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Improving image classification 
of gastrointestinal endoscopy using 
curriculum self‑supervised learning
Han Guo , Sai Ashish Somayajula , Ramtin Hosseini  & Pengtao Xie *

Endoscopy, a widely used medical procedure for examining the gastrointestinal (GI) tract to detect 
potential disorders, poses challenges in manual diagnosis due to non‑specific symptoms and 
difficulties in accessing affected areas. While supervised machine learning models have proven 
effective in assisting clinical diagnosis of GI disorders, the scarcity of image‑label pairs created by 
medical experts limits their availability. To address these limitations, we propose a curriculum self‑
supervised learning framework inspired by human curriculum learning. Our approach leverages the 
HyperKvasir dataset, which comprises 100k unlabeled GI images for pre‑training and 10k labeled GI 
images for fine‑tuning. By adopting our proposed method, we achieved an impressive top‑1 accuracy 
of 88.92% and an F1 score of 73.39%. This represents a 2.1% increase over vanilla SimSiam for the 
top‑1 accuracy and a 1.9% increase for the F1 score. The combination of self‑supervised learning and 
a curriculum‑based approach demonstrates the efficacy of our framework in advancing the diagnosis 
of GI disorders. Our study highlights the potential of curriculum self‑supervised learning in utilizing 
unlabeled GI tract images to improve the diagnosis of GI disorders, paving the way for more accurate 
and efficient diagnosis in GI endoscopy.

The gastrointestinal (GI) tract is susceptible to a wide range of disorders and conditions. These conditions can 
cause a variety of symptoms, including abdominal pain, bloating, changes in bowel habits, difficulty swallowing, 
and gastrointestinal  bleeding1–3. For instance, according to the National Institute of Diabetes and Digestive and 
Kidney Disease (NIDDK), more than 60 million people are affected by medical conditions related to GI tract. 
Diseases associated with the GI tract were responsible for a crude rate of 37.2 deaths per 100,000 population in 
the region of Americas in  20194.

Currently, endoscopy is the standard procedure for examining the GI tract. Endoscopic examinations allow 
for direct visualization of internal organs, tissues, and cavities, facilitating the accurate detection of abnormalities 
such as tumors, ulcers, inflammation, and other  pathologies5. This aids in early detection and timely interven-
tion, leading to more effective treatment strategies and improved patient prognosis. Moreover, endoscopy allows 
for ongoing monitoring and surveillance of chronic conditions, such as inflammatory bowel disease, Barrett’s 
esophagus, and chronic stomach  disease6. Repeated endoscopic examinations enable physicians to assess treat-
ment efficacy, disease progression, and response to therapy, guiding subsequent treatment decisions. Endoscopy 
is commonly used in gastroenterology, pulmonology, gynecology, urology, and other medical  specialties7–11. It 
offers numerous advantages over traditional surgical methods, including shorter recovery times, reduced risks 
of complications, and minimal  scarring1,12.

However, diagnosing GI diseases using endoscopy is challenging due to limited view and overlapping condi-
tions that humans are prone to  overlook13. On the other hand, the advancement of deep learning has proven 
successful in multiple computer vision (CV) tasks, including image classification and semantic segmentation, 
with accuracy comparable or even superior to human  experts14. Given its empirical success in CV tasks, deep 
learning has been adopted in the healthcare domain to assist physicians in both research and clinical diagnosis. 
Neural network (NN) based models have already been widely utilized in numerous medical imaging problems, 
including brain tumor  classification15, lung  segmentation16, and endoscopic anomaly  detection17. In particular, 
machine learning models can be trained to analyze images or videos taken from an endoscopy and identify 
subtle abnormalities or patterns that may be difficult for human observers to detect. Traditionally, this is done in 
a supervised setting where NN models are trained on endoscopic datasets with image-text pairs. However, this 
approach presents challenges due to the extensive human effort required by experienced physicians to label the 
pathological conditions and anatomical landmarks observed during endoscopy. In contrast, there is an abundance 
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of unlabeled endoscopic data available. For example, HyperKvasir dataset contains 10 times more unlabeled GI 
endoscopy images than labeled  ones18. Therefore, harnessing both labeled and unlabeled data becomes a more 
preferable strategy compared to training solely on the labeled data. By incorporating unlabeled data into the 
training process, we can potentially enhance the generalization and robustness of the models, leading to improved 
diagnostic capabilities in endoscopy.

Alternatively, self-supervised methods leverage unlabeled data to learn useful representations without explicit 
human annotations. To accomplish this, pretext tasks are used in self-supervised learning as surrogate tasks that 
indirectly capture meaningful patterns in the  data19. By solving these pretext tasks, models can learn to extract 
informative features and  structures20,21. Data augmentation plays a critical role in this process because it increases 
the diversity and variability of the training data, enabling the model to learn robust representations that generalize 
well to unseen  examples22. It achieves this by introducing various transformations to the input data, providing 
different perspectives and helping the model learn invariant  representations23,24. Insufficient augmentation may 
hinder model convergence, while overly strong augmentation can introduce unwanted noise during  training22. 
To fully leverage the potential of self-supervised learning on endoscopic datasets, we propose Curriculum Mixup 
(C-Mixup), a framework that incorporates curriculum learning and Mixup as data augmentation methods using 
contrastive learning. C-Mixup modifies the data augmentation pipeline with a curriculum scheduler and image 
mixture process, mitigating the negative impact of additive noise from strong augmentations. Our models are 
trained on a modified  HyperKvasir18 dataset, comprising 99,148 unlabeled GI endoscopy images and 10,490 
labeled images categorized into 16 classes based on anatomical landmarks, pathological findings, and normal 
findings. The empirical results demonstrate the effectiveness of our method by achieving 88.92% top-1 accuracy 
in the endoscopic image classification task, a 2.1% increase from the vanilla SimSiam baseline. The contribution 
of our works are the following

• We evaluate SOTA self-supervised learning methods on endoscopic dataset, and show that vanilla self-
supervised methods do not yield desirable performance.

