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A comparative study of explainable 
ensemble learning and logistic 
regression for predicting in‑hospital 
mortality in the emergency 
department
Zahra Rahmatinejad 1, Toktam Dehghani 1,2, Benyamin Hoseini 3, Fatemeh Rahmatinejad 1, 
Aynaz Lotfata 4, Hamidreza Reihani 5* & Saeid Eslami 1,3,6*

This study addresses the challenges associated with emergency department (ED) overcrowding 
and emphasizes the need for efficient risk stratification tools to identify high-risk patients for early 
intervention. While several scoring systems, often based on logistic regression (LR) models, have been 
proposed to indicate patient illness severity, this study aims to compare the predictive performance of 
ensemble learning (EL) models with LR for in-hospital mortality in the ED. A cross-sectional single-
center study was conducted at the ED of Imam Reza Hospital in northeast Iran from March 2016 to 
March 2017. The study included adult patients with one to three levels of emergency severity index. 
EL models using Bagging, AdaBoost, random forests (RF), Stacking and extreme gradient boosting 
(XGB) algorithms, along with an LR model, were constructed. The training and validation visits from 
the ED were randomly divided into 80% and 20%, respectively. After training the proposed models 
using tenfold cross-validation, their predictive performance was evaluated. Model performance was 
compared using the Brier score (BS), The area under the receiver operating characteristics curve 
(AUROC), The area and precision–recall curve (AUCPR), Hosmer–Lemeshow (H–L) goodness-of-fit 
test, precision, sensitivity, accuracy, F1-score, and Matthews correlation coefficient (MCC). The study 
included 2025 unique patients admitted to the hospital’s ED, with a total percentage of hospital 
deaths at approximately 19%. In the training group and the validation group, 274 of 1476 (18.6%) and 
152 of 728 (20.8%) patients died during hospitalization, respectively. According to the evaluation of 
the presented framework, EL models, particularly Bagging, predicted in-hospital mortality with the 
highest AUROC (0.839, CI (0.802–0.875)) and AUCPR = 0.64 comparable in terms of discrimination 
power with LR (AUROC (0.826, CI (0.787–0.864)) and AUCPR = 0.61). XGB achieved the highest 
precision (0.83), sensitivity (0.831), accuracy (0.842), F1-score (0.833), and the highest MCC (0.48). 
Additionally, the most accurate models in the unbalanced dataset belonged to RF with the lowest 
BS (0.128). Although all studied models overestimate mortality risk and have insufficient calibration 
(P > 0.05), stacking demonstrated relatively good agreement between predicted and actual mortality. 
EL models are not superior to LR in predicting in-hospital mortality in the ED. Both EL and LR models 
can be considered as screening tools to identify patients at risk of mortality.
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Abbreviations
AI 	� Artificial intelligence
ML 	� Machine learning
LR 	� Logistic regression
Bagging 	� Bootstrap AGGregating
RF 	� Random forests
ADA	�  Adaptive boosting
XGB 	� Extreme gradient boosting
Stacking 	� Stacked generalization
F1	� F-measure
MCC	�  Matthew’s correlation coefficient
AUC-ROC 	� Area under curve of receiver operator characteristic
AUC-PRC 	� Area under curve of precision–recall
BS 	� Brier score
MSE 	� Mean squared error
RMSD 	� Root mean square deviation
R2	� Coefficient of determination
PaO2	� Partial pressure of arterial oxygen
FiO2	� Fraction of inspired oxygen
GCS 	� Glasgow coma scale
RR 	� Respiratory rate
Na 	� Sodium
BS 	� Blood sugar
PLT 	� Platelet
MAP 	� Mean arterial pressure
Temp 	� Temperature
HCO3	� Bicarbonate
PCO2	� Partial pressure of carbon dioxide
HCT 	� Hematocrit
WBC 	� White blood cell
Cr 	� Plasma creatinine concentration
K 	� Plasma potassium concentration
Alb 	� Plasma albumin concentration
Bil 	� Bilirubin
MV	� Mechanical ventilator

The escalating influx of patients into emergency departments (EDs) has given rise to a critical issue known as 
emergency overcrowding, resulting in a significant disparity between available resources and the genuine needs 
of patients1. This situation is widely reported and results in a mismatch between scarce resources and the real 
needs of patients2. Effectively addressing this intricate phenomenon necessitates strategic interventions3,4. An 
essential aspect of effective management involves the development of efficient assessment methods to gauge the 
severity of critically ill patients, predicting outcomes such as deterioration and mortality at the earliest possible 
stage5,6. Employing such risk stratification tools facilitates early detection, intervention, and intensive monitoring 
of individuals at a heightened risk of morbidity or mortality7,8.

Several studies have investigated the application of scoring systems to predict in-hospital mortality, identified 
by a discharge status of “died” or “died in a medical facility”6,9–13. Within the Iranian context, specific studies 
have utilized scoring systems for predicting in-hospital mortality in the ED, incorporating predictors such as 
demographic information, vital signs, mechanical ventilation status, oxygen saturation, abnormal electrocardi-
ography findings, and the history of underlying diseases. Notable among these systems are the Acute Physiol-
ogy and Chronic Health Evaluation (APACHE)14, Simplified Acute Physiology Score (SAPS)14, and Sequential 
Organ Failure Assessment (SOFA)15. Additionally, an Iranian study compared in-hospital mortality prediction 
between emergency residents’ judgment and prognostic models in the ED, highlighting the superior calibration 
of mortality risk prediction by SOFA16. These investigations collectively underscore the utility of scoring systems 
in assisting clinicians with timely intervention decisions, crucial for mitigating in-hospital mortality. However, 
it’s noteworthy that existing scoring systems and certain severity indices primarily rely on conventional methods 
such as logistic regression (LR)17–21. These static scores may not fully capture patient progression, necessitating 
a deeper understanding of how to tailor interventions based on individual patient conditions.

In recent years, significant progress in predictive modeling, particularly through the application of machine 
learning (ML) methodologies, has significantly enhanced forecasting capabilities across diverse scenarios22–26. 
These cutting-edge approaches have successfully illuminated high-order nonlinear interactions among vari-
ables, thereby contributing to more robust predictions27,28. Moreover, recent developments in ML models have 
yielded promising outcomes in predicting clinical scenarios, including mortality within EDs29–36. Noteworthy 
is a study that addressed ML-based early mortality prediction in the ED by quantifying the criticality of ED 
patients, emphasizing the substantial potential of ML as a clinical decision-support tool to aid physicians in their 
routine clinical practice31. Additionally, another investigation conducted a retrospective comparison between 
the Modified Early Warning Score (MEWS) and an ML approach in adult non-traumatic ED patients29. The 
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study concluded that ensemble stacking ML methods exhibit an enhanced ability to predict in-hospital mortality 
compared to MEWS, particularly in anticipating delayed mortality.

