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An inflamed tumor cell 
subpopulation promotes 
chemotherapy resistance in triple 
negative breast cancer
Mauricio Jacobo Jacobo 1,4, Hayley J. Donnella 1,4, Sushil Sobti 1, Swati Kaushik 1, 
Andrei Goga 2,3 & Sourav Bandyopadhyay 1*

Individual cancers are composed of heterogeneous tumor cells with distinct phenotypes and 
genotypes, with triple negative breast cancers (TNBC) demonstrating the most heterogeneity 
among breast cancer types. Variability in transcriptional phenotypes could meaningfully limit the 
efficacy of monotherapies and fuel drug resistance, although to an unknown extent. To determine 
if transcriptional differences between tumor cells lead to differential drug responses we performed 
single cell RNA-seq on cell line and PDX models of breast cancer revealing cell subpopulations in states 
associated with resistance to standard-of-care therapies. We found that TNBC models contained 
a subpopulation in an inflamed cellular state, often also present in human breast cancer samples. 
Inflamed cells display evidence of heightened cGAS/STING signaling which we demonstrate is 
sufficient to cause tumor cell resistance to chemotherapy. Accordingly, inflamed cells were enriched 
in human tumors taken after neoadjuvant chemotherapy and associated with early recurrence, 
highlighting the potential for diverse tumor cell states to promote drug resistance.

Intratumoral heterogeneity (ITH) denotes the presence of cancer cell subpopulations that differ in their genetic, 
phenotypic or behavioral characteristics imparting the ability to overcome various selective  pressures1,2. ITH can 
occur across and within disease sites leading to spatial and longitudinal  variation3,4 which can promote various 
aspects of tumor progression and metastasis. ITH is associated with drug resistance and poor outcomes in breast 
and other  cancers5,6. As the most aggressive disease subtype accounting for 12 to 18% of all cases and associated 
with the poorest of  outcomes7,8, triple-negative breast cancers (TNBCs) display profound  ITH9. ITH could result 
in the expansion of resistant cells with genetic or non-genetic  differences3,4. While genetic differences between 
cancer cells have been shown to pre-exist10–12, much less is known about pre-existing non-genetic variability 
in cancer cells which could arise from stochastic fluctuations, variation in the tumor microenvironment and 
spatial  localization13,14. However, only certain types of non-genetic variability may be relevant to impact clinical 
outcomes such as drug resistance. Defining axes of variation in cell states and identifying those leading to altered 
drug responses and outcomes in cancer patients remains a challenge.

Drug resistance is a major concern in breast cancer complicating the treatment of both metastatic disease 
which is largely incurable and localized disease where there is a 40 to 80% risk of recurrence after neoadjuvant 
 therapy15–17. Drug resistance is a ubiquitous problem impacting responses for both chemotherapy as well as 
targeted therapies. For example, HER2 inhibitor treatment leads to a pathologic complete response in only 25 to 
30% of HER2 + breast  cancers18,19. It has been suggested that ITH is a potential significant factor impeding treat-
ment of breast  cancers20,21. Although ITH can lead to the Darwinian selection of pre-existing genetically diverse 
 subclones9,22,23, clinical evidence from breast cancers undergoing neoadjuvant therapy have indicated treatment 
often does not result in subclonal selection demonstrating that it is not necessarily genetically  encoded9,24–26. 
These data highlight the importance of understanding potential non-genetic mechanisms that contribute to drug 
resistance, which could illuminate new treatment approaches and regimes.
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We hypothesized that transcriptional heterogeneity among individual cells in a tumor sample could encode 
differences in cell states and associated drug responses. To test this hypothesis we first measured transcript levels 
in single cells from various breast cancer models, both in vitro using breast cancer cell lines and in vivo using 
patient-derived xenograft samples, and identified distinct subpopulations in each model tested. To functionalize 
these data we developed a computational approach based on statistical modeling of the differences observed 
between individual cancer cell lines with known drug responses that we then used to identify subpopulations 
with intrinsic resistance to standard-of-care therapies. In TNBC samples we identified a recurrent subpopulation 
in an inflamed cellular state defined by upregulation of classical interferon stimulated genes (ISGs) which we 
predicted and validated to be resistant to chemotherapy. Intriguingly, inflamed cells are often enriched in residual 
tumors after chemotherapy where they are more likely to recur, linking this subpopulation with a clinical need. 
Here we provide an effective new framework to systematically discover clinically relevant drug resistant cancer 
subpopulations by predicting drug responses of individual breast cancer cells.

Results
Single-cell heterogeneity is pervasive across various models of breast cancer
To determine the extent of the phenotypic differences between cancer cells in the same sample we performed 
single-cell transcript profiling on a panel of cell lines representing various subtypes of breast cancer including 
receptor positive ER + (MCF7), HER2 + (SKBR3) and TNBC (MDA-MB-231, HCC38) cell lines as well as freshly 
dissociated cells from a patient-derived xenograft (PDX) model of TNBC (HCI-002) using the 10 × Genomics 
Chromium platform (Fig. 1a). On average per cell we sequenced 23,573 reads, reflecting 6,491 unique mRNA 
molecules and 1,609 genes after quality control filters. In total after filtering we obtained expression profiles of 
54,599 single cells (between 3080 and 19,173 cells per sample) from 5 breast cancer models (Supplementary 
Datatset 1). To avoid batch effects, all samples were processed together with the exception of HCC38 cells. To 
categorize phenotypic differences we began by identifying transcriptionally distinct subpopulations present 
within each sample using a principal component analysis based on the top most significantly variable genes and 
performed K-means clustering on these components to identify the optimal number of distinct subpopulations, 
as described  previously27. This approach identified a statistically optimal partition of between 5 and 7 subpopu-
lations within each model (Fig. 1b and c; Supplementary Dataset 2). Taken together, these data uncovers the 
existence of transcriptionally distinct subpopulations within models of breast cancer thought to be generally 
homogenous.