• Our work explores the theoretical and empirical setup that jointly represents C-Mixup using one of the SOTA 
self-supervised method, SimSiam.

• To the best of our knowledge, our work is the first to propose using curriculum learning and Mixup as the 
data augmentation method to further boost the performance in the self-supervised learning paradigm on 
endoscopic dataset.

Related work
Endoscopic image classification
Over the past few years, the landscape of endoscopic image classification has been transformed through the 
emergence of larger, more refined datasets and deep learning models. Initially, the endoscopic image classification 
was conducted using pre-defined rules. For example, Wang et al.25 proposed a software system that detects polyps 
via edge-cross-section visual features and a rule-based classifier that enables the tracking of the same polyp edge 
in a sequence of images. The evolution from rule-based systems to more complex deep learning models marked 
a pivotal shift in the field. Gamage et al.26 implemented an ensemble of DenseNet-201 with an artificial neural 
network to classify various digestive tract diseases, achieving a significant accuracy boost. Similarly, Takiyama 
et al.27 utilized a GoogLeNet-based approach to automatically classify anatomical structures in thousands of 
esophagogastroduodenoscopy images, demonstrating high accuracy in identifying key gastrointestinal regions. 
The development continued with Shichijo et al.28 and Byrne et al.29, who each trained Convolutional Neural 
Network (CNN) models for specific diagnostic purposes, with the latter focusing on real-time assessment of 
colorectal polyps using narrow-band imaging video frames. Zhang et al.30 introduced an innovative approach by 
employing transfer learning with a CNN trained on non-medical images to facilitate knowledge transfer from 
non-medical domains to endoscopy, significantly reducing the dependency on extensive labeled medical data. 
Their method allows for efficient knowledge transfer from non-medical domains to the medical field, reduc-
ing the need for huge sizes of labeled medical data. More recent advancements have focused on refining these 
deep-learning models to address specific challenges within the field. Song et al.31 developed a computer-aided 
diagnostic system with a 50-layer convolutional neural network that performs comparably to human experts 
in colorectal polyp histology prediction. Yue et al.32 introduced novel loss formulation strategies to tackle class 
imbalance and hard sampling problems. To avoid paying excessive attention to the junction of the digestive 
tract, Wang et al.33 combined CNN with a capsule network, incorporating lesion-aware feature extraction to 
improve focus on relevant areas. Furthering the innovation, Mohapatra et al.34 proposed using empirical wavelet 
transform to extract frequency components from endoscopic data before applying a CNN model for training and 
testing. Luo et al.35 proposed UC-DenseNet, which combines CNN and RNN along with an improved attention 
mechanism to emphasize feature information through cross-channel communication. All these works require 
image-label pairs and do not leverage the large unlabeled endoscopic dataset that is available. We propose to 
incorporate the self-supervised learning strategy to tackle the endoscopic image classification task.

Self‑supervised learning and its application on gastrointestinal endoscopy
Self-supervised learning (SSL) has emerged as a transformative approach in computer vision, demonstrating sig-
nificant empirical success across various tasks, including image  classification22,23,36,37, semantic  segmentation36,38,39, 
and object  detection40,41. This method has been particularly beneficial in medical imaging, where labeled data 
can be scarce and expensive to  obtain42,43.

SSL has been leveraged in the critical area of endoscopic depth estimation, a task distinct from endoscopic 
image classification, focusing on spatial depth perception rather than categorizing visual content. For instance, 
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Shao et al.44 introduced a self-supervised learning framework specifically for depth and ego-motion estimation 
in endoscopic videos, leveraging a novel concept called ’appearance flow’ to account for brightness variations in 
these images. Similarly, Liu et al.45 also explored self-supervised learning, focusing on depth and pose estima-
tion in gastrointestinal endoscopy. Their model, which includes networks for both depth and pose estimation, 
leverages self-supervised training. This is achieved through a multi-scale structural similarity combined with 
L1 norm (MS-SSIM+L1) loss, calculated between the target frame and the reconstructed image, showcasing the 
applicability of SSL in complex medical imaging tasks. Another work employs a self-supervised dual-branch 
Siamese network, leveraging sparse self-supervisory signals from Structure from Motion (SfM) for dense depth 
prediction. Sparse Flow Loss and Depth Consistency Loss guide the network to produce accurate, smooth depth 
maps by utilizing sparse reconstructions and geometric  constraints46.

