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Design based synthetic imputation 
methods for domain mean
Shashi Bhushan 1, Anoop Kumar 2, Rohini Pokhrel 3, M. E. Bakr 4 & Getachew Tekle Mekiso 5*

In real life, situations may arise when the available data are insufficient to provide accurate estimates 
for the domain, the small area estimation (SAE) technique has been used to get accurate estimates 
for the variable under study. The problem of missing data is a serious problem that has an impact on 
sample surveys, but small area estimates are especially prone to it. This paper is a basic effort that 
suggests design based synthetic imputation methods for the domain mean estimation using simple 
random sampling in order to address the issue of missing data under SAE. The expression of the mean 
square error for the proposed imputation methods are obtained up to first order approximation. 
The efficiency conditions are determined and a thorough simulation study is carried out using  
artificially generated data sets. An application is included with real data that further supports this 
study.
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The majority of surveys are only intended to offer estimates at the national and/or state/territory geographic 
levels that are statistically valid and design-based. Implementing and carrying out sample surveys that would 
produce accurate estimates at levels smaller than state/territory would be extremely difficult and expensive, 
both in terms of the larger sample sizes needed and the increased burden on survey respondents. Small area 
estimates are produced using small area estimation (SAE) techniques to get beyond the issue of small sample 
numbers and outperform the accuracy of direct survey estimates derived from the sample in each small region. 
Direct, synthetic, and other indirect estimations are some of the techniques used for SAE. The direct estimators 
solely employ information from the specified region under study. Mostly, they are unbiased, but very unstable 
having large variation. Indirect and composite estimators are more accurate because they additionally include 
information from related variables or nearby areas.

The direct estimators have been shown to produce unacceptable large standard errors as a result of asymmetric 
small samples from the relevant small area. In reality, there may be circumstances when no sample units can be 
selected from a portion of small domains. Finding indirect (synthetic) estimators, that dramatically increase sam-
ple size and subsequently reduce the standard error of the estimator is therefore necessary to achieve appropriate 
statistical accuracy. According to Gonzalez1 “an estimator is called a synthetic estimator if a reliable direct esti-
mator for a large area, covering several small domains, is used to derive an indirect estimate for a small domain, 
under the assumption that the small areas have the same characteristics as the large area”. Developing indirect 
estimators for small areas is necessary since there is a lack of sufficient sample data in small geographic areas. 
Numerous researchers, particularly in the fields of health, agriculture, and poverty, have developed synthetic esti-
mators. According to recent research by Tikkiwal and Ghiya2, Pandey and Tikkiwal3, Tikkiwal et al.4, Ashutosh 
et al.5,6, Bhushan et al.7, small area estimators based on auxiliary information outperform those that exclude it.

The issue of missing data is persistent in sample surveys and necessitates quick action to prevent the validity 
of any conclusions drawn from such data. The properties such as unbiasedness and efficiency of the estimators 
might both be compromised by the missing data. Imputation of missing data is the preferred and most often 
used method for dealing with missing data. Rubin8 proposed three fundamental conceptions in his landmark 
work: missing at random (MAR), observed at random (OAR), and parameter distribution (PD). A discrimination 
between missing at random (MAR) and missing completely at random (MCAR) was provided by Heitjan and 
Basu9. Many renowned writers have addressed the issue of missing data, and different imputation approaches have 
been used to fill in the gaps. The accessibility of adequate supplementary information is critical for the creation 
of effective imputations schemes. Numerous prominent researchers, including Rueda et al.10, Toutenburg and 
Srivastava11, Toutenburg et al.12, Singh and Horn13, Prasad14, Singh and Deo15, Singh16, Ahmed et al.17, Bhushan 
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and Pandey18,19, Bhushan et al.20,21, Prasad22, Prasad and Yadav23, Bhushan and Kumar24 have studied in this field 
and developed imputations and the corresponding estimators for missing data utilizing auxiliary information. 
In this study, we use the MCAR approach to impute missing data altogether.

Further, in literature, no imputation method is available to solve the issue of missing data under SAE. There-
fore, the objectives of this article are: 

	 (i)	 to propose some fundamental imputations, namely, mean, ratio, logarithmic type for estimating the 
domain mean;

	 (ii)	 to propose Searls type logarithmic imputation methods estimating the domain mean;
	 (iii)	 to compare the fundamental imputations with our Searls type logarithmic imputation methods.

Note that while imputing the missing observations, we do not modify the original responses. The methodology 
and notations used in this study are discussed below.