Ensemble learning (EL), an established ML technique, stands out as a robust approach by amalgamating 
predictions from multiple models to enhance overall performance and predictive accuracy37,38. In the context 
of predicting in-hospital mortality in emergency medicine, EL models may be a dependable alternative to clas-
sical LR-based scoring systems for several reasons: (1) In the domain of emergency medicine, patient outcomes 
are intricately linked to complex relationships that classical models may struggle to discern; (2) Emergency 
medicine datasets often exhibit missing information or anomalous values in patient records. Ensemble models 
exhibit robustness in providing predictions despite encountering such challenges; (3) By combining models that 
make errors on distinct subsets of the data, ensemble methods contribute to improved prediction accuracy. This 
diversity proves particularly beneficial in capturing the heterogeneity observed in emergency medicine cases; (4) 
Ensemble methods demonstrate superior generalization capabilities to new, unseen data. This attribute is crucial 
in emergency medicine, where patient populations and conditions exhibit variations, demanding a model with 
robust generalization capabilities; (5) The flexibility in hyperparameter tuning offered by ensemble methods is 
indispensable when confronted with diverse patient populations and the dynamic nature of evolving medical 
practices in emergency medicine.

Hence, the present study formulated the hypothesis that EL models might exhibit superior predictive capabili-
ties for in-hospital mortality in EDs compared to traditional LR-based models. While the potential advantages 
and capabilities of EL techniques in constructing predictive models are acknowledged, the assessment of these 
models, particularly in comparison to classical LR models, remains limited, especially within the context of Iran. 
Consequently, the primary objective of this study is to compare the predictive performance of EL models with 
LR models for in-hospital mortality in EDs within a single-center setting in Iran.

Material and methods
The current study proposed a framework for comparing the performance of LR and EL models in predicting in-
hospital mortality using similar predictors. EL methods included Bagging39, Adaboost40, Random Forests (RF)41, 
Stacking42, and Extreme Gradient Boosting (XGB)41. The key challenges associated with in-hospital mortality 
include mixed data types, a large number of features, unbalanced data, and low performance of developed models 
in some settings such as EDs, all of which encourage the use of ML models.

To address these challenges, our framework comprises three main phases: pre-processing (Descriptive analy-
sis, Data normalization, and Resampling), model development, and evaluation of the real data set. An overview 
of the proposed framework is illustrated in Fig. 1.

Study design and dataset description 
This cross-sectional study was conducted in the largest referral ED in the northeast of Iran from March 2016 
to March 2017, with over 200,000 patients visiting each year. The study followed the TRIPOD statement for 

Figure 1.   Overview of the proposed ensemble ML models for predicting in-hospital mortality in the 
emergency department (ED); For the prediction of in-hospital mortality in EDs, logistic regression and five 
ensemble models were developed and these models were trained and evaluated on the dataset consisting of 
2205 patients with 24 predictors, where the number of alive and deceased were 81% and 19%, respectively. This 
dataset was randomly partitioned into two subsets: the training set includes 67% of data (n = 1477), and the rest 
of it (n = 728) was assigned to the test set; RF, random forests; XGB, extreme gradient boosting.
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reporting prognostic models, which stands for Transparent Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis. The ethics committee of the Mashhad University of Medical Sciences approved 
the study (Number: IR.MUMS.MEDICAL.REC.1402.129), and it conformed to the Declaration of Helsinki 
principles. Informed consent was obtained from all participants or their legal guardian(s) before the study, for 
experiments involving human participants.

Inclusion and exclusion criteria
All adult patients, aged ≥ 18 years, with Emergency Severity Index (ESI) triage levels 1 to 3 who presented to the 
ED throughout the research period were included. Patients triaged directly to the particular department and the 
intensive care unit (ICU) were excluded from the study. Detailed information about the inclusion and exclusion 
criteria was presented previously in another report14.

In‑hospital mortality as the outcome variable
In this study, in-hospital mortality was defined as an encounter with a discharge status of “died” or “died in a 
medical facility.” Two classes were defined as the primary outcome: “Alive” and “Deceased,” with their outcomes 
encoded as binary target value, 0 and 1, respectively.

Covariates 
The final diagnosis was reported by universal code using the International Classification of Diseases–10th (ICD-
10) edition codes. The variables considered in this study are routinely used in traditional scoring systems such as 
the APACHE and SOFA families for predicting in-hospital mortality or morbidity, which have been previously 
validated internally in our setting14,15. These variables can be categorized into six primary domains: demographic 
data, vital signs, hematology, biochemistry, Gasometry, and clinical parameters.

The demographic data, such as age and gender, were considered. The vital signs category incorporates param-
eters such as body temperature (Temp), Mean Arterial Pressure (MAP), including Diastolic Blood Pressure and 
Systolic Blood Pressure, Respiratory Rate (RR), and the Glasgow Coma Scale (GCS) and pulse. Hematological 
indicators consist of Hematocrit (HCT), White Blood Cell (WBC) count, and platelet (PLT) count. The biochem-
istry domain encompasses plasma concentrations of Creatinine (Cr), Potassium (K), Albumin (Alb), Bilirubin 
(Bil), Sodium (Na), Blood Sugar (BS), pH, and Urea.

Gasometry parameters include Partial pressure of arterial oxygen (PaO2), Bicarbonate (HCO3), Partial pres-
sure of carbon dioxide (PCO2), and Fraction of inspired oxygen (FiO2). Lastly, clinical parameters involve the 
utilization of a Mechanical Ventilator (MV) plus ED status (triage level measured by emergency severity index 
(ESI), ED arrival method (walk-in vs. ambulance), and exploration of past medical history.

These variables were categorized and participated in model developments as follows:
Continuous predictors: Age, Pulse rate, PaO2, FiO2, GCS, Urine output, RR, Na, BS, pH, Urea, and PLT 

were considered integer values. However, this difference does not significantly impact the outcome prediction. 
Both categories receive similar preprocessing steps and thus do not substantially affect predictions. MAP, Temp, 
HCO3, PCO2, HCT, WBC, Cr, K, Alb, and Bil were used as real values.

Categorical (binary) predictors: MV and Chronic diseases.

Covariates and outcome variables preprocessing 
In the first phase, to prepare input data for model development, various preprocessing techniques were applied, 
including descriptive analysis, data normalization, and resampling. The following subsections provide details 
of these techniques.

Step 1: descriptive analyses
As the first step, a descriptive analysis was conducted for both covariates and outcomes. In this analysis, the pos-
sible correlations between covariates and outcomes, and their linear relationships, were evaluated using Spear-
man’s correlation coefficient43. Spearman Correlation is a non-parametric test that shares the same assumptions 
as the Pearson correlation but does not rely on the normality of data distribution.