SSL also shows potentials in endoscopic image matching and video analysis. While our work focuses on 
categorizing images into predefined classes, image matching and video analysis involves tasks like extracting 
distinct visual features, aligning similar images, and temporal data analysis. Farhat et al.47 introduced a SSL 
based approach on raw video frames to train a CNN-based model for keypoint matching in endoscopic images. 
Central to its training is a triplet loss architecture that utilizes raw video frames instead of labeled data. Ross 
et al.48 introduced the Pre-training with Auxiliary Task (PAT) method that falls under the umbrella of SSL. 
This method utilizes large amounts of unlabeled endoscopic video data to boost CNN performance in medical 
imaging tasks like instrument segmentation. Pascual et al.49 devised a two-stage process utilizing SSL to extract 
meaningful information from unlabeled endoscopic video data. In the first stage, the model uses the temporal 
sequence of images in the videos to generate embeddings, employing per-frame pseudo-labels and a triplet loss 
contrastive learning mechanism. In the second stage, these embeddings are finetuned with limited labeled data 
for specific medical tasks, using a combination of softmax cross-entropy loss and Triplet Loss in a ResNet-50 
based architecture.

Although SSL has demonstrated effectiveness in general computer vision tasks and certain aspects of gas-
trointestinal endoscopy, its specific application in the nuanced field of endoscopic classification, especially with 
the latest contrastive learning methods, is still an area ripe for exploration. The only study we are aware of in this 
area is by Huang et al.50, which focused on using  SimCLR22, an SSL method. This method maximizes agreement 
between differently augmented views of the same data instance in a latent space and requires an extremely large 
batch size to avoid collapsing. It was used to classify polyps in endoscopic images, specifically colorectal polyps 
in Blue Laser Imaging (BLI) images. However, their method is less suitable for classifying more diffuse condi-
tions like esophagitis, which typically appears across various areas, and is challenging to apply their method 
which requires localization.

While in traditional contrastive learning, both positive and negative samples are required, a recent framework, 
 SimSiam36, completely abandoned the negative samples during the visual representation process by introduc-
ing a siamese network with pairwise augmented views. Although some works show the potential importance of 
negative  samples51–54, they all require the negative sample to be “true negative sample”, i.e. the negative sample 
must be in a different class than the positive sample. For example, Pacal et al.51 required polyp-free images as 
negative samples used during training to counteract the effect of false alarms by using images that do not contain 
polyps. Similarly, Wang et al.54 required images containing sessile polyps to be positive while images contain-
ing pedunculated polyps to be negative. All these works that leveraged the negative samples require the true 
class labels, which cannot be obtained during the pretraining using unlabeled data. In contrastive learning, the 
negative sample is defined to be any instance that is different from the current anchor image, even though the 
anchor image and the negative sample belong to the same class. Furthermore, Awasthi et al.55 showed an ulti-
mate collision-coverage trade-off of having more negative examples and hurting the downstream performance. 
In addition, some works theoretically showed the advantage of SimSiam which does not use negative sampling 
while maintaining comparable or better performance across various computer vision  tasks56,57. Given these 
observations, we employ the SimSiam approach in our method.

Methods
In this section, we will introduce C-Mixup, a generic data augmentation strategy inspired by curriculum learn-
ing and image mixture process on contrastive learning framework. Specifically, we utilize Mixup and SimSiam 
framework to accomplish our design that is effective and robust to classify GI conditions based on the data from 
the endoscopy.

Mixup
Mixup58 is a generic vicinal distribution that produce virtual feature-target pairs from,

where δ(x = xi , y = yj) is a Dirac mess centered at (xi , yj) . Thus, given input vectors xi , xj and target vectors yi , yj , 
the corresponding virtual feature-target pair is defined as,

(1)µ(x̃, ỹ|xi , yi) =
1

n

n
∑

j

E�[δ(x̃ = �xi + (1− �)xj , ỹ = �yi + (1− �)yj)],

x̃ = �xi + (1− �)xj

ỹ = �yi + (1− �)yj
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where � ∼ Beta(α,α) for α ∈ (0,∞) . This image mixture process can be seen as a special kind of data augmen-
tation technique. By producing linearly in-between virtual samples, Mixup reduces oscillations and provides 
smoother predictions on data outside training  samples58.

SimSiam
Our experiments are conducted using one of the contrastive learning methods,  SimSiam36. Contrastive learning, 
in general, is a self-supervised pre-training paradigm where visual representation is learned without ground-
truth labels. In specific, SimSiam takes two randomly augmented views x1, x2 from the same input image x. 
Both augmented views are then passed through a shared-weight encoder, which is a deep neural network e.g. 
ResNet50, and a projection MLP layer. Augmented view x1 will pass an additional prediction MLP head which 
transforms to the same dimension as x2 . Denote the encoder plus projection MLP as f and prediction MLP as h 
and denote two output vectors as p1

�
= h(f (x1)) and z2

�
= f (x2) . The training objective is to minimize the nega-

tive cosine similarity between p1, z2

where � · �2 is l2 norm and StopGrad(·) is the stop-gradient operation. The negative cosine similarity is calculated 
twice by which each view is applied with the stop-gradient operation once.