Methodology and notations
Consider a specified population � = {1, 2, . . . ,N} of the size N from which a simple random sample s of the size 
n is drawn without replacement. In order to estimate the mean of domain d, we use the information collected 
in the sample. Further, let rd and r be the amount of units responding from chosen nd and n units and let Rd 
and R be the set of units responding in the domain d and total population, respectively. Also, R̄d and R̄ symbol-
ize the set of units non-responding in the domain d and total population, respectively. For all units, i ∈ R , the 
quantity yi is obtained, but for the units i ∈ R̄ , the quantities are missing and imputed data must be obtained to 
finalize the formation of sample data set. Suppose, the imputation is accomplished comprising the additional 
auxiliary information, X, so Xi , the value of X for unit i, is available and positive for all i ∈ s such that the data 
Xs = {Xi; i ∈ s} are available.

To derive the mean square error (MSE) of the consequent synthetic estimators of the proposed synthetic impu-
tation methods, we take the following notations: ȳr = Ȳ(1+ ε0) , x̄r = X̄(1+ ε1) , and x̄n = X̄(1+ ε2) , the ε′s are 
error terms such that E(εk) = 0, k = 0, 1, 2 and E(ε20) = frC

2
y , E(ε21) = frC

2
x , E(ε22) = fnC

2
x , E(ε0ε1) = frρyxCyCx , 

E(ε0ε2) = fnρyxCyCx , E(ε1ε2) = fnC
2
x , where, fr =

(

1
r −

1
N

)

 and fn =
(

1
n − 1

N

)

 , Cy and Cx are the coefficient 
of variation of study and auxiliary variables, respectively, ρyx is the correlation coefficient between study and 
auxiliary variables.

The content that follows is broken up into a few sections. In “Adapted imputation methods” and “Proposed 
synthetic Searls type logarithmic imputation methods”, respectively, the adapted and proposed imputation meth-
ods are presented together with formulae for the mean square error (MSE). In “Efficiency conditions”, a compari-
son of the various imputation strategies is given. In “Simulation study”, a comprehensive simulation analysis using 
a few artificial populations is provided, and the main simulation results are explored. In “Real data application”, an 
actual data application is also provided. In “Conclusions”, this article is concluded with some concluding remarks.

Adapted imputation methods
Since literature contains no imputation methods to deal with the problem of estimation of mean of domain d 
in the presence of missing data. Therefore, we adapt some conventional imputation methods for the estimation 
of domain mean.

Conventional mean imputation method
When information on the auxiliary variables is not available, then the conventional mean imputation method 
is the obvious choice. When the ith sample unit in domain d is missing and requires imputation, we suggest 
the mean imputation of domain mean by amplifying the notations of Lee et al.25 for unit value imputation. The 
synthetic mean imputation technique for domain mean is given by

The consequent synthetic estimator is

The MSE of the consequent synthetic mean estimator is

The imputation approaches are distinguished into two schemes when additional auxiliary information is 
taken into account.

Scheme I: When X̄d is known and x̄n,d is used.
Scheme II: When X̄d is known and x̄r,d is used.

Synthetic ratio imputation methods
The ratio imputation method provides efficient results when the study and auxiliary variables are positively cor-
related. The classical synthetic ratio imputation methods under schemes I and II are defined as

y.im =

{

yi if i ∈ R
ȳr if i ∈ R̄

tm = ȳr

(1)MSE(tm) = (Ȳ − Ȳd)
2 + Ȳ2frC

2
y
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Scheme I

Scheme II

The consequent synthetic ratio estimators under above schemes are

Theorem 2.1  The MSE of the consequent synthetic ratio estimators trj , j = 1, 2 of the synthetic ratio imputation 
methods y.irj under schemes I and II is given by

Synthetic logarithmic imputation methods
The proposed synthetic logarithmic imputation methods under schemes I and II are given below.

Scheme I

Scheme II

The resulting estimators are calculated under the schemes described above as

where θj ; j = 1, 2 are the suitably chosen scalars.

Theorem 2.2  The MSE and minimum MSE of the consequent synthetic estimators tlj , j = 1, 2 of the proposed 
synthetic imputation methods y.ilj under schemes I and II are given by

Proposed synthetic Searls type logarithmic imputation methods
In order to increase the effectiveness of the estimators, Searls26 developed a transformation that required multi-
plying a tuning parameter in the estimators. Therefore, in order to improve the above works, we used a tuning 
parameter δj , j = 1, 2 in the synthetic logarithmic imputation methods y.ilj and propose synthetic Searls type 
logarithmic imputation methods for the mean of domain d utilizing auxiliary information in SRS.