The Spearman correlation was applied to the continuous covariates, and the significance of their correlations 
with outcomes was studied based on Confidence Intervals (CIs), R2, Bayes Factors (BF10), and power44. Moreo-
ver, to avoid feature redundancy, the possible pairwise correlation between predictors was examined. Categori-
cal variables were summarized as frequencies and percentages, while continuous variables were expressed as 
mean ± standard deviation (SD) in both the text and tables.

Step 2: scaling and normalization
To mitigate the impact of the varied range of continuous covariates and labels of categorical covariates, data 
scaling methods were employed. First, for continuous variables, the range of values was transformed using 
MIN–MAX scaling into the range of [0,1].

Step 3: resampling of unbalanced data
A common challenge in mortality datasets is the unbalanced class distribution, which can lead to over-fitting 
and under-performance of ML models29. In the current dataset, the majority class (alive) and the minority class 
(deceased) represented 81% and 19% of the patients, respectively. To address this issue, a combination of over-
sampling and under-sampling techniques, called SMOTETomek, was applied to the training dataset45,46. SMO-
TETomek is a hybrid method that uses under-sampling (Tomek) with an over-sampling (SMOTE) technique. 
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It applies SMOTE for data augmentation on the minority class and Tomek Links (a nearest neighbors’ method) 
for omitting some of the samples in the majority class. This method can enhance ML models’ performance by 
making less noisy or ambiguous decision boundaries.

Model development
In the second phase of our framework, the process of model development was performed, which consisted of (1) 
determining the best parameters of models using tuning techniques, (2) dividing data into the training and testing 
datasets using cross-validation, (3) selecting performance measures for the evaluation of models, and finally, (4) 
developing models and (5) determining the importance of features in the model. The five steps are detailed below.

Step 1: tuning of models’ parameters 
One of the main challenges in developing ML models was determining the best parameters. To address this 
issue, a hyper-parameter tuning technique called GridSearchCV47 was carried out. In hyper-parameter tuning, 
an exhaustive search was performed over the parameters’ space, and as a result, models were optimized based 
on the best parameters using performance metrics.

Step 2: K‑fold cross‑validation for training and testing 
For the development and evaluation of models, the dataset underwent training and testing phases. The optimal 
parameters of models were determined using K-fold cross-validation (K-fold)48 where the training dataset was 
divided into K folds, models were trained and validated, and the models with the highest average performance 
were considered as the optimal ones.

Step 3: models’ performance evaluation
To evaluate the ML models, their discrimination power was assessed using performance measures, including 
Precision, Sensitivity, Accuracy, F-measure (F1), Matthew’s Correlation Coefficient (MCC), Area Under Curve of 
Receiver Operator Characteristic (AUC-ROC), Area Under Curve of Precision–Recall (AUC-PRC), Calibration 
Plot, Brier Score (BS), Mean Squared Error (MSE), and the DeLong test49–54.

The accuracy metric checks the proportion of correctly classified samples, while F1 is the harmonic mean 
of precision and sensitivity. The calibration plot illustrates the consistency between predictions and observed 
outcomes. Comparing the calibration of all models through a scatter plot indicates the amount of agreement 
between the observed outcomes and predicted risk of mortality.

Moreover, by comparing the models’ performance and their accuracy, the Brier Score is computed, and the 
DeLong test is performed for pairwise comparison between the AUC-ROC. As Eq. (1) shows, BS is calculated as 
the mean squared difference between predicted probabilities (P) and actual outcomes (O) for binary classifica-
tion, providing a comprehensive measure of model accuracy and calibration.

Where, N is the number of observations, Pi is the predicted probability for observation i, and Oi is the actual 
outcome for observation i.

The DeLong test is based on the covariance between the models. The test statistic follows a standard normal 
distribution under the null hypothesis of no difference in AUC between the two models. The significance of the 
difference is then assessed using the standard normal distribution. Equation (2) shows how the DeLong test 
statistic is calculated.

where AUC​1 and AUC​2 are the areas under the ROC curves for models 1 and 2, Var(AUC​1)) and Var(AUC​2) are 
their respective variances, and Cov(AUC​1, AUC​2) is the covariance between the areas.

This step ensures a robust evaluation of predictive performance and identifies any significant variations. These 
assessments are vital for enhancing the transparency and reliability of our models, contributing to their validity 
in predicting in-hospital mortality.

Step 4: ML modeling
Our framework included LR55 and five ensemble ML methods. EL models are meta-models that develop models 
by exploiting multiple weak classifiers and integrating obtained results to achieve stronger classifiers or regres-
sors via voting or boosting mechanisms. In this study, EL models, Bagging56, AdaBoost57, RF58, Stacking42, and 
XGB59 were applied.

•	 The Bootstrap AGGregating (Bagging) method is demonstrated using decision tree classifiers. This approach 
employs bootstrap sampling with replacement to create subsets of the training data. These subsets are then 
used to independently build weak and homogeneous models. The weak models are trained in parallel, and a 
more accurate model is produced through the voting method, which generates multiple random subsets from 
the training dataset and utilizes them to train various Ensemble Learning (EL) models concurrently. Each 
classification model makes predictions, and their results are averaged to achieve a more robust outcome39.

(1)BS =
1

N

∑N

i=1
(Pi −Oi)

2

(2)Z =
AUC1 − AUC2√

Var(AUC1)+ Var(AUC2)− 2× Cov(AUC1, AUC2)
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•	 AdaBoost is a tree-based boosting technique that assigns lower weights to misclassified samples, and these 
weights are adjusted sequentially during the retraining process. The final classification is achieved by com-
bining all weak models, with the more accurate ones carrying more weight and exerting a greater influence 
on the final results60.

•	 RF is a robust bagging method that involves creating multiple decision tree models. It addresses two aspects 
of sampling: reducing the amount of training data and the number of variables. Multiple decision trees are 
trained on randomly selected training subsets to mitigate overfitting. The final aggregate is derived through 
a majority voting procedure on the models’ results. Consequently, there is reduced correlation between the 
models, leading to a more reliable final model61.

•	 Stacked generalization (Stacking) is an ensemble ML model typically comprising heterogeneous models. It 
generates the final prediction by combining multiple strong models and aggregating their results. In the first 
level, stacking models consist of several base models (RF, ADA, and GradientBoostingClassifier), while in 
the second level, a meta-model (LR) is created, taking into account the outputs of the base models as input42.

•	 XGB is a tree-based boosting method that utilizes random sample subsets to create new models, with each 
successive model aiming to reduce the errors of the previous ones. To mitigate overfitting and reduce time 
complexity, it employs regularization to penalize complex models, tree pruning, and parallel learning59.

More information about the setting of each model is provided in Table 1.

Step 5: feature importance 
To indicate the most important covariates in deploying ML models, feature importance was assessed. In this 
study, SHapely Additive explanations (SHAP) were used to determine the importance of features in the train-
ing dataset. This method, based on cooperative game theory, increases the transparency and interpretability of 
ML models by measuring local and global impacts of features. According to the SHAP values, the most relevant 
features for the final models were indicated62.