Curriculum‑Mixup as data augmentation in SimSiam
In contrastive learning, the formation of contrastive pairs is critical for models to learn good visual represen-
tations since the goal is to encourage augmentations (views) of the same source image to have more similar 
representations and different images to have dissimilar representations.  InfoMin59 demonstrates that a good 
view in a positive pair should contain intact task-relevant information while reducing the mutual information 
(MI) between two views. Formally, let v1, v2 be two views, y be prediction, and I(v1; v2) be information shared 
between v1 and v2 . InfoMin defines the optimal positive pair when I(v1; y) = I(v2; y) , meaning v1, v2 only share 
task related information. In other words, two views in a positive pair should both include the target object while 
keeping the background as diverse/different as possible. Following this concept, SimSiam requires strong data 
augmentation to minimize the MI between two augmented views. Yet, excessive data augmentation also disturbs 
the training process since strong augmentation typically introduces noises, resulting in learning suboptimal 
visual features.

The optimization objective is to minimize the negative cosine similarity between two augmented views. 
However, each augmented view goes through the data augmentation separately and the stochasticity of applying 
certain transformations complicate the cosine similarity between two augmented views. To have controllable 
cosine similarity during the pre-training process, we seek a solution from the Mixup operation. Yet the tradeoff 
of high MI and large noise exists. To tackle this problem, we incorporate the design of curriculum learning.

The idea of curriculum learning is inspired by how humans learn, starting with simpler concepts before mov-
ing on to more complex ones. By gradually increasing the complexity of the examples presented to the model 
during training, the model can better learn and generalize from the data. One advantage of curriculum learning 
is that it can help models avoid getting stuck in local optima or overfitting to the training data. By starting with 
simpler examples, the model can build a strong foundation before moving on to more complex examples, which 
can help it avoid getting stuck in local optima. Empirically, it has been shown that curriculum learning helps 
the model to train better in a noisy  setting60. Based on this insight, we propose Curriculum-Mixup, a progres-
sive training framework for self-supervised learning. Curriculum-Mixup (C-Mixup) aims to enhance the data 
augmentation in the contrastive learning pipeline by generating more meaningful augmented views with a 
hardness-aware augmentation method. In our framework, we define a curriculum order on the strength of the 
data augmentation. Our eventual goal is to let the contrastive model learn a better representation by utilizing 
the hardness-aware augmentation method and the curriculum learning strategy.

Different from the classical curriculum learning setting where the training samples are ordered and trained in 
a easy to difficult fashion defined by the training  loss61, our method defines difficulty in the data pre-processing 
stage. In our C-Mixup setting, the difficulty is defined by the magnitude of the Mixup. Since the optimization 
goal in Eq. (2) is to minimize the negative cosine similarity between the prediction given the input augmented 
view xi and the ground-truth augmented view xj , the similar xi is to xj , the easier the prediction task is. Therefore 
we define a easier task is that xi and xj are similar to each other and a harder task is that xi and xj are dissimilar 
to each other. To control the similarity between xi and xj , we define x̃j to be a mixture by xi and xj and (xi , x̃j) to 
be the new augmented view pair. In nutshell, the trivial case will be x̃j = xi and the augmented view pair will be 
(xi , xi) . Conversely, the hardest case will be x̃j = xj and the augmented view pair will be (xi , xj) . The hardness of 
the similarity is controlled by the Mixup �.

Inspired by Curriculum  Dropout62, we propose a curriculum function �(t) that controls the Mixup parameter 
� with input of current training iteration t. Let �max and �min be upper and lower limit of � , any function that 
t  → �(t) such that �(0) = �max and lim

t→∞
�(t) = �min is said to be a curriculum function bounded by �min and 

�max . Starting from �(0) = �max where x̃j consists the maximal of xi within the boundary, x̃j gradually reduces 
its composition of xi in a way that �(t) ≥ �min . At the end of the training, �(t) → �min is equivalent to the original 
formulation of fixed Mixup training. Although the choices of �(t) are not limited as long as �(t) is monotonically 
decreasing, in our method, we adopt step function.

(2)L = −
1

2

p1

�p1�2
· StopGrad(

z2

�z2�2
)−

1

2

p2

�p2�2
· StopGrad(

z1

�z1�2
),
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In Eq. (3), we define �max , �min as the upper and lower boundary of the Mixup lambda value. We also define 
step_size to constrain the update frequency of the Mixup lambda. Intuitively, we update the Mixup lambda value 
in an equal interval determined by step_size and total epoch t. A detailed discussion is presented in the ablation 
section.

Formally, given two randomly augmented views xi , xj from x, we define the positive view of xi to be

Note that � in Eq. (4) is determined directly from Eq. (3) given the Mixup boundary and current training step. 
Follow notations in the previous section, denote pi

�
= h(f (xi)) as the predicted representation and z̃j

�
= f (x̃j) 

as the projected embedding of xi . Our training objective is to minimize the negative cosine similarity between 
pi and z̃j of the following form,

where z̃j
�
= f (x̃j) = f (�(t)xi + (1− �(t))xj) is the projected embedding of the mixed positive image x̃j . �(t) is 

a curriculum function subject to �min ≤ �(t) ≤ �max for any t and t is the current training iteration. Similarly, 
p̃j

�
= h(z̃j) represents the prediction of x̃j . We perform stop gradient operation on z̃j

�z̃j�2
 and zi

‖zi‖2
 following the 

setup as in SimSiam. In summary, we replace the original augmented view xj , as well as the relevant projected 
embedding and predicted representation, with the values corresponding to the mixed view x̃j . Note that since xi 
is the anchor image and does not go through image mixture process, zi

�
= f (xi) and no curriculum scheduler 

involved. Figure 1 illustrates the pipeline of the C-Mixup.