The proposed synthetic Searls type logarithmic imputation methods under schemes I and II are given below.
Scheme I

y.ir1 =

{

yi if i ∈ R
1

n−r

[

nȳr

(

X̄d
x̄n

)

− rȳr

]

if i ∈ R̄

y.ir2 =

{

yi if i ∈ R
1

n−r

[

nȳr

(

X̄d
x̄r

)

− rȳr

]

if i ∈ R̄

tr1 = ȳr

(

X̄d

x̄n

)

tr2 = ȳr

(

X̄d

x̄r

)

(2)MSE(tr1) = Ȳ2
d

(

frC
2
y + fnC

2
x − 2fnρyxCyCx

)

(3)MSE(tr2 ) = Ȳ2
d fr

(

C2
y + C2

x − 2ρyxCyCx

)

y.il1 =

{

yi if i ∈ R
1

n−r

[

nȳr

{

1+ θ1 log
(

x̄n
X̄d

)}

− rȳr

]

if i ∈ R̄

y.il2 =

{

yi if i ∈ R
1

n−r

[

nȳr

{

1+ θ2 log
(

x̄r
X̄d

)}

− rȳr

]

if i ∈ R̄

tl1 = ȳr

{

1+ θ1 log

(

x̄n

X̄d

)}

tl2 = ȳr

{

1+ θ2 log

(

x̄r

X̄d

)}

MSE(tl1) = Ȳ2

d (frC
2
y + θ21 fnC

2
x − 2θ1fnρyxCyCx)

MSE(tl2) = Ȳ2

d fr(C
2
y + θ22C

2
x − 2θ2ρyxCyCx)

minMSE(tl1 ) = Ȳ2

dC
2
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2
yx
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minMSE(tl2 ) = Ȳ2

dC
2
y fr
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1− ρ2
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Scheme II

where δj , j = 1, 2 are the suitably chosen scalars. The resulting synthetic estimators are calculated under the 
schemes described above as

Special case
When δj = 1, j = 1, 2 , then under schemes I and II, the proposed synthetic Searls type logarithmic imputation 
methods y.isj and the corresponding resultant synthetic Searls type logarithmic estimators tsj deform into the 
synthetic logarithmic imputation methods y.ilj and the corresponding resultant synthetic logarithmic estimators 
tlj , respectively.

Theorem 3.1  The MSE and minimum MSE of the consequent synthetic estimators tsj , j = 1, 2 of the proposed 
synthetic imputation methods y.isj under schemes I and II are given by

where

Proof  Consider the proposed consequent synthetic estimator ts1 as

We can express the above estimator using the notations established in the previous section as

Simplifying the above expression and neglecting the higher order error terms, we get

y.is1 =

{

yi if i ∈ R
1

n−r

[

nδ1ȳr

{

1+ θ1 log
(

x̄n
X̄d

)}

− rȳr

]

if i ∈ R̄

y.is2 =

{

yi if i ∈ R
1

n−r

[

nδ2ȳr

{

1+ θ2 log
(
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X̄d

)}

− rȳr

]

if i ∈ R̄

ts1 = δ1ȳr

{

1+ θ1 log

(
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X̄d

)}

ts2 = δ2ȳr

{

1+ θ2 log

(
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)}

MSE(ts1) =





Ȳ2
d + δ21

�

Ȳ2
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2
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2
1 Ȳ
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2
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2
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
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2
dC

2
y + fnθ

2
1 Ȳ
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Subtracting Ȳd on both sides to the above expression, we get

Squaring and taking expectation both sides to (4), we get MSE of the estimator ts1 to the first order approxi-
mation as

Under the assumption of Searls logarithmic synthetic estimation Ȳ(1+ θ1A) = Ȳd , the MSE(ts1) can be 
expressed as

where

Partially differentiating (6) regarding δ1 and equating to zero, we get the optimum value of δ1 as

Putting the optimum value of δ1 from the above expression to (6), we get minimum MSE of the estimator ts1 as

Similarly, the first order approximated expressions of MSE and minimum MSE of the proposed synthetic 
estimator ts2 can be obtained. 	� �

Efficiency conditions
In the present section, we compare the minimum MSE of the proposed synthetic imputation methods with the 
corresponding minimum MSE of the existing synthetic imputation methods under schemes I and II.