In this research, Python 3.9.1 (Anaconda), Scikit-learn, Pandas, and NumPy were used for the development 
and evaluation of models. Visualization of data and output results were performed using the Matplotlib library. 
In the following subsections, the developed EL models are evaluated and discussed from four aspects: statistical 
information, effects of preprocessing (resampling) on data, feature importance in modeling, and comparing 
results of the models through different viewpoints59.

Results 
Descriptive analysis results
For predicting in-hospital mortality in EDs, LR and five EL models were developed and evaluated on a dataset 
comprising 2205 patients with 24 predictors and a binary outcome. The distribution of alive and deceased patients 
was 1779 (81%) and 426 (19%), respectively. The dataset was randomly split into two subsets: the training set, 
encompassing 67% of the data (n = 1477), and the test set, with the remaining data (n = 728). In both the train-
ing and testing sets, patients were classified into “alive” and “deceased” categories. In the training set, there were 
1203 (81%) alive and 274 (19%) deceased patients, while in the testing set, there were 576 (79%) alive and 152 
(21%) deceased patients. Despite the almost equal ratio of alive and deceased patients in the initial training and 
testing sets, all sets were unbalanced in terms of the number of alive and deceased patients.

A total of 2205 patients were included, with a mean age of 61.83 ± 18.49 years, of whom 1169 (53%) were male. 
Patient ages ranged from 18 to 98 years, with survivors having an age range of 63–77 years and non-survivors in 
the range of 70–80 years (P < 0.001). Baseline characteristics of patients are summarized in Table 2. 

Additionally, the pairwise correlation coefficient between predictors was computed using Spearman Correla-
tion, illustrated in a heatmap plot (Fig. 2). In the heatmap, warm colors indicate high correlation coefficients, 
while cool ones show low correlation coefficients. This plot indicated that no very strong correlation occurred 
between continuous predictors with the defined threshold (± 0.8). However, notable correlations, such as high 
and positive correlations (HCO3, PCO2: 0.74) and (Urea, Cr: 0.77), as well as moderate and negative correlations 
(Urine output, Cr: − 0.43) and (Urine output, Urea: − 0.47), were observed.

Moreover, the correlation between covariates and outcomes was assessed, and the results are presented in 
Table 3, providing correlation coefficients (r), p-values, BF10, and statistical power. It is important to note that, 
while statistically significant correlations were observed for several predictors with the outcome, the magnitude 
of these correlations is modest. Specifically, only two correlations reached values of 0.35 and 0.22, indicating a 
generally small effect size.

Feature importance
To evaluate the importance of each predictor in deploying EL models, we considered the features mentioned in 
Section “Covariates”, whose correlation with the outcome was analyzed in Table 3. These features in the training 
dataset were ranked using SHAP63, a method widely used for interpreting complex ML models.

Figure 3 depicts the estimated SHAP values across all samples for the XGB model, demonstrating high 
performance among EL models. Features are sorted based on SHAP values, with red and blue colors indicating 
high and low impacts. Additionally, the mean SHAP value for each feature is presented, where higher values 
indicate higher importance.

According to Fig. 3, predictors such as Urine output, BS, chronic disease, Temp, and Na were considered the 
least important, while Urea and MV were identified as the most influential factors.
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Resampling effect on data
In the current dataset, the majority class (alive) represented 81% (n = 1779), while the minority class (deceased) 
was 19% (n = 426). Applying the SMOTE Tomek resampling technique led to a better-balanced training set by 
increasing the overall number of samples from 1477 to 2402. This resulted in the percentage of the deceased class 
increasing from 19% (247/1477) to 50% (1201/2402), while the percentage of the alive class reduced from 81% 
(1203/1477) to 50% (1201/2402) in the training dataset. The study tested the SMOTE Tomek sampling method 
on a basic LR model, showing improved performance in precision, sensitivity, and F1-measure for the minority 
class after resampling. Additionally, the resampling method increased the overall AUC-ROC of the LR model 
from 0.52 to 0.82. As a result, SMOTE Tomek was selected and applied to address the imbalanced data issue in 
our training data. Table 4 shows the performance comparison of ML Model (LR) before and after resampling.

Table 1.   Parameters of ensemble machine learning models for predicting in-hospital mortality in emergency 
department.

Models Parameters

Logistic Regression (LR)

The given configuration includes parameter settings for a model, such as ’C’, ’class_weight’, ’dual’, 
’fit_intercept’, ’intercept_scaling’, ’l1_ratio’, ’max_iter’, ’multi_class’, ’n_jobs’, ’penalty’, ’random_state’, 
’solver’, ’tol’, ’verbose’, and ’warm_start’ as follows:
 ’C’: 1.0, ’class_weight’: None, ’dual’: False, ’fit_intercept’: True, ’intercept_scaling’: 1, ’l1_ratio’: None, 
’max_iter’: 100, ’multi_class’: ’auto’, ’n_jobs’: None, ’penalty’: ’l2’, ’random_state’: None, ’solver’: ’lbfgs’, 
’tol’: 0.0001, ’verbose’: 0, ’warm_start’: False

Random Forest (RF)

The set of parameter configurations for a random forest model, including settings for ’bootstrap’, 
’ccp_alpha’, ’class_weight’, ’criterion’, ’max_depth’, ’max_features’, ’max_leaf_nodes’, ’max_samples’, 
’min_impurity_decrease’, ’min_samples_leaf ’, ’min_samples_split’, ’min_weight_fraction_leaf ’, ’n_esti-
mators’, ’n_jobs’, ’oob_score’, ’random_state’, ’verbose’, and ’warm_start’ as follows:
 ’bootstrap’: True, ’ccp_alpha’: 0.0, ’class_weight’: None, ’criterion’: ’entropy’, ’max_depth’: None, 
’max_features’: ’auto’, ’max_leaf_nodes’: None, ’max_samples’: None, ’min_impurity_decrease’: 0.0, 
’min_samples_leaf ’: 1, ’min_samples_split’: 2, ’min_weight_fraction_leaf ’: 0.0, ’n_estimators’: 10,000, 
’n_jobs’: -1, ’oob_score’: False, ’random_state’: 1, ’verbose’: 0, ’warm_start’: False

Bootstrap Aggregating (Bagging)

The set of parameter configurations for a bagging classifier or regressor, including settings for 
’base_estimator’, ’bootstrap’, ’bootstrap_features’, ’max_features’, ’max_samples’, ’n_estimators’, ’n_jobs’, 
’oob_score’, ’random_state’, ’verbose’, and ’warm_start’ as follows:
’base_estimator’: None, ’bootstrap’: True, ’bootstrap_features’: False, ’max_features’: 1.0, ’max_sam-
ples’: 1.0, ’n_estimators’: 10, ’n_jobs’: None, ’oob_score’: False, ’random_state’: None, ’verbose’: 0, 
’warm_start’: False