(3)�curriculum(t) = �max − (
(�max − �min)

step_size
· ⌊

i · step_size

t
⌋ + �min),

(4)x̃j = �xi + (1− �)xj ,

(5)LMixup = −
1

2

(

pi

�pi�2
· StopGrad(

z̃j

�z̃j�2
)+

p̃j

�p̃j�2
· StopGrad(

zi

�zi�2
)

)

,

Figure 1.  Overview of the proposed C-Mixup method. The C-Mixup method begins by generating two 
augmented views, xi and xj , from the input image. Next, we apply the Mixup operation to xj using xi , creating 
a mixed view x̃j . Subsequently, view xi goes through a backbone encoder and predictor, which generate 
predictions for the encoded x̃j . ResNet50 is chosen as the backbone encoder, which is a deep neural network that 
is used in the original SimSiam framework. We use a single layer MLP as the lightweight predictor. We calculate 
the negative cosine similarity based on Eq. (5).
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Algorithm 1.  Curriculum Mixup in SimSiam.

Dataset
Our experiments are conducted using the GI endoscopic dataset,  HyperKvasir18. In total, there are 110,079 
images where 10,662 are labeled images and 99,417 are unlabeled images. The labeled dataset is collected from 
upper GI tract and lower GI tract consisting of 23 different classes grouped into four major categories: anatomi-
cal landmarks, quality of mucosal views, pathological findings, and therapeutic interventions. We made several 
modifications to the HyperKvasir dataset to accommodate our classification task. First, we trimmed ileum, 
hemorrhoids, ulcerative-colitis-grade-0-1, ulcerative-colitis-grade-1-2, and ulcerative-colitis-grade-2-3 in the 
lower GI tract and barretts and barretts-short-segment in the upper GI tract to tackle the class imbalance issue. 
Each class in the aforementioned 7 classes has a number of samples less than 10% of the largest class. Unlabeled 
dataset is used explicitly in the pre-train stage. In the fine-tuning stage, the labeled images are resized to 512 * 
512 to retain as much information as possible. We randomly split the labeled image into a 4:1 ratio as training 
and testing data. This split setting remains the same for all experiments we conducted. Figure 2 illustrates the 
endoscopic images of HyperKvasir dataset.

Experiments
In this section, we will introduce our experimental settings and results.

Experimental settings
Data pre‑processing
Medical images are more sensitive to color distortion than benchmark datasets such as  ImageNet63. Therefore, 
instead of using the original data augmentation method as described in  Simsiam36, we adopt the weaker color 
augmentation strategy from Balanced-Mixup64. Specifically, we first resize all inputs to 512x512 and drop strong 
color augmentations such as grayscale and Gaussian blur operations. Additionally, we decrease the magnitude 
of color jitter operations in brightness, contrast, and saturation from 0.4 to 0.25. To maintain the strength of the 

Figure 2.  Sample images of the HyperKvasir dataset feature pathological findings and anatomical landmarks in 
both the upper and lower GI tract.
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augmentation, we add more affine transformations. In addition to horizontal flips, we include vertical flips and 
randomly apply translation, rotation, or scaling to the image. It is worth noting that some of the included classes 
of images have a green picture in the image illustrating the position and configuration of the endoscope. We 
followed the experimental setting of Balanced-Mixup64 and included the green picture as-is in both unlabeled 
data for pre-training and labeled data for finetuning.

Simsiam with C‑Mixup
In the pre-training stage, an input image will be augmented into two augmented views, view i and view j. 
We stochastically perform Mixup operation using Beta distribution as in  Mixup58 on view j with view i. We 
use step function as our curriculum scheduler and, if not otherwise specified, we use αmax = βmax = 0.2 and 
αmin = βmin = 1e − 4 as the Beta distribution parameter. Since Beta(α,β) exhibits a U-shape distribution when 
0 < β = α < 1 , we set a maximum cap of 0.5 to ensure that view j will always contribute the majority to the 
resulting mixed image, mixed view j. We use ResNet50 as the backbone encoder network and modify the out fea-
ture dimension of the FC layer to 2048. In addition, view i will go through a predictor module with with hidden 
dimension of 512. During the pre-training stage, the model is trained for 100 epochs on unlabeled HyperKvasir 
dataset, using the SGD optimizer with an initial learning rate of 0.01, weight decay set to 1e-4, and momentum 
set to 0.9, with cross-entropy loss. We use cosine decay learning rate scheduler for its empirical success in self-
supervised tasks. The model is fine-tuned for 100 epochs with a batch size of 64 on labeled HyperKvasir dataset. 
The initial learning rate is set to 0.001 and weight decay is set to zero. All other hyperparameters remain the 
same as those used in the pre-training stage.

Results and discussions
We utilize accuracy, F1 score, precision, and recall as performance metrics to evaluate our methods. For each 
experiment, we conduct 3 trials and record the corresponding results. Table 1 presents the average results for 
each experiment conducted. Based on the table, we can draw the following observations.