Lemma 4.1  The proposed synthetic Searls type logarithmic imputation methods y.isj , j = 1, 2 dominate the synthetic 
mean imputation method y.im , if

Lemma 4.2  The proposed synthetic Searls type logarithmic imputation methods y.isj , j = 1, 2 dominate the synthetic 
ratio imputation methods y.irj under schemes I and II, if

Lemma 4.3  The proposed synthetic Searls type logarithmic imputation methods y.isj , j = 1, 2 dominate the synthetic 
logarithmic imputation methods y.ilj under schemes I and II, if

The proposed synthetic Searls type logarithmic imputation methods repress the synthetic mean per unit 
imputation method, synthetic ratio imputation methods and synthetic logarithmic imputation methods, if the 
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aforementioned lemmas are satisfied. The next section verifies the above lemmas utilizing a comprehensive 
simulation study.

Simulation study
A simulation study is executed to assess the effectiveness of the suggested synthetic imputation methods in 
comparison to the adapted synthetic imputation methods. In the simulation procedure, certain symmetrical 
and asymmetrical populations are produced in accordance with the models employed by Singh and Horn27. 
The model used are as follows:

where x∗ and y∗ are independent variables for the corresponding distributions. Considering the above models, 
we have generated the below mentioned populations: 

1.	 A Normal population of size N=6000 using x∗ ∼ N(12, 35) and y∗ ∼ N(13, 45) with varying correlation 
coefficients ρxy=0.1, 0.5, 0.9.

2.	 A Gamma population of size N=6000 using x∗ ∼ G(0.02, 0.006) and y∗ ∼ G(0.2, 0.011) with varying cor-
relation coefficients ρxy=0.1, 0.5, 0.9.

The above populations are divided into 6 equal domains of size 1000. We have drawn a random sample of 
sizes (n1, n2, n3, n4, n5, n6) = (200, 250, 300, 350, 100, 150) from the respective domains and chosen the 
varying response rates r1 = (170, 180) , r2 = (230, 240) , r3 = (270, 280) , r4 = (330, 340) , r5 = (80, 90) , and 
r6 = (130, 140) from the respective samples. The imputation strategy is taken and the MSE of the consequent 
estimators is computed by utilizing 15,000 iterations. The simulation procedure is explained in the undermen-
tioned steps. 

(i)	 Select a sample s of size n randomly from the population of size N.
(ii)	 Bring out randomly ( nd-rd ) sample units through sample s every time.
(iii)	 Impute selected units by considering the proposed imputation methods studied for quantified samples.
(iv)	 Compute the needed statistics.
(v)	 Iterated the prior steps 15,000 times.

The empirical (simulated) mean square error (EMSE) and the theoretical mean square error (TMSE). The TMSE 
is calculated using the MSE expressions of the respective estimators obtained in “Adapted imputation methods” 
and “Proposed synthetic Searls type logarithmic imputation methods”, while the EMSE is calculated utilizing 
the following formula:

where t∗=tm , trj , j = 1, 2 , tlj , tsj.
The results of the consequent synthetic estimators for normal and gamma populations are reported in Tables 1 

and 2, respectively.

Key results of simulation study
We interpret the key results of simulation study summarized from Tables 1 to 2 in the following points. 

1.	 The outcomes drawn from normal population for the consequent synthetic estimators are reported in Table 1. 
These outcomes show that: 

(a)	 the EMSE and TMSE of the consequent synthetic ratio estimator tr1 under scheme I decreases with 
the successive increase in the correlation coefficient ρxy from 0.1 to 0.9. This tendency in the EMSE 
and TMSE values of tr1 can be also observed from scheme II for the estimator tr2.

(b)	 the EMSE and TMSE of the consequent synthetic logarithmic estimator tl1 under scheme I decreases 
with the successive increase in the values of correlation coefficient ρxy from 0.1 to 0.9. This tendency 
in the EMSE and TMSE values of tl1 can be also observed from scheme II for the consequent synthetic 
logarithmic estimator tl2.

(c)	 the EMSE and TMSE of the consequent synthetic Searls type logarithmic estimator ts1 under scheme I 
decreases with the successive increase in the correlation coefficient ρxy from 0.1 to 0.9. This tendency 
in the EMSE and TMSE values of ts1 can be also observed from scheme II for the consequent synthetic 
Searls type logarithmic estimator ts2.