AdaBoost
The set of parameter configurations for an AdaBoost classifier, including settings for ’algorithm’, 
’base_estimator’, ’learning_rate’, ’n_estimators’, and ’random_state’ as follows:
 ’algorithm’: ’SAMME.R’, ’base_estimator’: None, ’learning_rate’: 1.0, ’n_estimators’: 1000, ’random_
state’: None

Extreme Gradient Boosting (XGB)

The set of parameter configurations for a gradient boosting classifier or regressor, including set-
tings for ’categorical_features’, ’early_stopping’, ’l2_regularization’, ’learning_rate’, ’loss’, ’max_bins’, 
’max_depth’, ’max_iter’, ’max_leaf_nodes’, ’min_samples_leaf ’, ’monotonic_cst’, ’n_iter_no_change’, 
’random_state’, ’scoring’, ’tol’, ’validation_fraction’, ’verbose’, and ’warm_start’ as follows:
 ’categorical_features’: None, ’early_stopping’: ’auto’, ’l2_regularization’: 0.0, ’learning_rate’: 0.01, ’loss’: 
’auto’, ’max_bins’: 255, ’max_depth’: None, ’max_iter’: 100, ’max_leaf_nodes’: 20, ’min_samples_leaf ’: 
20, ’monotonic_cst’: None, ’n_iter_no_change’: 10, ’random_state’: 42, ’scoring’: ’loss’, ’tol’: 1e-07, ’vali-
dation_fraction’: 0.1, ’verbose’: 0, ’warm_start’: False

Stacking

The provided information contains a comprehensive set of parameter configurations for a stacked 
ensemble model, including settings for individual estimators such as RandomForestClassifier, 
HistGradientBoostingClassifier, and AdaBoostClassifier, as well as settings for the final estimator and 
stack method
 ’cv’: None, ’estimators’: [(’rfc’, RandomForestClassifier(ccp_alpha = 0.1, criterion = ’entropy’, 
n_estimators = 10,000, n_jobs = -1, random_state = 1)), (’xgb’, HistGradientBoostingClassifier(lea
rning_rate = 0.01, random_state = 1)), (’ADA’, AdaBoostClassifier())], ’final_estimator__categori-
cal_features’: None, ’final_estimator__early_stopping’: ’auto’, ’final_estimator__l2_regularization’: 
0.0, ’final_estimator__learning_rate’: 0.01, ’final_estimator__loss’: ’auto’, ’final_estimator__max_bins’: 
255, ’final_estimator__max_depth’: None, ’final_estimator__max_iter’: 100, ’final_estimator__max_
leaf_nodes’: 31, ’final_estimator__min_samples_leaf ’: 20, ’final_estimator__monotonic_cst’: None, 
’final_estimator__n_iter_no_change’: 10, ’final_estimator__random_state’: 1, ’final_estimator__scor-
ing’: ’loss’, ’final_estimator__tol’: 1e-07, ’final_estimator__validation_fraction’: 0.1, ’final_estima-
tor__verbose’: 0, ’final_estimator__warm_start’: False, ’final_estimator’: HistGradientBoostingClassif
ier(learning_rate = 0.01, random_state = 1), ’n_jobs’: None, ’passthrough’: False, ’stack_method’: ’auto’, 
’verbose’: 0, ’rfc’: RandomForestClassifier(ccp_alpha = 0.1, criterion = ’entropy’, n_estimators = 10,000,
 n_jobs = -1, random_state = 1), ’xgb’: HistGradientBoostingClassifier(learning_rate = 0.01, 
random_state = 1), ’ADA’: AdaBoostClassifier(), ’rfc__bootstrap’: True, ’rfc__ccp_alpha’: 0.1, ’rfc__
class_weight’: None, ’rfc__criterion’: ’entropy’, ’rfc__max_depth’: None, ’rfc__max_features’: ’auto’, 
’rfc__max_leaf_nodes’: None, ’rfc__max_samples’: None, ’rfc__min_impurity_decrease’: 0.0, ’rfc__
min_samples_leaf ’: 1, ’rfc__min_samples_split’: 2, ’rfc__min_weight_fraction_leaf ’: 0.0, ’rfc__n_esti-
mators’: 10,000, ’rfc__n_jobs’: -1, ’rfc__oob_score’: False, ’rfc__random_state’: 1, ’rfc__verbose’: 0, 
’rfc__warm_start’: False,
 ’xgb__categorical_features’: None, ’xgb__early_stopping’: ’auto’, ’xgb__l2_regularization’: 0.0, 
’xgb__learning_rate’: 0.01, ’xgb__loss’: ’auto’, ’xgb__max_bins’: 255, ’xgb__max_depth’: None, ’xgb__
max_iter’: 100, ’xgb__max_leaf_nodes’: 31, ’xgb__min_samples_leaf ’: 20, ’xgb__monotonic_cst’: 
None, ’xgb__n_iter_no_change’: 10, ’xgb__random_state’: 1, ’xgb__scoring’: ’loss’, ’xgb__tol’: 1e-07, 
’xgb__validation_fraction’: 0.1, ’xgb__verbose’: 0, ’xgb__warm_start’: False, ’ADA__algorithm’: 
’SAMME.R’, ’ADA__base_estimator’: None, ’ADA__learning_rate’: 1.0, ’ADA__n_estimators’: 50, 
’ADA__random_state’: None
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Quality assessment of models
To identify high-performance models, comparisons were made between Logistic Regression (LR) and Ensemble 
Learning (EL) models (Bagging, AdaBoost, Random Forests, Stacking, and XGB). These models were devel-
oped on a training dataset, and their parameters were tuned using GridSearchCV in tenfold cross-validation. 
The following sections comprehensively evaluate the developed models from three perspectives: (1) predictive 
performance, (2) discrimination ability, and (3) goodness-of-fit.

Evaluation of the predictive performance of models
The performance of the models was analyzed based on various measurement metrics. Table 5 demonstrates that 
among the eight investigated models, ensemble models consistently exhibited the best values across all metrics. 
For instance, Bagging achieved the highest AUC-ROC (0.84) and AUC-PR (0.64) for predicting in-hospital 
mortality, while XGB demonstrated superior precision (0.83), sensitivity (0.831), accuracy (0.842), and F1 score 
(0.833). Additionally, XGB outperformed other models with the highest MCC of 0.48, indicating robust perfor-
mance in unbalanced data, and RF achieved the lowest BS of 0.128, assessing the calibration of models. Further-
more, a comparison of confusion matrices revealed that XGB, Stacking, and RF had the highest True Negatives 
(TN) in the range of [0.70, 0.73], while Bagging and LR exhibited the highest True Positives (TP) at 0.15.