First, among all the methods listed in Table 1, our C-Mixup consistently achieves the best performance 
across all evaluation metrics. In the endoscopic image classification task, C-Mixup achieves 88.92% in top-1 
accuracy and 75.0% in recall. To ensure a fair comparison, we use ResNet50 as the backbone model for all self-
supervised baselines. Our method achieves 2.1% over vanilla SimSiam and 2.7% over supervised ResNet50 in 
top-1 accuracy, and 1.9% over vanilla SimSiam and 2.6% over supervised ResNet50 in F1 score. In addition, our 
method outperforms Balanced-Mixup, which performs Mixup to augment virtual data samples to imbalanced 
classes. This means that our curriculum Mixup method is also to robust to data imbalance issue to some extent.

Second, although adding Mixup to SimSiam without curriculum design improves performance across all four 
evaluation metrics, it still falls short compared to Balanced-Mixup64. In the SimSiam + Mixup setting, we follow 
the original Mixup setup, where the Mixup coefficient is sampled from a Beta distribution with α = β = 0.2 . 
We suspect that the challenge lies in the difficult optimization target during the initial stages of training. To 

Table 1.  Comparison of C-Mixup and baselines. For supervised models, we fine-tuned all models using 
labeled endoscopic datasets with a learning rate of 0.001, and batch size of 64 and 100 epochs. We use SGD 
as the optimizer with momentum of 0.9 and 0 for weight decay. For self-supervised models, we first pre-train 
models with unlabeled endoscopic datasets with 100 epochs, then fine-tune models on labeled endoscopic 
datasets with the same hyperparameter setting as supervised models. For both supervised and self-supervised 
methods, we use ImageNet-trained weight as initialization. Our C-Mixup experiments employ an 8-step 
curriculum scheduler. The Mixup alpha range is from 1e-4 to 0.2. The best results are bolded.

Method Accuracy F1 Precision Recall Specificity

AlexNet65 79.15 ± 0.3 63.13 ± 1.2 64.60 ± 1.4 64.98 ± 1.9 98.65 ± 0.2

ResNet1814 86.04 ± 0.2 70.67 ± 0.3 71.61 ± 0.2 71.73 ± 0.2 99.10 ± 0.1

ResNet5014 86.30 ± 0.3 70.75 ± 0.2 71.84 ± 0.1 72.74 ± 0.1 99.14 ± 0.1

MobileNetV266 87.40 ± 0.4 71.93 ± 0.3 72.93 ± 0.5 73.35 ± 0.3 99.22 ± 0.1

VGG1967 82.86 ± 0.5 67.81 ± 0.7 69.22 ± 0.8 69.28 ± 0.8 98.96 ± 0.1

DenseNet12168 86.48 ± 0.4 68.34 ± 0.2 69.12 ± 0.3 70.02 ± 0.6 99.17 ± 0.1

ConvNeXt  V269 91.24 ± 0.4 83.85 ± 0.6 84.88 ± 0.9 85.00 ± 0.6 99.41 ± 0.1

EfficientNet  V270 91.99 ± 0.2 83.73 ± 0.3 84.60 ± 0.1 85.21 ± 0.5 99.44 ± 0.1

MaxViT71 92.06 ± 0.1 84.94 ± 0.3 85.97 ± 0.2 86.57 ± 0.3 99.41 ± 0.1

FasterViT72 91.65 ± 0.3 83.83 ± 0.3 84.66 ± 0.3 85.20 ± 0.1 99.46 ± 0.1

DeiT373 92.31 ± 0.1 84.21 ± 0.4 85.14 ± 0.7 85.73 ± 0.5 99.53 ± 0.1

Balanced-Mixup64 88.04 ± 0.3 72.26 ± 0.3 73.08 ± 0.4 73.13 ± 0.3 99.27 ± 0.1

MoCov237 85.74 ± 0.2 70.82 ± 0.3 71.83 ± 0.1 72.51 ± 0.2 99.08 ± 0.1

SimSiam36 86.87 ± 0.3 71.47 ± 0.6 72.37 ± 0.8 72.90 ± 0.9 99.19 ± 0.1

Mixup(simsiam no curriculum) 87.52 ± 0.4 71.63 ± 0.3 72.48 ± 0.3 73.27 ± 0.2 99.23 ± 0.1

C-Mixup (Batch Size=64) 88.92 ± 0.4 73.39 ± 0.3 73.68 ± 0.2 75.00 ± 0.2 99.42 ± 0.1

C-Mixup (Batch Size=256) 92.36 ± 0.2 84.71 ± 0.5 85.32 ± 0.4 86.63 ± 0.4 99.57 ± 0.1
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test this assumption, we apply a curriculum scheduler to SimSiam, which leads to our method, C-Mixup. As a 
result, our observation reveals that C-Mixup significantly improves upon the Mixup method, achieving a 1.4% 
increase in accuracy and a 1.7% increase in F1 score. This confirms our assumption that progressively increasing 
the training difficulty aids in optimizing the model.