Drug resistance pathways are variably expressed across individual tumor cell supopulations
Within established cell lines we sought to identify clinically relevant subpopulations which may have distinct 
biological and phenotypic characteristics as a proof of concept. We first performed an unbiased analysis of expres-
sion profiles of the 5 subpopulations identified in the ER + luminal MCF7 cell line (Fig. 1c). Cells contained within 
Cluster 4 made up the smallest fraction of total cells (approximately 7%) and gene set enrichment analysis (GSEA) 
of differentially expressed genes in this subpopulation showed a significant enrichment for genes upregulated in 
basal mammary epithelial  cells28 as well as a basal tumor gene module derived from analysis of variably expressed 
genes detected across distinct TCGA Breast  tumors29 (P < 0.001, Fig. 1d and e; Supplementary Datset 3). These 
results indicate the presence of a basal-like subpopulation in a luminal breast cancer cell line that could harbor 
lower estrogen dependency leading to resistance to hormone  therapy30,31. Similarly, in HER2-amplified SKBR3 
cells we identified a small group of cells (Cluster 6, 4%) that had an enrichment for genes upregulated in the 
EMT gene signature from  MSigDB32 and a significantly higher TCGA-derived epithelial-mesenchymal transi-
tion (EMT) module  score29 (P < 0.001, Fig. 1c,f,g; Supplementary Dataset 3). EMT is associated with resistance 
to multiple targeted therapies including HER2  inhibitors33,34. These data suggest that some of the variability in 
gene expression between bulk cancer samples could be due to differences in cell state composition potentially 
providing insights into the mechanism of emergence of drug resistant cells.

A subpopulation of cells in an inflamed cellular state is recurrent in TNBCs
Analysis of the gene expression profiles of cells from two TNBC cell lines (HCC38, MDA-MB-231) and a patient-
derived xenograft model of TNBC (HCI-002)35 identified a subpopulation enriched for genes involved in inter-
feron signaling present in every TNBC model tested which constitute the described inflamed cellular state 
(HCC38 Cluster 4, 4%; MDA-MB-231 Cluster 4, 2%; HCI-002 Cluster 0, 40%) (Fig. 2a). Analysis of the top 50 
differentially expressed genes from each of these subpopulations showed a significant enrichment for interferon 
signaling and response to virus, including selective enrichment for interferon responsive genes (ISG15, ISG20, 
and IFIT3) and genes involved in antigen presentation (HLA-A, HLA-B, and HLA-C) in HCC38 Cluster 4 cells 
(Fig. 2b and 2c, Supplementary Datatset 2). There was strong overlap between differentially expressed genes and 
independent gene modules based on co-expression across various breast cancer cohorts as well as independ-
ent interferon-stimulated gene (ISG)  signatures29,36,37 (Supplementary Fig. 1a,b). For example, HCC38 Cluster 
4 , MDA-MB-231 Cluster 4, and HCI-002 Cluster 0 cells were highly enriched for the tumor cell specific ISG 
gene signature derived from Liu, et al.36 (Supplementary Fig. 1c) as well as a breast cancer specific ISG module 
composed of 41 genes (Fig. 2d,e, Supplementary Fig. 1d,e, Supplementary Datatset 4). Analysis of the 41 genes 
across The Cancer Genome Atlas  dataset38 (TCGA, n = 342) showed high variability in gene expression across 
samples, which was similar to the variability observed between individual HCC38 cells (Fig. 2f,g). While the 
influence of the immune tumor microenvironment on ISG expression will still need to be established, these data 
suggest an alternative model whereby differential abundance of cells in an inflamed cellular state could addition-
ally contribute to the variability in ISG expression observed between patients.
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To determine if inflamed cells collectively form a genetically defined subclone, we inferred copy number vari-
ation (CNV) in each cell using the inferCNV algorithm which estimates CNV levels based on coordinate expres-
sion of contiguous  genes39. Hierarchical clustering identified multiple distinct genetic subclones in HCC38 and 
MDA-MB-231 cells and inflamed cells were not limited to certain subclones (Supplementary Fig. 2). Although 
this analysis underestimates the contribution of genetic heterogeneity since it only approximates copy-number 
changes, it appears that the presence of inflamed cells is not strictly related to genetic subclones.

Inflamed cells display heightened cGAS-STING pathway activation and genomic instability
We next investigated the mechanism underlying ISG expression in this inflamed subpopulation in TNBCs. Tumor 
derived ISG expression could stem from response to exogenous interferon or cytosolic nucleic acid sensing due to 
viral infection or genomic instability, the latter resulting in chronic cGAS-STING pathway  activation36,40 (Fig. 3a). 
We detected no expression of interferon genes IFNA1, IFNB1, or IFNG in our TNBC single cell RNAseq data. 
Given that TNBCs are known to have higher levels of genomic  instability11,38,41–43, we hypothesized that recur-
rent inflamed subpopulations may be a result of genomic instability-mediated STING pathway  activation44. In 
support of this model, expression of STING (TMEM173) and STING effector genes (IRF3, IFIT1, CCL5) was 