Evaluation of discrimination ability of models 
The pairwise comparison of AUC-ROCs is presented in Table 6, graphically representing sensitivity on the Y-axis 
and 1-specificity on the X-axis. Additionally, the AUC-PRC is utilized to evaluate how well a model balances 
precision and recall. In ascending order, Bagging emerged as the most discriminative model with the highest 
AUROC (0.839, CI 0.802–0.875) and AUCPR = 0.64, followed by RF (0.833, CI 0.797–0.87) and AUCPR = 0.623, 
XGB (0.826, CI 0.789–0.863) and AUCPR = 0.616, AdaBoost (0.818, CI 0.78–0.857) and AUCPR = 0.61, and 
Stacking (0.817, CI 0.778–0.856). Figure 4 illustrates that EL models achieved the maximum AUC-PRC, with 
Bagging leading at 0.64, RF at 0.623, XGB at 0.62, and LR at 0.61.

Table 2.   Baseline characteristics of population’s study. MAP, mean arterial pressure; Temp, temperature; 
PaO2, partial pressure of arterial oxygen; FiO2, fraction of inspired oxygen; HCO3, bicarbonate; PCO2, partial 
pressure of carbon dioxide; GCS, Glasgow coma scale; HCT, hematocrit; WBC, white blood cell; Cr, creatinine; 
Na, sodium; UO, urine output; K, potassium; Alb, albumin; Bili, bilirubin; BS, blood sugar; PLT, platelet; MV, 
mechanical ventilation; CD, chronic disease. a Analysis by independent-samples t-test; bAnalysis by Fisher’s 
exact test.

Predictors Overall (N = 2205) Alive (N = 1779) Deceased (N = 426) Train (N = 1477) Test (N = 728) p-Value

Age 61.83 ± 18.49 60.38 ± 18.77 67.89 ± 15.88 61.81 ± 18.49 61.88 ± 18.49 < 0.001a

Pulse 94.46 ± 20.15 93.09 ± 19.53 100.18 ± 21.66 94.47 ± 19.88 94.44 ± 20.71 < 0.001a

MAP 93.9 ± 19.02 94.85 ± 18.43 89.92 ± 20.84 94.47 ± 19.09 92.72 ± 18.82 < 0.001a

Temp 37.25 ± 0.8 37.26 ± 0.8 37.22 ± 0.83 37.26 ± 0.81 37.22 ± 0.78 0.272a

RR 20.26 ± 5.75 19.82 ± 5.24 22.08 ± 7.22 20.2 ± 5.81 20.38 ± 5.62 < 0.001a

PaO2 93.28 ± 5.61 93.72 ± 5.14 91.45 ± 6.93 93.36 ± 5.37 93.14 ± 6.05 < 0.001a

FiO2 25.04 ± 10.24 23.98 ± 8.26 29.48 ± 15.29 25.03 ± 10.47 25.06 ± 9.76 < 0.001a

HCO3 22.14 ± 6.48 22.65 ± 5.94 20 ± 8.03 22.26 ± 6.37 21.89 ± 6.71 < 0.001a

PCO2 39.14 ± 13.71 39.06 ± 12.44 39.51 ± 18.1 39.22 ± 13.34 38.99 ± 14.44 0.04a

GCS 14.42 ± 1.38 14.64 ± 1 13.51 ± 2.15 14.4 ± 1.44 14.46 ± 1.24 < 0.001a

HCT 34.76 ± 8.84 34.77 ± 8.76 34.74 ± 9.17 34.67 ± 8.82 34.95 ± 8.89 0.619a

WBC 11.9 ± 13.82 11.38 ± 13.92 14.05 ± 13.18 11.83 ± 14.07 12.03 ± 13.3 < 0.001a

Cr 2.05 ± 2.38 1.94 ± 2.34 2.5 ± 2.53 2.06 ± 2.43 2.03 ± 2.29 < 0.001a

UO 1403.67 ± 308 1428.16 ± 274 1301.41 ± 404 1411.85 ± 305 1387.09 ± 313 < 0.001a

Na 136.51 ± 6.68 136.59 ± 6.3 136.15 ± 8.08 136.54 ± 6.64 136.45 ± 6.76 0.008a

K 4.34 ± 0.95 4.29 ± 0.88 4.58 ± 1.17 4.33 ± 0.94 4.37 ± 0.97 < 0.001a

Alb 3.54 ± 0.59 3.61 ± 0.55 3.27 ± 0.67 3.54 ± 0.58 3.53 ± 0.59 < 0.001a

Bili 2.14 ± 4.69 1.84 ± 3.74 3.41 ± 7.31 2.15 ± 4.79 2.12 ± 4.47 < 0.001a

BS 151.78 ± 100.85 148.85 ± 97.86 164.01 ± 111.74 150.51 ± 93.88 154.34 ± 113.69 0.014a

pH 7.36 ± 0.1 7.37 ± 0.09 7.31 ± 0.14 6.99 ± 0.09 6.99 ± 0.12 < 0.001a

Urea 75.55 ± 69.35 66.54 ± 59.68 113.18 ± 90.99 74.24 ± 67.61 78.2 ± 72.72 < 0.001a

PLT 222.97 ± 133.2 226.93 ± 130.44 206.45 ± 143.14 220.8 ± 128.73 227.38 ± 141.84 < 0.001a

MV 123 (6%) 30 (1%) 93 (4%) 87 (4%) 36 (2%) < 0.001b

CD 433 (20%) 326 (15%) 107 (5%) 286 (13%) 147 (7%) < 0.001b
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Evaluation of goodness‑of‑fitting in models
The calibration plot illustrates the consistency between predictions and observations across different percentiles 
of predicted values, and comparing the calibration of all models through a scatter plot reveals the agreement 
between predictions and observations. According to Fig. 5, Stacking and RF exhibited greater success in calibra-
tion. Moreover, the best BS, a metric comprising calibration and refinement terms, was achieved by RF with a 
BS of 0.128, followed by Stacking with the lowest BS of 0.132. Conversely, AdaBoost had the highest Brier score 
at 0.250, indicating a less favorable calibration performance.

Discussion
The utilization of advanced EL algorithms enables the evaluation of a more extensive range of clinical variables 
compared to the traditional LR approach. This approach not only allows for the exploration of clinical variables 
with predictive value but also facilitates the assessment of key features contributing to clinical deterioration. 
Additionally, EL models offer the potential for automation, eliminating the need for manual review22. In pre-
liminary studies, including ours, EL models have proven valuable for clinical decision support, particularly in 
the stratification of critically ill patients in the ED based on risk factors64. Notably, the RF model stands out by 

Figure 2.   Pairwise correlation coefficient between predictors.
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providing end-users with the capability to interpret the relative importance of predictive features, enhancing 
its clinical utility3.

Main findings
The present study applied various ML algorithms to develop models for prognosis patient outcomes based on 
collected inpatient care data. Our study reports several important findings.