Third, our C-Mixup method surpasses all supervised learning baseline methods, including  AlexNet65, 
 ResNet1814,  ResNet5014,  MobileNetV266,  VGG1967, and  DenseNet12168, by a significant margin. All the super-
vised methods are initialized with ImageNet trained weight and fine-tuned on the labeled endoscopic dataset. On 
the contrary, one vanilla self-supervised model, MoCoV2, which is using ResNet50 as backbone, has even lower 
top-1 accuracy and recall compared to supervised ResNet50. Similarly, Although vanilla SimSiam outperforms 
supervised ResNet50 on a small margin, it still has a lower accuracy compared to supervised MobileNetV2 in 
all metrics. This result indicates an undesirable pre-training outcome due to adverse noise incurred by strong 
data augmentation in the vanilla self-supervised setting.

Visualization
We further visualize samples of correct and incorrect predictions to gain insights into the strengths and limita-
tions of our method. In other cases, C-Mixup demonstrates its ability to accurately classify features in endoscopic 
images. In Fig. 3a, our method successfully identifies the pylorus connecting to the duodenum located in the 
upper GI tract. Similarly, in another example (Fig. 3b), C-Mixup detects inflammation and determines the spe-
cific type of inflammation as esophagitis-b-d, occurring in the upper GI tract. Furthermore, our method is capa-
ble of detecting therapeutic interventions performed by surgeons, such as dyed lifted polyps, as shown in Fig. 3c. 
These interventions are often challenging for the human eye to discern, but our method reliably identifies them.

Figure 3 illustrates examples where C-Mixup fails to classify correctly. For instance, in Fig. 3d, C-Mixup 
incorrectly classifies a therapeutic intervention of dyed-resection-margins in the lower GI tract as the thera-
peutic interventions of dyed-lifted-polyps in the lower GI tract. One possible reason for this misclassification 
is the bright colored bulge in the central right confuses the model with the dyed-lifted-polyp, which also tends 
to be reflective. In Fig. 3e, a pathological finding of ulcerative-colitis-grade-1 in the lower GI tract is incorrectly 
classified by C-Mixup as pathological findings of ulcerative-colitis-grade-2 in the lower GI tract. The misclas-
sification of this example can be justified as an ambiguous stage distinction between different grades of the 
same medical condition. In Fig. 3f, the ground truth label indicates a pathological finding of esophagitis-a in 
the upper GI tract, while C-Mixup incorrectly classifies it as anatomical landmarks of the z-line, a demarcation 
line, in the upper GI tract. We suspect that the inflammation caused by esophagitis shown in Fig. 3f is of early 
stage and not conspicuous.

Figure 4 shows the confusion matrix of C-Mixup of all 16 classes. It is notable that class ulcerative-colitis-
grade-1, ulcerative-colitis-grade-2, and ulcerative-colitis-grade-3 are most confusing to the model by which a 
significant portion of grade 1 and 3 ulcerative colitis are misclassified as grade 2. By visual inspection, we found 
that the data augmentation in the pretraining stage might create some distortion to the image, therefore impact-
ing the model’s performance in rating the severity of ulcerative colitis. In the real world, assessing the severity 
of ulcerative colitis is a complicated procedure involving multiple  tests74. While the C-Mixup model is not able 
to achieve superior performance in distinguishing the severity of ulcerative colitis, it does classify ulcerative 
colitis with a low error rate on other classes. Another observation is that C-Mixup has inferior performance 

Figure 3.  Sample images representing correct and incorrect predictions of C-Mixup. Figure (a–c) show correct 
predictions. Figure (d–f) show incorrect predictions.
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in distinguishing between z-line, a faint zig-zag impression that demarcates the transition site between the 
esophagus and the stomach, and esophagitis-a, an inflammation of the esophagus. Esophagitis-a is the least 
severe esophagitis included in the dataset, and since it appears in the esophagus which z-line might present, it is 
possible that both esophagitis and z-line appear. Our visual inspection confirms this observation and therefore 
the misclassification is explainable.

Ablation study
In this section, we perform ablation studies on various aspect of C-Mixup to better understand each component 
of our proposed method.

Curriculum schedulers
In our proposed C-Mixup method, we employ a simple step function as the curriculum scheduler. However, 
in this section, we aim to investigate how different scheduler functions impact the performance of C-Mixup. 
Specifically, we want to determine if our method is sensitive to the choice of curriculum scheduler. To explore 
this, we examine both discrete and continuous curriculum schedulers.

For discrete curriculum schedulers, we experiment with step functions using step sizes of 2, 4, 8, 12, and 16. 
Figure 5a illustrates the top-1 accuracy for different step values. Our findings reveal that C-Mixup is robust to 
changes in the step value, confirming that a gradual increase in Mixup lambda results in improved performance 
compared to using Mixup without a curriculum setup.

In the case of continuous curriculum schedulers, we investigate linear and reverse cosine annealing functions. 
Figure 5a provides a visualization of how Mixup alpha changes with respect to different curriculum schedulers, 
while Table 2 presents the performance metrics of various curriculum schedulers. Results indicate that the cosine 
anneal scheduler achieves the best performance, with a top-1 accuracy of 89.31%. We attribute this success to 
the fact that cosine annealing mirrors the way humans learn in real life. We start with easier tasks and gradu-
ally increase the difficulty as learning progresses. Throughout this process, the majority of the training time is 
dedicated to the initial and final stages, allowing the model to establish a strong foundation and effectively tackle 
challenging tasks. This strategy proves to be highly effective, as evidenced by the superior performance of the 
reverse cosine anneal scheduler across all evaluation metrics.