Figure 1.  Single-cell RNA-seq identified transcriptional variability in multiple models of breast cancer. (a) 
Schematic for molecular and functional characterization of single-cell RNA-seq data in various model systems. 
(b) UMAP projection of single cell RNAseq data from MDA-MB-231 and HCC38 TNBC breast cancer cell 
lines and the HCI-002 TNBC-PDX model. Clusters determined by optimized Louvain clustering. (c) UMAP 
projection of scRNA-seq data from the ER + MCF7 cell line and HER2 + SKBR3 cell line with optimized Louvain 
clustering shown. (d) Gene set enrichment analysis (GSEA) of a basal gene signature performed on transcript 
profiles from MCF7 Cluster 4 cells. NES, normalized enrichment score. (e) Relative scores for a basal module 
in MCF7 clusters. (f) Gene set enrichment analysis (GSEA) of a EMT gene signature performed on transcript 
profiles from SKBR3 Cluster 6 cells. NES, normalized enrichment score. (g) Relative scores for an EMT module 
in SKBR3 clusters. In all graphs P values are calculated using a two-sided Wilcoxon test as indicated. TNBC 
triple-negative breast cancer, PDX patient-derived xenograft.
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elevated in HCC38 Cluster 4 cells (Fig. 3b). We leveraged the fact that a core component of the inflamed program 
is upregulation of antigen presentation  machinery42, which was evident in HCC38 Cluster 4 cells (Fig. 2c), and 
used a pan-HLA (HLA-A/B/C) antibody for isolating and studying inflamed subpopulations in HCC38 and 
MDA-MB-468 (Supplementary Fig. 3a,b). We found that  HLAHI cells had an overall significant enrichment 
for ISG module genes via RNA-seq and increased abundance of total IFIT1 protein confirming heightened 
inflammatory signaling (Fig. 3c, Supplmentary Fig. 3c, Supplementary Dataset 5). We observed a significantly 
higher number of micronuclei in HCC38  HLAHI cells compared to the  HLALO fraction and these micronuclei 
stained positive for cGAS, whose binding to DNA activates STING through the generation of cyclic GMP-AMP 
(cGAMP) (Fig. 3d,e). Hence heightened genomic instability triggers cGAS-STING pathway activation leading 
to the inflamed state. Furthermore, the inflamed state  (HLAHI) was reversible and dynamically generated from 
 HLALO cells over the course of two weeks in culture further indicating that this state is not genetically encoded 
and not a result of long-term chronic pathway activation (Fig. 3f).

TNBC cells in the inflamed cellular state are chemoresistant
Given their association with genomic instability and distinctive upregulation of ISGs apart from the bulk popu-
lation, we investigated the functional consequence inflamed cells may have on therapeutic responses. We per-
formed pharmacogenomic modeling based on bulk breast cancer cell line drug sensitivities using a panel of 
84 molecularly characterized breast cancer cell  lines45 where the ISG module score was calculated from bulk 
RNA-seq data. Drug response data  (IC50) for 90 compounds measured across these cell lines was individually 
correlated with baseline ISG module score to identify compounds whose efficacy was linked with cells in an 
inflamed state (Fig. 4a). Cell lines with higher ISG module scores were significantly associated with resistance 
to the chemotherapy agent gemcitabine (r = -0.33, P = 0.026) (Fig. 4b). To test if inflamed cells were resistant to 
gemcitabine we flow sorted HCC38 and MDA-MB-468  HLAHI and  HLALO subpopulations, confirmed that they 
proliferate at approximately equal rates, and tested their response to gemcitabine in a competition assay (Sup-
plementary Fig. 4a,b). As predicted by the model, HCC38 and MDA-MB-468  HLAHI cells were more resistant 
to gemcitabine compared to  HLALO cells as evidenced by their increased proliferation and decreased apoptosis 
following a 72 h drug treatment at multiple doses (Fig. 4c-f).

Since inflamed cells displayed intrinsic chemotherapy resistance, we hypothesized that this population may 
also contribute to residual disease after high dose chemotherapy, thereby fueling acquired restance. To test 
whether pre-existing HCC38 and MDA-MB-468 inflamed cells cause long term resistance to chemotherapy 
HLA sorted cells were treated for approximately two weeks with a high dose  (IC80) of gemcitabine and final cell 
numbers compared relative to the initial cell numbers. Even in the presence of such a high dose of gemcitabine 
HCC38  HLAHI cells grew more robustly after treatment (12.3-fold more cells than initially seed) compared to 
 HLALO and bulk cells (-0.44 fold and 7.17-fold, respectively) (Fig. 4g,h). Similarly, MDA-MB-468  HLAHI cells 
produced 19.87-fold more cells than were initially seeded, whereas  HLALO and bulk cell populations retracted 
after treatment (-0.97 and -0.85 fold, respectively) (Fig. 4g,h). These data indicate that  HLAHI cells are sufficient 
to generate resistance, and in the case of one of the cell lines, they are necessary for chemotherapy resistance to 
occur. Hence, tumor cells which pre-exist in an inflammatory state may contribute to disease persistence and 
eventually cause tumor regrowth and relapse in TNBC.

To determine whether an inflammatory response resulting from cGAS-STING signaling itself was suffi-
cient to cause resistance to chemotherapy, we used a chemical mimic of the STING ligand, cyclic guanosine 
monophosphate-adenosine monophosphate (cGAMP), dimeric aminobenzimidazolec (diABZI) which functions 
as a STING  agonist46 to activate the pathway in various breast cancer cell lines. Following treatment with diABZI, 
MDA-MB-231 cells showed heightened phosphorylated TBK1, phosphorylated IRF3, and total IFIT1 protein, 
confirming robust activation of the cGAS-STING pathway leading to the presence of an inflamed cellular state 
(Fig. 5a) and consequently resistance to gemcitabine (Fig. 5b,c, Supplementary Fig. 4c). In HCC38 cells, diABZI 
did not activate signaling, which we assumed to be due to the lack of detectable STING expression in the bulk 
population (Fig. 5d). Therefore, we reconstituted the pathway by exogenous expression of STING  (HCC38STING). 
When treated with diABZI,  HCC38STING cells exhibited an increase in IFIT1 protein abundance and a decrease in 
STING protein abundance similar to that in MDA-MB-231 cells confirming establishment of the inflammatory 
state (Fig. 5d).  HCC38STING cells pretreated with diABZI were more resistant in short-term culture to gemcitabine 