First, when models were trained with both laboratory and clinical data, the highest diagnostic accuracy was 
achieved. Notably, correlations between (HCO3, PCO2: 0.74) and (Urea, Cr: 0.77) were observed, showing the 
strongest correlation, albeit falling just below the defined threshold of 0.8.

Second, utilizing a select set of variables, we found that ensemble methods demonstrated higher performance 
than classical models such as LR. The LR model’s performance remained comparable to high-ranking modern 
models like RF, Bagging, Adaboost, XGB, and Stacking in predicting in-hospital mortality among ED-admitted 
patients. No significant differences in discrimination power were observed between the LR and EL models. 
Regarding overall performance, RF ranked first due to its lowest BS value (0.128). Despite Bagging having the 
highest discriminatory power among other models, XGB excelled in various metrics, including the highest pre-
cision (83%), sensitivity (83.1%), accuracy (84.2%), F1 score (83.3%), MCC (48%), and the lowest MSE (40%).

Third, in pairwise comparisons of AUROC curves, no significant differences were found between XGB and 
either RF or Bagging, suggesting that XGB performed as well as both.

Lastly, concerning calibration, while all studied models tended to overestimate mortality risk and exhibited 
insufficient calibration, Stacking demonstrated relatively good agreement between predicted and actual mortal-
ity compared to others.

Comparison to other similar studies
The use of ML models has recently demonstrated effectiveness in predicting outcomes in EDs. For example, 
ML has been applied to triage in the ED, prediction of cardiac arrest, admission prediction, detection of sepsis 
and septic shock, identification of patients with suspected infections, and prediction of mortality for sepsis and 
suspected infections65. There is ample evidence consistently suggesting that ML approaches outperform more 

Table 3.   Correlation between covariates and outcome. *BF10, Bayes factor; r, correlation coefficients; MAP, 
mean arterial pressure; Temp, temperature; PaO2, partial pressure of arterial oxygen; FiO2, fraction of inspired 
oxygen; HCO3, bicarbonate; PCO2, partial pressure of carbon dioxide; GCS, Glasgow coma scale; HCT, 
hematocrit; WBC, white blood cell; Cr, creatinine; Na, sodium; K, potassium; Alb, albumin; Bili, bilirubin; BS, 
blood sugar; PLT, platelet; MV, mechanical ventilation.

Covariates r

95% Confidence 
intervals

p-Value BF10 PowerLower Upper

Age 0.16 0.12 0.2 < 0.001 > 100 1

pulse 0.139 0.1 0.18 < 0.001 > 100 1

MAP − 0.102 − 0.14 − 0.06 < 0.001 > 100 0.998

Temp − 0.021 − 0.06 0.02 0.324 1/100–1/30 0.167

RR 0.155 0.11 0.2 < 0.001 > 100 1

PaO2 − 0.247 − 0.29 − 0.21 < 0.001 > 100 1

FiO2 − 0.162 − 0.2 − 0.12 < 0.001 > 100 1

HCO3 0.013 − 0.03 0.05 0.539 1/100–1/30 0.094

PCO2 − 0.322 − 0.36 − 0.28 < 0.001 > 100 1

GCS − 0.001 − 0.04 0.04 0.959 1/100–1/30 0.05

HCT 0.076 0.03 0.12 < 0.001 > 100 0.948

WBC 0.093 0.05 0.13 < 0.001 > 100 0.993

Cr − 0.162 − 0.2 − 0.12 < 0.001 > 100 1

Urine Output − 0.026 − 0.07 0.02 0.222 1/100–1/30 0.231

Na 0.12 0.08 0.16 < 0.001 > 100 1

K − 0.229 − 0.27 − 0.19 < 0.001 > 100 1

Alb 0.133 0.09 0.17 < 0.001 > 100 1

Bili_T 0.059 0.02 0.1 < 0.05 1.305 0.797

BS − 0.234 − 0.27 − 0.19 < 0.001 > 100 1

pH 0.266 0.23 0.3 < 0.001 > 100 1

Urea − 0.061 − 0.1 − 0.02 < 0.05 1.555 0.814

PLT 0.347 0.31 0.38 < 0.001 > 100 1

MV 0.068 0.03 0.11 < 0.05 4.067 0.887

Chronic Disease 0.16 0.12 0.2 < 0.001 > 100 1



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3406  | https://doi.org/10.1038/s41598-024-54038-4

www.nature.com/scientificreports/

conventional statistical modeling methods in various contexts, such as ED patients with sepsis22, coronary artery 
disease66, and critically ill patients for predicting in-hospital mortality67.

In a comprehensive investigation22, an RF model was meticulously crafted utilizing an extensive dataset 
encompassing over 500 clinical variables extracted from electronic health records across four hospitals. Intrigu-
ingly, contrary to our findings, this study accentuated the superior performance of this locally derived big data-
driven ML approach when compared to both existing clinical decision rules and classical models in predicting 
in-hospital mortality among ED patients with sepsis. This divergence may be attributed to the substantial scope of 
the dataset employed. Our study, in contrast, employed 24 variables to construct the ML model. Nevertheless, it 
is noteworthy that, given the exigent nature of emergency settings with limited time for decision-making, models 
incorporating fewer predictors may demonstrate enhanced performance and practical utility.

Figure 3.   Evaluation of features’ importance by SHAP summary plot.

Table 4.   Performance comparison of ML model (LR) before and after resampling. Significant values are in 
[bold]. ML, machine learning; LR, logistic regression.

Technique Class Precision Sensitivity F1-measure

Before resampling
Minority class 0.70 0.30 0.42

Majority class 0.84 0.97 0.90

After resampling
Minority class 0.84 0.78 0.80

Majority class 0.80 0.79 0.79
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Additionally, another study29 utilized an extensive multicenter dataset to develop an EL model for predict-
ing in-hospital mortality among adult non-traumatic ED patients at distinct temporal stages—stratified into 
intervals of 6, 24, 72, and 168 h. The performance of this model was then compared with that of an LR-based 
MEWS, calculated using systolic blood pressure, pulse rate, RR, Temp, and level of consciousness. In contrast 
to our study, this research revealed that EL methods exhibited heightened predictive accuracy for in-hospital 
mortality, demonstrating notable proficiency in forecasting delayed mortality. It’s important to note that our 
study specifically focused on predicting outcomes at the time of admission, emphasizing prioritization based on 
the severity of illness. It is recognized that the accuracy of prediction models tends to improve as the temporal 
proximity to the occurrence of the desired outcome decreases.

Consistent with our investigation, Son et al.68 conducted a study in South Korea wherein they examined 21 
features spanning vital signs, hematology, Gasometry, and morbidities. Their approach involved the utilization of 
various ML algorithms and classical models to optimize ML classification models and data-synthesis algorithms 
for predicting patient mortality in the ED. Notably, their top-performing model employed the Gaussian Copula 

Table 5.   Predictive performance of models on the testing dataset. AUC-ROC, Area Under the Curve of 
Receiver Operator Characteristic; AUC-PRC, Area Under Curve of Precision–Recall; Sen, Sensitivity; ACC, 
Accuracy, F1, F-measure; MCC, Matthew’s correlation coefficient; BS, Calibration plot, Brier Score; MSE, Mean 
Squared Error; EL, Ensemble Learning; LR, Logistic Regression, RF, Random Forests; XGB, Extreme Gradient 
Boosting. *Best values in each column are bolded.