(d)	 the EMSE and TMSE of the consequent synthetic ratio estimators, synthetic logarithmic estimators, 
and synthetic Searls type logarithmic estimators decreases with the increase in the responding units 
rd under schemes I and II in each domain.

y = 5.5+
√

(1− ρ2
xy) y

∗ + ρxy

(

Sy

Sx

)

x∗

x = 5.3+ x∗

(8)EMSE(t∗) =
1

15, 000

15,000
∑

i=1

(t∗ − Ȳd)
2
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(e)	 the EMSE and TMSE of the consequent synthetic ratio estimators, synthetic logarithmic estimators, 
and synthetic Searls type logarithmic estimators under both schemes in each domain are observed 
to be very close to each other.

(f)	 the consequent synthetic Searls type logarithmic estimators tsj , j = 1, 2 perform better than the 
adapted synthetic mean estimator tm , synthetic ratio estimators trj , and synthetic logarithmic esti-
mators tlj under schemes I and II.

2.	 The similar tendency as observed from the results of Table 1 obtained from normal population for synthetic 
estimators can also be observed from the results of Table 2 obtained from gamma population for synthetic 
estimators.

3.	 Finally, from the results of Tables 1 and 2, the performance of the synthetic ratio estimators, synthetic loga-
rithmic estimators, and synthetic Searls type logarithmic estimators is better under scheme II compared to 
scheme I.

Table 1.   EMSE and TMSE of synthetic estimators under normal population.