Figure 2.  A subpopulation of inflamed cells is recurrent in TNBCs. (a) UMAP plots for cells from two 
TNBC cell lines (HCC38, MDA-MB-231) and a patient-derived xenograft model of TNBC (HCI-002) with 
optimized Louvain clustering shown and highlighting clusters enriched for ISG genes. Heatmaps displaying 
scaled expression patterns of top marker genes within each cluster shown to the right with high expression in 
yellow and low expression in purple. Percentage of total cells contained in each cluster is listed, and inflamed 
clusters highlighted with accompanying top differentially expressed genes. (b) Top significantly enriched gene 
sets identified from a Gene Set Enrichment Analysis (GSEA) of the 50 most differentially expressed (DE) genes 
from HCC38 Cluster 4, MDA-MB-231 Cluster 4, and HCI-002 Cluster 0 cells. (c) Expression levels of known 
interferon-stimulated genes for individual HCC38 cells in each cluster. (d,e) Relative ISG module scores for 
individual (d) HCC38 and (e) MDA-MB-231 cells in each cluster. Insert shows ISG module expression for 
individual cells mapped onto a UMAP plot. (f) Relative mRNA expression levels for ISG module genes across 
the breast cancer TCGA cohort. Samples sorted based on ISG module score. (g) Relative expression levels for 
ISG module genes across individual HCC38 cells. Cells are arranged based on cluster identity and annotated for 
ISG module score (white indicates low, and purple indicates high). In all graphs P values are calculated using a 
two-sided Wilcoxon test unless indicated otherwise. ISG interferon stimulated genes.
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compared to cells without pretreatment (Fig. 5e,f). Growth rate inhibition  analysis47,48, which normalizes drug 
sensitivity by cell division, further confirmed the increased chemoresistance exhibited by diABZI pretreated cells 
to be independent of differences in growth rates (Supplementary Fig. 4d,e). Moreover, cotreatment of diABZI 
with gemcitabine demonstrated improved longterm cell survival in both MDA-MB-231 and  HCC38STING cells 
(Fig. 5g,h). Lastly, MDA-MB-468 cells treated with diABZI also demonstrated strong cGAS-STING activation 
(Supplementary Fig. 4f) resulting an an increased resistance to gemcitabine (Supplementary Fig. 4g). Altogether, 
these results indicate that STING activation is sufficient to cause resistance to gemcitabine.

Inflamed cells are enriched in chemotherapy-induced residual disease and associated with 
poor outcome in TNBC
We next sought to clarify the role of this subpopulation on chemoresistance in human breast cancers. Our data 
indicate that inflamed cells are a rare, preexisting subpopulation in TNBC. To determine whether inflamed cells 

Figure 3.  Inflamed cells display heightened cGAS/STING-pathway activation and genomic instability. (a) 
Processes that lead to upregulation of ISG including interferon signaling (IFN), genomic instability channeled 
through cGAS/STING-pathway activity, and detection of viral RNAs. (b) Expression levels of STING and 
STING effector genes for individual HCC38 cells based on cluster identity. P values are calculated using a two-
sided Wilcoxon test. (c) Gene set enrichment analysis (GSEA) of the ISG module gene signature performed 
on transcript profiles from HCC38 (top) and MDA-MB-231 (bottom)  HLAHI sorted cells. NES, normalized 
enrichment score. Data representative of n = 2 independent experiments. (d) Percentage of cells positive for 
the presence of micronuclei in HCC38  HLAHI (top 5%) and  HLALO (bottom 10%) cells. Data is an average of 
at least five high-powered (63 ×) fields analyzed per sample (≥ 150 cells/field). Error bars are mean + s.e.m., and 
P value calculated using a two-sided t-test. (e) Representative images of HCC38  HLALO (top left) and  HLAHI 
(top right) cells with DAPI (blue) staining DNA. Arrows indicate micronuclei. Higher magnification of HCC38 
 HLAHI cells positive for micronuclei shown below with co-staining for cGAS (red). Scale bars 10 µm unless 
indicated otherwise. (f) HCC38 cells were sorted into  HLAHI (top 5%) and  HLALO (bottom 10%) populations 
and re-analyzed after 14 d of cell culture. Pie charts depict relative proportions of  HLAHI (red) and  HLALO (grey) 
subpopulations. Data representative of n = 2 independent experiments.
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Figure 4.  TNBC cells in the inflamed state are chemoresistant. (a) ISG module scores from a panel of 84 breast 
cancer cell lines were correlated with drug sensitivity values across 90 compounds. Sorted Pearson correlation 
values shown with a cutoff for significant (p = 0.05) correlations indicated by a dashed line. (b) Scatter plot 
of ISG module scores in breast cancer cell lines compared with their sensitivity (normalized –log of  IC50) 
to gemcitabine. P value based on Pearson correlation. (c) Proliferation of HCC38  HLAHI (top 5%),  HLALO 
(bottom 10%), and bulk population in response to 72 h gemcitabine treatment compared to DMSO control.  IC50 
quantification of dose–response curves shown to the right. (d) Fold change in apoptotic cells in HCC38 HLA 
subpopulations after 72 h treatment with the  IC50 dose (5 nM) of gemcitabine normalized to DMSO control. (e) 
Proliferation of MDA-MB-468  HLAHI,  HLALO and bulk populations in response to 72 h gemcitabine treatment 
compared to DMSO control.  IC50 quantification of dose–response curves shown to the right. (f) Fold change 
in apoptotic cells in MDA-MB-468 HLA subpopulations after 72 h treatment with the  IC50 dose (7.8 nM) of 
gemcitabine normalized to DMSO control. (g) Fold change in the number of cells remaining for HCC38(left) 
and MDA-MB-468 (right) samples treated for the indicated time period with 2.5 nM or 11 nM gemcitabine 
relative to day 0 calculated for n = 8 independent samples. For comparison, the mean day 0 cell count from 
n = 4 independent samples was used. (h) Representative images of colony formation assay for HCC38 (top) and 
MDA-MB-468 (top)  HLALO (left), bulk (middle), and  HLAHI (right) cells following chemotherapy treatment. 
Cells were stained with Hoechst 33,342 and fluorescent image inverted for clarity. Scale bar, 200 µm. For (c–f), 
data represents n = 4 biologically independent samples. Error bars are mean ± s.d., and P values calculated using 
a two-sided t-test except for (g) in which a two-sided t-test with Welch’s correction was used.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3694  | https://doi.org/10.1038/s41598-024-53999-w