Mixup interval
Since C-Mixup dynamically and progressively determines the Mixup alpha, another critical component of our 
proposed method is the Mixup alpha interval. In Table 1 and Fig. 5b, we fixed the Mixup interval to range from 

CLS id CLS name

0 bbps-0-1

1 bbps-2-3

2 cecum

3 dyed-lifted-polyps

4 dyed-resection-margins

5 esophagitis-a

6 esophagitis-b-d

7 impacted-stool

8 polyps

9 pylorus

10 retroflex-rectum

11 retroflex-stomach

12 ulcerative-colitis-grade-1

13 ulcerative-colitis-grade-2

14 ulcerative-colitis-grade-3

15 z-line

Figure 4.  Confusion matrix of C-Mixup 8 step on all 16 classes.
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0 to 0.2. However, it is important to investigate the optimal Mixup intervals. As the actual Mixup � is sampled 
from a Beta distribution parameterized by the Mixup alpha, we set the minimum boundary of the Mixup alpha 
interval as 1e-4. Additionally, since a Beta distribution with parameters α = β < 1 exhibits a U-shape, we capped 
the maximum boundary of the Mixup alpha interval to be smaller than 0.5. We examined three different intervals: 
1e-4 to 0.2, 0.2 to 0.4, and 1e-4 to 0.4. The complete results are presented in Table 3.

From the results, several observations can be made. Firstly, increasing the maximum Mixup alpha to 0.4 led 
to a 1.7% decrease in F1 score, accompanied by lower precision and recall. This decrease in performance can be 
attributed to a wider distribution of � resulting from a larger Mixup alpha interval, which introduces turbulence 
in the training process. Specifically, it caused a 1.6% decrease in precision and a 1.2% decrease in recall. Secondly, 
the Mixup interval with a larger Mixup alpha (0.2 to 0.4) exhibited subpar performance. This can be explained 
by the fact that a higher Mixup alpha increases the likelihood of the mixed image x̃j containing a larger portion 
of xi , leading to more trivial image pairs of xi and x̃j.

Conclusion
In this paper, we propose C-Mixup, a self-supervised learning framework that leverages curriculum Mixup on 
SimSiam to utilize a large unlabeled endoscopic dataset. Our method aims to mitigate the negative impact of 
additive noise caused by strong data augmentation by incorporating curriculum learning. We innovatively com-
bine the concepts of curriculum learning and Mixup to create a progressive data augmentation framework that 

Figure 5.  Ablation on scheduler.

Table 2.  Experiments with different curriculum schedulers. Experiments are conducted in Mixup alpha 
interval 1e-4 to 0.2. Best results are bolded.

Epoch Curriculum scheduler Accuracy F1 Precision Recall Specificity

100

2 step 88.82 ± 0.2 72.30 ± 0.3 72.53 ± 0.2 74.24 ± 0.3 99.28 ± 0.1

4 step 88.87 ± 0.3 71.91 ± 0.4 72.23 ± 0.4 73.87 ± 0.2 99.30 ± 0.1

8 step 88.92 ± 0.4 73.39 ± 0.3 73.68 ± 0.2 75.00 ± 0.2 99.42 ± 0.1

12 step 88.62 ± 0.3 72.26 ± 0.3 73.04 ± 0.6 74.23 ± 0.3 99.27 ± 0.1

16 step 88.28 ± 0.4 71.95 ± 0.5 72.53 ± 0.3 73.64 ± 0.6 99.23 ± 0.1

linear 89.06 ± 0.6 73.68 ± 0.6 73.92 ± 0.7 75.13 ± 0.4 99.32 ± 0.2

cosine anneal 89.31 ± 0.7 73.56 ± 0.9 74.14 ± 0.8 74.97 ± 0.6 99.39 ± 0.2

Table 3.  Performance of different Mixup alpha interval. Experiments performed in this table are using 
C-Mixup 8-step. All hyperparameters other than Mixup interval are fixed. Best results are bolded.

Min Mixup alpha Max Mixup alpha Accuracy F1 Precision Recall Specificity

1e-4 0.2 88.92 ± 0.4 73.39 ± 0.3 73.68 ± 0.2 75.00 ± 0.2 99.42 ± 0.1

0.2 0.4 88.87 ± 0.3 72.85 ± 0.3 73.13 ± 0.2 74.43 ± 0.1 99.35 ± 0.1

1e-4 0.4 88.67 ± 0.5 71.69 ± 0.4 71.88 ± 0.2 73.86 ± 0.2 99.20 ± 0.1
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enhances the pre-training of SimSiam on endoscopic datasets. Our empirical results demonstrate that C-Mixup 
outperforms both supervised and self-supervised baselines, achieving an impressive top-1 accuracy of 88.92% 
and an F1 score of 73.39%. We also conducted several ablation settings to further explore the potential of our 
proposed method. The results strongly suggest that our curriculum Mixup can serve as a reliable aid in detecting 
gastrointestinal diseases using endoscopy.

Data availability
All experiments are carried out using the publicly available  HyperKvasir18 dataset with simple modification 
described in Dataset section.
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