN) as the classifier for a fair and 
straightforward comparison between the proposed method and baseline methods. Since the labeled source 
and unlabeled target data are sampled from different distributions, tuning parameters using cross-validation 
is not feasible. Thus, we evaluate all methods by empirically searching the parameter space to find the optimal 
settings and report the average results for each method. For JDA and CEDA, we search for the number of bases 
(k) within the range [2, 3, 4, …, 10] and the regularization parameter (λ) from the set {0.01, 0.1, 1, 10, 100}. For 
GFK, the parameter dimension (d) is used in the range between 1 to half of the feature dimensions, e.g. for 10 
features case, d is  within1–5. CORAL and  EasyTL55 are parametric-free methods, therefore, no parameter tuning 

Figure 4.  Heatmap of feature correlations.
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is needed. The experiments are conducted with different data splits five times, and we report the average accuracy 
along with the standard deviation.

To ensure a fair comparison and avoid data imbalances, we carefully select samples for the dataset cases: 
dataset 1 (source dataset) to dataset 2 (target dataset) in a ratio of 34:34 to 10:10, and dataset 2 (source dataset) 
to dataset 1 (target dataset) in a ratio of 14:14 to 25:25. Due to the 1NN classifier’s inability to predict classifica-
tion probabilities, we do not use AUC (area under the curve) for performance measurement. Our approaches 
consistently outperform JDA and CORAL individually, regardless of the input features. We conduct experiments 
using five classic machine learning classifiers, applying the same sample separation. In the source dataset, we 
split the data into training and testing sets for parameter tuning, and then apply the trained model to the target 
dataset. The testing accuracy is reported along with the standard deviation in Table 2.

In the real-world case, the target labels are unknown, and therefore, the experiments presented in Table 3 were 
conducted using 20 random samples (instead of the previously mentioned 10:10 balanced approach) from the 

Figure 5.  Mean, variance, skewness, and kurtosis of 50 features in two data sources.

Table 1.  Classification accuracies based on source data and accuracies of directly applying models trained on 
source and target domains.

Classifiers

Classification 
accuracy based on 
source

Training on source 
testing on target

Train acc Test acc Train acc Test acc

SVM 0.95 0.69 0.97 0.47

LR 0.64 0.75 0.79 0.66

DT 0.93 0.69 0.91 0.57

KNN 1.00 0.65 1.00 0.67

RF 0.96 0.72 0.96 0.43

GBM 1.00 0.72 0.72 0.55

XGBoost 0.99 0.71 0.72 0.58

Average 0.92 0.70 0.87 0.56
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target samples as the testing datasets. The ratio of samples from the source dataset to the target dataset is 34:34 
to 20. Additionally, we provide the F1 score to assess whether the model overfits the majority class.

Previously, we demonstrated how we selected 10 features and the feature score of each feature using mutual 
information. The provided feature scores indicate the contribution of each feature to the DA.

Conclusion and future work
This paper introduces a novel approach called CEDA for unsupervised domain adaptation (DA). CEDA is 
designed to align two domains by creating a domain-invariant feature representation. What sets our research 
apart from existing studies is that we address the challenges of small sample size and imbalanced healthcare 
data. Our model surpasses competing methods in accurately predicting fall risks for the target domain (new 
cohort) without relying on labeled data. In our future research, we plan to explore using signals directly instead 
of extracted features and incorporate a deep learning architecture to further enhance our approach.

Data availability
The data supporting this study’s findings are available on request from Dr. Thurmon E. Lockhart, [thurmon.
lockhart@asu.edu]. The data are not publicly available since data contains information that could compromise 
the privacy of research participants.

Received: 28 July 2023; Accepted: 8 February 2024

Table 2.  Classification accuracy of two domain shifts on dataset 1 (171 samples) and dataset 2 (49 samples). 
Significant values are in bold.

Model

Dataset 1 → Dataset 2 Dataset 2 → Dataset 1

50 features 10 features 22 PCs 50 features 10 features 22 PCs

JDA 0.62 ± 0.11 0.72 ± 0.12 0.64 ± 0.06 0.57 ± 0.09 0.62 ± 0.06 0.61 ± 0.08

CORAL 0.60 ± 0.07 0.67 ± 0.06 0.61 ± 0.08 0.56 ± 0.04 0.56 ± 0.04 0.55 ± 0.06

GFK 0.55 ± 0.07 0.69 ± 0.10 0.58 ± 0.08 0.59 ± 0.04 0.61 ± 0.05 0.51 ± 0.03

EasyTL 0.66 ± 0.06 0.61 ± 0.08 0.50 ± 0.12 0.56 ± 0.09 0.56 ± 0.03 0.42 + 0.06

CEDA 0.64 ± 0.09 0.76 ± 0.07 0.69 ± 0.07 0.59 ± 0.05 0.65 ± 0.04 0.62 ± 0.09

SVM 0.49 ± 0.02 0.52 ± 0.05 0.52 ± 0.05 0.50 ± 0.01 0.55 ± 0.03 0.52 ± 0.04

LR 0.49 ± 0.06 0.56 ± 0.08 0.49 ± 0.06 0.50 ± 0.06 0.54 ± 0.02 0.50 ± 0.55

DT 0.57 ± 0.07 0.55 ± 0.05 0.50 ± 0.00 0.54 ± 0.04 0.48 ± 0.04 0.52 ± 0.02

KNN 0.48 ± 0.05 0.56 ± 0.04 0.42 ± 0.08 0.52 ± 0.03 0.58 ± 0.03 0.52 ± 0.03

RF 0.53 ± 0.04 0.55 ± 0.04 0.49 ± 0.06 0.56 ± 0.03 0.53 ± 0.02 0.52 ± 0.03

GBM 0.54 ± 0.02 0.61 ± 0.12 0.50 ± 0.05 0.50 ± 0.05 0.50 ± 0.04 0.50 ± 0.06

XGBoost 0.50 ± 0.03 0.57 ± 0.07 0.52 ± 0.05 0.49 ± 0.02 0.52 ± 0.05 0.50 ± 0.02

Table 3.  Classification accuracy and F1 score using 10 filtered features. Significant values are in bold.

Dataset 1 → Dataset 2

10 features

Accuracy F1

JDA 0.73 ± 0.07 0.62 ± 0.12

CORAL 0.67 ± 0.07 0.59 ± 0.09

GFK 0.75 ± 0.10 0.62 ± 0.08

EasyTL 0.58 ± 0.11 0.52 ± 0.13

CEDA 0.81 ± 0.07 0.67 ± 0.18

SVM 0.39 ± 0.18 0.27 ± 0.24

LR 0.47 ± 0.16 0.33 ± 0.18

DT 0.47 ± 0.20 0.39 ± 0.26

KNN 0.54 ± 0.18 0.42 ± 0.21

RF 0.43 ± 0.15 0.48 ± 0.09

GBM 0.51 ± 0.05 0.43 ± 0.06

XGBoost 0.44 ± 0.10 0.36 ± 0.12
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