www.nature.com/scientificreports/

are also present in treatment naïve tumors as a rare population, we analyzed single cell RNA-seq data of breast 
cancer tissue collected from twenty-nine therapy naïve patients of various breast cancer subtypes and seven nor-
mal breast tissue  samples49 (Fig. 6a). We observed lower expression of the ISG gene signature in normal breast 
tissue versus tumor samples and a cutoff that excluded normal cells was used to call individual inflamed cells 
in tumor samples (Fig. 6a). Among the different breast cancer subtypes, inflamed cells were more abundant in 
TNBC and HER2 + tumors than in ER + tumors (Fig. 6b). We identified five tumors where inflamed cells made 
up more than 1% of the total, of which two were HER2 + and three TNBC (Fig. 6a, starred). We used a UMAP 
projection to visualize transcriptional similarities between tumor cells and inflamed cells. While each tumor seg-
regated independently, inflamed cells within three of the five samples clustered together indicating that they form 
a transcriptionally distinct subpopulation (Fig. 6c). Identification of subclones using the inferCNV algorithm 
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Figure 5.  STING activity is sufficient for chemoresistance and contributes to drug tolerance and acquired 
resistance in vitro. (a) Immunoblot of lysates taken after 24 h of 5uM diABZI or DMSO treatment in 
MDA-MB-231 cells with the indicated antibodies. β-actin is shown as a loading control. Representative image 
from n = 3 independent experiments. (b) Proliferation of MDA-MB-231 cells in response to 24 h diABZI or 
DMSO pre-treatment followed by 72 h gemcitabine co-treatment. (c)  IC50 quantification of MDA-MB-231 
dose–response curve (b). (d) Immunoblot of lysates taken after 24 h of 5uM diABZI or DMSO treatment in 
HCC38 (left) and  HCC38STING overexpressing cells (right) with the indicated antibodies. β-actin is shown as 
a loading control. Representative image from n = 3 independent experiments. (e) Proliferation of  HCC38STING 
overexpressing cells in response to 24 h diABZI or DMSO pre-treatment followed by 72 h gemcitabine 
co-treatment. (f)  IC50 quantification of  HCC38STING dose–response curve (e). (g,h) Crystal violet staining of 
MDA-MB-231 (g) and  HCC38STING overexpressing cells (h) after 9 d treatment with increasing concentrations 
of gemcitabine. Images are representative of n = 3 independent experiments with similar results. For (b,c,e,f), 
data represents n = 4 biologically independent samples. Error bars are mean ± s.d., and P values calculated using 
a two-sided t-test.
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showed minimal genetic similarity among inflamed tumor cells suggesting that this non-genetic, inflamed tumor 
population is recapitulated within human breast cancers (Supplementary Fig. 5).

Our data also indicate that inflamed cells are more resistant to chemotherapy treatment (Figs. 4, 5). We rea-
soned that we could glean the most information on the relevance of this population in the setting of neoadjuvant 
chemotherapy where pre- and post-therapy tissues are collected. Initially using PDX models we analyzed residual 
disease samples in three TNBC PDX models collected approximately 20 days after a single dose of doxorubicin 
and cyclophosphamide was used to eliminate the majority of the tumor mass (clinically referred to as Adria-
mycin/Cytoxan or AC treatment)50 (Fig. 6d). Using RNA-seq data from the residual disease samples, all three 
models displayed enrichment of expression of genes in the ISG module compared to vehicle controls indicating 
an association between ISG expression and a chemotherapy resistant state (Fig. 6e).

We next evaluated if we could find supporting evidence for the selection of inflamed cells using single-cell 
RNA-seq data from patients undergoing neoadjuvant chemotherapy treatment (NACT). We processed data 
from four TNBC patients who had been treated with doxorubicin containing chemotherapy who had single-cell 
RNA-seq performed on matched tumor samples taken pre- and post-treatment at the time of  surgery9 (Fig. 6f). 
The average ISG module score per cell was significantly higher in the post-treatment samples than pre-treatment 
in 3 out of the 4 patients (P11, P12, P15) (Fig. 6g). For each gene in the ISG module we determined the fraction 
of cells within a sample which had a non-zero expression and found that there was an overall increase in the 
percentage of cells positive for any ISG post-NACT, largely driven by 3 out the 4 patients (Fig. 6h; Supplementary 
Fig. 6a,b). Hence, NACT often results in the enrichment of ISG expressing inflamed tumor cells because they 
are chemoresistant.

To determine if inflamed tumor cells are linked to eventual relapse, we examined a cohort of breast cancer 
patients undergoing NACT including doxorubicin from the I-SPY1  trial51. Analysis of microarray data from 42 
matched pre- and post-NACT breast tumor biopsies revealed that elevated ISG expression in the residual tumor 
at the time of surgical resection was significantly associated with early recurrence (P = 0.011; Fig. 6i; Supplemen-
tary Fig. 6c). Many of the individual genes in this module as well as canonical ISGs (e.g. IFIH1, OAS2, DDX58) 
were significantly elevated in residual tumors that recurred over the course of the study (Supplementary Fig. 6d). 
Together, these data indicate that chemotherapy often results in the enrichment of tumor cells in the inflamed 
state where it is associated with early recurrence and disease progression. These data illustrate the utility of this 
pharmacogenomic approach in predicting responses of single tumor cells and indicate that targeting TNBC cells 
in an inflamed state may increase the efficacy of chemotherapy regimens by eradicating a resistant subpopulation.

Discussion
Most cancers harbor high levels of intra-tumor heterogeneity evident by inference of mutant subclones from 
bulk sequencing  data6,11,12 as well as single-cell  analysis52–54. Such clinical observations highlight the importance 
of understanding functional differences between cells, how such differences arise, and its role on drug resist-
ance with the goal of ultimately designing new therapeutic interventions. To identify if there were differences 
in tumor cell states in experimentally tractable models, we performed single-cell RNA-seq on breast cancer 
cell lines and PDX models revealing significant heterogeneity reflected in pathway-specific differences between 
subpopulations. Although the reconstruction of CNV profiles can only give an approximation of subclonal 
diversity, our data suggest that transcriptionally distinct subpopulations are usually not also genetically distinct. 
These data are consistent with previous reports indicating that some but not all variability between cancer cells 
can be attributed to  subclonality9,55. Of note, most functionally distinct subpopulations of cells in this study are 
relatively rare (approximately 5%) and their identification was only possible because we sequenced over 3,000 
cells per sample. Lower cell numbers may be a limitation of other single-cell RNA-seq data in breast  cancer9,55,56. 
Our data uncover unexpected heterogeneity in cell lines often presumed to be homogenous and suggest that 
non-genetic factors underlie the majority of differences in cancer cell states.