Type of Models Models AUC-ROC AUC-PR Precision Sen ACC​ F1 MCC BS MSE

Classical model LR 0.826 0.614 0.820 0.779 0.783 0.792 0.440 0.160 0.47

EL models

RF 0.833 0.623 0.817 0.819 0.821 0.819 0.454 0.128 0.42

Bagging 0.839 0.64 0.827 0.780 0.787 0.800 0.468 0.170 0.47

Adaboost 0.82 0.61 0.821 0.782 0.782 0.795 0.444 0.250 0.47

XGB 0.827 0.616 0.83 0.831 0.842 0.833 0.48 0.136 0.40

Stacking 0.817 0.59 0.812 0.828 0.828 0.813 0.415 0.132 0.41

Table 6.   Pairwise comparison of AUCs by using the DeLong method. AUC, area under the curve; ROC, 
receiver operator characteristic; LR, logistic regression; RF, random forests; XGB, extreme gradient boosting.

Delong ROC test LR RF Bagging Adaboost XGB Stacking

LR 0.5114 0.0592 0.5336 0.9849 0.5591

RF 0.6012 0.3365 0.4327 0.2932

Bagging 0.0749 0.3465 0.0859

Adaboost 0.6788 0.961

XGB 0.432

Stacking

Figure 4.   Left The receiver operating characteristic curves (AUC-ROC) graphically represent sensitivity versus 
1 specificity. Right The area under the Precision–Recall curve (AUC-PRC) represents how a model balances the 
precision and recall.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3406  | https://doi.org/10.1038/s41598-024-54038-4

www.nature.com/scientificreports/

data synthesis technique in conjunction with the CatBoost classifier, yielding an AUC of 0.9731. Additionally, 
Adaptive Synthetic Sampling (ADASYN) and SMOTE data-synthesis techniques ensembled by LR resulted in 
AUCs of 0.9622 and 0.9604, respectively, aligning with our findings. Two additional studies merit attention in 
the context of our investigation. One study, focusing on sepsis patients admitted to the ED, underscored the 
importance of variables such as Temp, gasometry, GCS, and the mode of arrival to the ED69, all of which align 
with the parameters considered in our study. The second study concentrated on statistically significant vari-
ables, including demographics, vital signs, and chronic illnesses70. These parallel investigations emphasize the 
relevance of these variables in predicting patient outcomes and fortify the comprehensive nature of our study, 
which incorporates key factors identified in similar research contexts.

Several studies have employed external validation for benchmarking ML and LR methods in various domains, 
such as the detection of prostate cancer71, identification of brain tumors72, prediction of in-hospital mortality in 
patients suffering from ischemic heart disease73, and after brain injury74. In our study, we validated the model 
only on the test dataset. Our findings align with those published recently on predicting mortality after traumatic 
brain injury75. The main reason for this concordance might be that ML methods may struggle to effectively ana-
lyze non-linear and non-additive signals37. Clinical decision-making can be strengthened through interactions 
with provider intuition, reducing over- and under-triage risks. These models can also help improve resource 
allocation and operational flow for crisis management teams.

Considering that our models were derived from data encompassing a case-mixed patient population, their 
applicability is envisaged in analogous settings without a predefined temporal constraint. Nevertheless, we pro-
pose the exploration of developing ML models tailored to specific patient groups, such as those afflicted with 
Sepsis65 and Covid-195,76,77, in future research endeavors.

Figure 5.   Comparison of models based on calibration plots. A calibration plot is a measure of goodness-of-fit 
as a graphical presentation of the actual mortality probability versus the predicted mortality probability.
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Strengths and limitations
In this study, we outline both strengths and limitations. Strengths include (i) the analysis of features contributing 
to model predictions, (ii) the prospective design of the study, which spanned over a year and included a relatively 
large number of patients, (iii) a systematic comparison of models from different aspects, such as performance, 
discrimination, and calibration, and (iv) the comparison of classic LR and novel EL approaches.

However, we are aware of several limitations. Firstly, the results stem from a cross-sectional study conducted 
in a single center. External validation in additional centers is planned for the future based on the findings of this 
single-center study. Additionally, we limited ourselves to three levels of ESI acuity, making it unclear to what 
extent these models can be generalized to a broader ED population. Increasing the predictive applicability of 
models necessitates extended follow-up. Furthermore, clinicians may be hesitant to adopt ML techniques due 
to their perceived “black box” nature.

Moreover, the features considered in our analysis, such as vital signs, demographic data, and other relevant 
parameters, primarily exhibit a cross-sectional nature. Consequently, our approach focuses on the initial meas-
urements taken at admission, forming the basis for model generation. We refrain from incorporating temporal 
features measured at multiple time points to maintain model simplicity and avoid unnecessary complexity. This 
decision to concentrate on the first measured parameters at admission is deliberate, aiming to strike a balance 
between model intricacy and practical applicability.

When employing various ML methods, a crucial point for discussion arises: how to reconcile the differences 
in the sets of features identified by each algorithm. The 24 features under consideration in our study have been 
internally validated within our setting14,15 and are widely recognized as proxies for the performance of vital 
organs. Consequently, we incorporated all 24 features into the six ML algorithms utilized in our analysis. Given 
that these features were uniformly included in the ML algorithms, we compared the models’ outputs—namely, 
the predicted probability of mortality—based on various performance metrics. These metrics indicate that the 
XGB model outperformed other models across multiple indices.

Conclusion
In the prediction of in-hospital mortality for patients admitted to the ED, LR demonstrated comparable accuracy 
to high-ranking EL models. Notably, Bagging exhibited a substantial discrimination power with an AUC-ROC 
of 0.84, while the optimal overall performance was observed with XGB (Sensitivity = 0.83, Accuracy = 0.83, F1 
Score = 0.83, and MCC = 0.48). Furthermore, when compared to LR, XGB demonstrated improvements of 5% 
in sensitivity, 4% in accuracy, 4% in F1 measures, and 5% in MCC.

The application of these models should prioritize the identification of critically ill patients, particularly in the 
dynamic and rapidly changing clinical environments of the ED and ICU. This is of utmost importance given the 
clinical instability of patients in these settings, where conditions evolve rapidly. Future studies are encouraged 
to explore the development of real-time predictive models, with the integration of these models into electronic 
health record databases facilitating ongoing evaluation of treatment outcomes. In contrast, conventional scoring 
systems often necessitate comprehensive and rigid data inputs to yield predetermined outcomes.
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