We identified a rare but recurrent subpopulation of cells in an inflammatory state that was specific to TNBC 
in vitro and displayed heightened cGAS/STING-pathway activation associated with genomic instability. We 
identified a similarly distinct tumor subpopulation in at least three TNBC and HER2 + breast cancer samples, 
raising the possibility that this population is prevalent in human cancers, which will require further exploration.

Through pharmacogenomic modeling and experimental validation, we determined that these inflamed cells 
are resistant to standard-of-care chemotherapies, in line with previous studies linking ISG activation and resist-
ance to DNA damaging  agents50,57–59. We found that increasing inflammatory signaling by triggering cGAS-
STING activation is sufficient to cause resistance to gemcitabine suggesting the further importance of the cGAS-
STING pathway in drug resistance. We present data supporting that this population causes eventual acquired 
resitance in vitro and chemoresistance in the clinical setting since we observed an increase in the proportion of 
inflamed cells in patient residual disease samples after chemotherapy and this enrichment is strongly associated 
with early recurrence. More single cell data from patients will be required to fully characterize the significance 
of inflammatory subpopulations on patient time to relapse. Mechanisms for the maintenance of inflammatory 
cells will need to be elucidated. For example, the cause of genomic instability causing STING activation remains 
unknown. In patients, tumor cell inflammatory signaling should be immunogenic due to increased antigen 
presentation, and therefore inflamed cells may only exist in a cold immune tumor micro-environment where 
they are resistant to immunotherapies. However, the identified association between high ISG expression and 
resistance to  immunotherapy60 further suggests the inflammatory cellular state may also express and secrete 
immunosuppressive factors which promote immune evasion in different cancer settings. Beyond their signifi-
cance in drug resistance, inflammatory cells may also be prone to metastasis, which has been reported to be 
dependent on  STING61. Future work could also identify selective vulnerabilities in the inflamed state that could 
be used to reverse or selectively eliminate this population. This may potentially be accomplished through loss 
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of ISG negative regulators causing aberrant dsRNA accumulation and activation of the double-stranded RNA 
sensor, protein kinase R (PKR), leading to cell  lethality36. This study highlights the importance of tumor single 
cell analysis to define key axes of transcriptional variability that can lead to distinct treatment outcomes and 
ultimately new treatment strategies tailored by a finer dissection of tumor cell composition.

Methods
Breast cancer cell lines and reagents
HCC38, MCF7, and MDA-MB-231 cells were obtained from the American Type Culture Collection (ATCC). 
SKBR3 and MDA-MB-468 cells were purchased from the UCSF Cell Culture Facility. Cell lines were grown 
according to published  guidelines62 except for SKBR3 cells which were cultured using RPMI media supplemented 
with 10% fetal bovine serum (FBS) and 1% pen/strep. All cell lines tested negative for mycoplasma contamination. 
All drugs used in this study were purchased from Selleck Chemicals (Gemcitabine and diABZI). To exogenously 
overexpress TMEM173 or STING1, a STING1 ORF was cloned into the lentiviral pLX304-Blast-V5 vector as part 
of the CCSB-Broad Lentiviral Expression  Library63. The vector was transduced using a lentiviral system and cells 
were selected using 7.5 ug  mL-1 blasticidin to establish stable HCC38 STING overexpressing cells.

Tissue dissociation
All protocols described in this section regarding mouse studies wre approved by the UCSF Institutional Animal 
Care and Use Committee, and all relevant ethical regulations were followed. HCI-002 patient-dervied xeno-
graft (PDX) tumor tissue grown as previously described was a gift from A.  Goga35,64. HCI-002 PDX tissue was 
harvested and processed into single-cell suspensions following established  protocols65. Briefly, PDX tissue was 
mechanically chopped with scalpels and placed in culture medium DMEM/F12 with 5% FBS, 5 µg  ml−1 insu-
lin (UCSF Cell Culture Facility), 50 ng  ml−1 gentamycin (UCSF Cell Culture Facility) and supplemented with 
2 mg  ml−1 collagenase-1 (Sigma). Sample was then digested for 45 min at 37 °C. The resulting suspensions were 
resuspended in 2 U µl−1 DNase (D4263-5VL, Sigma Aldrich) for 3 min at room temperature, washed and dis-
sociated with 2 ml of 0.05% trypsin/EDTA (25–052-CI, Corning) for 10 min at 37 °C. Cell suspensions were 
then filtered through a 70 µm filter, and frozen in DMEM/F12 with 50% serum, 10% DMSO, and stored in liquid 
nitrogen prior to study.

Single-cell and bulk RNA-seq sample preparation and sequencing
Breast cancer cell lines were thawed and carried according to published culture methods as described. Viably 
frozen PDX cell suspensions were thawed, washed and stained for fluorescence-activated cell sorting (FACS) 
using fluorescently labeled antibodies for human antigen CD298 (PE; 341704, BioLegend) and mouse antigens 
CD45 (APC; 559864, BD Pharmingen), CD31 (APC; 551262, BD Pharmingen) and Ter119 (APC; 557909, BD 
Pharmingen). Flow sorting was done using a BD FACSAria II cell sorter (Becton Dickinson) where contami-
nating hematopoietic and endothelial cells were excluded by gating out  Lin+ (CD45, Ter119, CD31) cells. Dead 
populations from both PDX samples and cell lines were eliminated by excluding Sytox positive (SYTOX Blue 
Dead Cell Stain, S34857, Life Technologies) cells with cells showing at least 80% viability proceeded with for 
single-cell sequencing. Sorted cells were washed in PBS with 0.04% BSA and resuspended at a concentration 
of ~ 1000 cells/µl. Single-cell RNA sequencing was performed at the IHG Genomics Core (UCSF) using the 
Chromium Single Cell 3ʹ Reagents Kit (CG00026 Rev B., 10 × Genomics), and libraries were prepared following 
the manufacturer’s protocol. Libraries were then sequenced using the Illumina HiSeq2500 platform to achieve an 
average depth of 50,000 reads per cell. Single-cell data for the HCC38 cell line was provided by 10 × Genomics.

For bulk RNA seq total RNA was isolated from FACS sorted cells using the RNAeasy Mini kit (Qiagen). 
RNA was quantified using a Qubit RNA BR (Broad-Range) Assay kit while RNA integrity was determined 
by the Agilent 2100 Bioanalyzer system. A complementary DNA library was prepared and Illumina RNAseq 

Figure 6.  Inflamed cells are enriched in chemotherapy-induced residual disease and associated with poor 
outcome in TNBC. (a) Relative ISG module scores in treatment naïve patient tumors and normal breast tissue 
 samples49. Cutoff for cells exhibiting heightened inflammatory signaling is indicated by a dashed line. Number 
of tumor samples with > 1% inflamed cells is shown per subtype. (b) Percentage of inflamed cells in each tumor 
sample grouped by subtype. Box plots show median, upper/lower quartiles and range from 25–75 percentiles. 
(c) UMAP plot of samples with abundant inflammatory cells colored according to patient identify (left) and 
ISG cell classification (right). Normal* indicates three normal samples (N MH0023, N N1105, N MH275). (d) 
TNBC PDX models from 3 primary breast tumors were treated with vehicle or a single dose of AC treatment 
(doxorubicin/cyclophosphamide) and harvested approximately 20 days later for RNA-seq. (e) Scatter plot 
showing relative expression levels for each of the 41 ISG genes in the indicated vehicle and residual tumors 
following AC treatment. (f) Single-cell transcriptome profiles were derived from matched pre- and post-NACT 
(neoadjuvant chemotherapy containing doxorubicin and docetaxel) samples from 4 TNBC  patients9. (g) Violin 
plot of relative ISG module scores for pre- and post-NACT cells from each patient shown with number of cells 
analyzed in each sample indicated. (h) Fraction of cells expressing each individual ISG module gene where each 
point represents a single ISG averaged over 4 matched pre- or post-NACT biopsies. (i)The top third of patients 
whose tumor ISG score was the most elevated in the surgical post-chemotherapy sample compared to pre-
treatment were classified as ISG high and the remaining two-thirds as ISG low in the ISPY  cohort51. Probability 
of recurrence-free survival (%) is shown and the number of patients in each group indicated. P values calculated 
using a two-sided t-test except for (b) in which a two-sided Wilcoxon test was used.
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performed by Novogene (https:// www. novog ene. com/ us- en/). All gene expression analyses were performed 
using the DESeq2Rpackage version 1.20.0.

Single-cell RNA-seq data processing and analysis
The Cell Ranger Single-Cell Software Suite version 1.1.0 was used to perform sample demultiplexing, barcode 
processing and single-cell 3′ gene counting. Clusters were identified in each independent scRNA-seq dataset fol-
lowing the Seurat version 4.3.0 (http:// satij alab. org/ seurat/)  pipeline66–68. Initial quality control filtering trimmed 
the datasets to where each gene was expressed in at least three cells and each cell had at least 200 expressed genes. 
Cells with greater than 2,500 genes (8,000 genes in the case of HCC38) were further excluded to omit outliers. 
The percentage of UMIs mapped to mitochondria was set to less than 5%. We identified the top 2,000 variable 
features using the “vst” method for each sample independently. Cell cycle differences and the number of UMIs in 
cells were regressed out using the ScaleData function. Principal component analysis (PCA) was then performed 
using the highly variable genes to reduce dimensionality for each sample individually. Significant principal 
components were then determined by Jackstraw method and used to perform density clustering to identify the 
optimal number of clusters in the data, which were then visualized using uniform manifold approximation and 
projection (UMAP) dimensionality reduction. Differentially expressed genes for each respective cluster were 
identified using the FindAllMarkers (or FindMarkers) function which ran Wilcoxon rank sum tests.

Molecular programs describing breast cancer biology and representing breast cancer patient variability were 
previously defined using  MAGNETIC29. To compare a module across subpopulations, gene module scores were 
calculated for each individual cell by summing up all genes in a module. This sum was compared to a control 
gene-set as a normalization factor as described  previously54. Gene set enrichment analysis (GSEA) of hallmark 
cancer gene signatures in the Molecular Signatures Database version 2023.1.Hs and MAGNETIC modules was 
performed using GSEA version 4.3.2  software28. Cells belonging to subpopulations identified in the single-cell 
RNA sequencing dataset were averaged to serve as a representation of each subgroup. Differential expression 
analysis performed between inflamed and noninflamed cells was used to generate a list of ranked genes based 
on a score calculated as -log10 of P value multiplied by sign of the log2 fold-change value. The minimum and 
maximum criteria for selection of gene sets from the collection were 15 and 500 genes, respectively. Similarly, 
pathway over-representation analysis was performed by “clusterProfiler”69. Gene sets were considered signifi-
cantly enriched following a nominal P < 0.05 and FDR < 0.25 cutoff.

CNV estimation based on single-cell RNA-seq data
Large-scale copy number variations (CNVs) were inferred from single-cell expression data using inferCNV 
version 1.11.239. Initial CNVs were estimated by sorting the analyzed genes by their chromosomal location and 
applying a moving average to the relative expression values, with a sliding window of 100 genes within each 
chromosome, as previously  described70. Hierarchical clustering of CNV profiles was performed and profiles were 
visualized via heatmap using the InferCNV package’s defaults parameters.

Fluorescence-activated cell sorting (FACS)
Cancer cells were flow sorted on a Sony SH800S Cell Sorter (Sony) using anti-human HLA-A/B/C conjugated to 
Alexa Fluor 488 (560169, BD Pharmingen) at the manufacturer’s recommended concentration. Gating of positive 
and negative cells was defined by the unstained control, and cells were sorted into representative high and low 
expressing populations as indicated. All sorting was performed to separate a high and low fraction constituting 
the top 5% and bottom 10% of cells. For subpopulation kinetic experiments, HLA subpopulations were sorted 
and reanalyzed by FACS immediately post-sorting and at 14 d afterwards. FACS data were analyzed using FlowJo 
Software version 10.6.1 (Tree Star).

Immunofluorescence and micronuclei quantification
Cells were seeded on glass coverslips and fixed with 4% paraformaldehyde (PFA) in PBS for 10 min at room 
temperature. Cells were then permeabilized in 1X PBS/0.3% Triton X-100 for 10 min at room temperature before 
blocking for 40 min with 3% BSA in PBS. Coverslips were then incubated with primary antibody overnight at 
4 °C, followed by incubation with a secondary antibody for 1 h at room temperature. Both primary and secondary 
antibodies were diluted in blocking buffer given the following dilutions: cGAS (D1D3G) (15102, Cell Signaling) 
at 1:1,000, anti-rabbit-Alexa 647 (A212245) (Thermo Fisher) at 1:1,000. Coverslips were then mounted using 
Vectashield Antifade Mounting Medium with DAPI (Vector Laboratories) and imaged using a Zeiss LSM 780 
confocal microscope equipped with 25 × and 63 × water immersion objectives and a CCD camera. The images 
were further processed in  ImageJ71 and scoring was performed under blinded conditions. Micronuclei positive 
fractions were calculated as a percentage of total cells per field. For quantification, multiple (3–5) random fields 
were captured and 700–1000 cells were counted in each independent experiment. Micronuclei were defined as 
discrete DNA aggregates separate from the primary nucleus in cells where interphase primary nuclear mor-
phology was normal. Cells displaying mitotic morphology and/or with an apoptotic appearance were excluded.

Drug sensitivity studies
HLA-sorted or bulk cells were seeded in 384-well assay microplates at a density of 1,000 cells/well and allowed to 
adhere overnight. Following a 72 h drug exposure, proliferation and cell death were measured by staining with 
Hoechst 33,342 (Thermo Fisher Scientific) nuclear dye and YO-PRO1 (Thermo Fisher Scientific) early apoptosis 
dye, respectively. Cells in stained plates were analyzed and nuclei counted using a CellInsight High Content 
microscope (Thermo Fisher Scientific). If necessary, drugs were repleneshid every 4 days. For colony outgrowth 
assays, cells were seeded in 12-well microplates at a density of 500–3000 cells/well, allowed to adhere overnight, 

https://www.novogene.com/us-en/
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treated with diABZI STING agonist or DMSO vehicle for 24 h, and then exposed to drug or DMSO vehicle for 
9 d with medium change and drug refresh every 4 d. Cells were fixed with 100% methanol, stained with 0.5% 
crystal violet, and imaged using an EPSON Perfection V600 scanner prior to quantification.

Immunoblotting
Uncropped blots are provided (Supplementary Fig. 7). Cells for immunoblots were collected and lysed using 
RIPA buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 1 mM 
EGTA, 1% NP-40) supplemented with protease and phosphatase inhibitor cocktails (Sigma-Aldrich) for 15 min 
on ice. Cell lysates were cleared by centrifugation at 14,000 r.p.m. for 10 min at 4 °C. Supernatant was collected 
and protein quantified by BCA. Equal amounts of protein samples were resolved using 4–12% SDS-PAGE gels 
(Life Technologies) and transferred to polyvinylidene difluoride membranes (Millipore). Membranes were probed 
overnight on a 4 °C shaker with primary antibodies (1:1,000 dilution unless indicated) recognizing the follow-
ing proteins: p-TBK1 (Ser172) (5483, Cell Signaling), TBK1 (3504, Cell Signaling), p-IRF3 (Ser386) (37829, 
Cell Signaling), IRF3 (11904, Cell Signaling), STING (13647, Cell signaling), IFIT1 (14769, Cell Signaling), and 
β-actin (3700, Cell Signaling, 1:10,000). Membranes were then incubated with horseradish peroxidase-conjugated 
secondary antibodies (1: 5,000 dilution) for 1 h at room temperature and developed using an enhanced chemi-
luminescence solution.

Analysis of public datasets
We used patient Agilent G4502A_07_3 array gene expression data from the TCGA breast cancer study (BRCA)38. 
Breast cancer cell line drug sensitivities were obtained from Daemen et al.45 in which we filtered cell lines not 
included in drug analysis and missing sensitivity data for more than half of the drugs analyzed. Corresponding 
Affymetrix GeneChip Human Gene 1.0 ST exon array gene expression data was downloaded from Synapse 
(https:// www. synap se. org/—!Synapse:syn2346643). Treatment naïve breast tumor and normal tissue single cell 
RNA-seq data previously analyzed and published by Pal et al.49 was downloaded from the Gene Expression 
Omnibus (GEO): GSE161529 and filtered for tumor cells as described in the original  publication49. AC treated 
PDX RNA-seq data was obtained from Echeverria, et al50. Single cell RNA-seq data from patients undergoing 
neoadjuvant chemotherapy was in the form of transcripts per million reads (TPM) for each gene per cell and 
provided by Nicholas  Navin9. A gene was determined to be expressed in a cell if its TPM > 0. Array-based gene 
expression data from patients on the I-SPY1 clinical  trial51 was downloaded from the Gene Expression Omnibus: 
GSE32603.

Statistical analysis
Data are expressed as means ± s.d., unless otherwise indicated. Statistical analyses were performed using Graph-
Pad Prism 10 version 10.0.2 and R version 4.1.3. Two-tailed Student t-tests were used in all comparisons unless 
otherwise noted with P < 0.05 considered statistically significant throughout the study.

Data availability
All data generated or analyzed during this study are included in this published articles and its supplementary 
information files. Single cell and bulk RNA-seq data is deposited in the NCBI GEO database under GSE250158. 
Cell lines generated in this study are available upon reasonable request from the authors.
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