ρxy rd

tm

Scheme I Scheme II

tr1 tl1 ts1 tr2 tl2 ts2

Domains EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE

1

0.1
170 2.74 2.56 1.94 1.85 1.23 1.19 1.22 1.19 2.04 1.95 1.22 1.19 1.21 1.18

180 2.70 2.48 1.87 1.78 1.16 1.12 1.15 1.12 1.93 1.84 1.16 1.12 1.15 1.11

0.5
170 2.30 1.93 1.48 1.41 1.05 1.00 1.04 1.00 1.50 1.43 1.00 0.96 0.98 0.96

180 2.20 1.85 1.40 1.33 0.97 0.93 0.96 0.93 1.41 1.34 0.94 0.91 0.92 0.90

0.9
170 1.55 1.36 0.49 0.47 0.44 0.40 0.42 0.40 0.36 0.34 0.27 0.26 0.26 0.26

180 1.47 1.28 0.41 0.39 0.35 0.32 0.33 0.32 0.33 0.32 0.25 0.24 0.24 0.24

2

0.1
230 2.01 1.89 2.32 2.24 1.47 1.44 1.46 1.43 2.44 2.36 1.46 1.44 1.45 1.43

240 1.95 1.81 2.23 2.15 1.38 1.35 1.37 1.35 2.30 2.22 1.38 1.35 1.37 1.35

0.5
230 3.20 3.17 1.74 1.67 1.23 1.19 1.22 1.19 1.76 1.69 1.18 1.14 1.17 1.14

240 3.11 3.09 1.65 1.58 1.14 1.10 1.13 1.10 1.66 1.59 1.11 1.07 1.10 1.07

0.9
230 4.58 4.54 0.56 0.54 0.49 0.46 0.48 0.46 0.41 0.39 0.31 0.30 0.30 0.30

240 4.50 4.46 0.47 0.45 0.39 0.38 0.38 0.37 0.38 0.37 0.29 0.28 0.27 0.28

3

0.1
270 2.61 2.55 2.41 2.32 1.54 1.49 1.52 1.48 2.54 2.44 1.52 1.49 1.50 1.48

280 2.53 2.48 2.30 2.23 1.43 1.40 1.42 1.40 2.37 2.30 1.42 1.40 1.41 1.39

0.5
270 1.68 1.60 1.63 1.56 1.16 1.11 1.15 1.11 1.65 1.58 1.11 1.07 1.10 1.06

280 1.63 1.52 1.54 1.48 1.07 1.03 1.06 1.03 1.55 1.49 1.03 1.00 1.02 1.00

0.9
270 1.60 1.60 0.47 0.45 0.41 0.39 0.40 0.39 0.34 0.33 0.26 0.25 0.25 0.25

280 1.57 1.52 0.39 0.38 0.33 0.31 0.32 0.31 0.32 0.31 0.24 0.23 0.22 0.23

4

0.1
330 5.00 4.91 1.76 1.70 1.12 1.09 1.11 1.09 1.85 1.79 1.11 1.09 1.10 1.09

340 4.81 4.83 1.69 1.64 1.05 1.03 1.04 1.02 1.74 1.69 1.04 1.03 1.02 1.02

0.5
330 4.80 4.80 1.33 1.28 0.95 0.91 0.94 0.91 1.35 1.29 0.90 0.87 0.89 0.87

340 4.77 4.75 1.25 1.21 0.88 0.84 0.86 0.84 1.27 1.22 0.84 0.82 0.83 0.82

0.9
330 3.28 3.24 0.44 0.42 0.39 0.36 0.37 0.36 0.32 0.30 0.24 0.23 0.24 0.23

340 3.19 3.16 0.37 0.35 0.32 0.29 0.30 0.29 0.30 0.29 0.23 0.22 0.22 0.22

5

0.1
80 3.44 3.09 2.54 2.37 1.62 1.52 1.60 1.52 2.68 2.49 1.60 1.52 1.58 1.51

90 2.89 3.23 2.44 2.28 1.51 1.43 1.50 1.43 2.51 2.35 1.51 1.43 1.50 1.42

0.5
80 1.75 1.57 1.67 1.56 1.18 1.11 1.17 1.11 1.69 1.58 1.13 1.06 1.12 1.06

90 1.62 1.62 1.57 1.47 1.09 1.03 1.08 1.02 1.59 1.49 1.06 1.00 1.05 1.00

0.9
80 2.52 2.10 0.47 0.44 0.42 0.37 0.40 0.37 0.34 0.32 0.26 0.24 0.25 0.24

90 2.22 2.02 0.39 0.37 0.33 0.30 0.32 0.30 0.32 0.30 0.24 0.23 0.23 0.23

6

0.1
130 3.97 3.81 2.49 2.43 1.58 1.56 1.57 1.55 2.63 2.55 1.58 1.56 1.57 1.55

140 3.81 3.73 2.39 2.33 1.48 1.46 1.47 1.46 2.47 2.40 1.48 1.46 1.47 1.46

0.5
130 5.15 5.06 1.64 1.75 1.17 1.24 1.16 1.24 1.67 1.77 1.11 1.19 1.10 1.19

140 4.76 4.68 1.55 1.65 1.08 1.15 1.07 1.15 1.56 1.67 1.04 1.12 1.03 1.12

0.9
130 5.01 4.74 0.47 0.54 0.41 0.46 0.40 0.46 0.34 0.39 0.25 0.30 0.24 0.30

140 4.75 4.66 0.38 0.45 0.32 0.37 0.31 0.37 0.31 0.37 0.24 0.28 0.23 0.28
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Real data application
Like most other Indian states, Uttar Pradesh is separated into a several districts for the purpose of taking taxes 
and conducting other administrative and agricultural works. Each district is further separated into a number 
of tehsils, and each tehsil is further separated into several blocks. Blocks are referred to as small domains in this 
study.

Since the area used for cultivation determines the yield of every crop. Therefore, for applications using real 
data, we take into account the problem of estimating agricultural output for various blocks in the Agra district 
of Uttar Pradesh. Six blocks in the Agra district are referred as small domains. The amount of Bajra crop pro-
duced (in tonnes) for the agricultural season 2021–2022 is regarded as the study variable y, whilst the area of 
Bajra crop produced (in hectares) for the agricultural season 2021–2022 is regarded as the auxiliary variable x. 

Table 2.   EMSE and TMSE of synthetic estimators under gamma population.

Domains ρxy rd

tm

Scheme I Scheme II

tr1 tl1 ts1 tr2 tl2 ts2

EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE EMSE TMSE

1

0.1
170 1.38 1.31 3.34 3.23 1.18 1.14 1.17 1.14 3.66 3.54 1.17 1.14 1.16 1.14

180 1.36 1.24 3.29 3.16 1.12 1.08 1.11 1.07 3.46 3.33 1.10 1.07 1.09 1.07

0.5
170 1.75 1.44 2.09 2.00 0.93 0.89 0.92 0.89 2.23 2.13 0.88 0.85 0.87 0.85

180 1.64 1.38 2.04 1.94 0.86 0.82 0.85 0.82 2.11 2.01 0.83 0.80 0.82 0.80

0.9
170 1.72 1.46 0.46 0.43 0.36 0.34 0.35 0.34 0.35 0.33 0.23 0.22 0.22 0.22

180 1.60 1.40 0.39 0.37 0.30 0.27 0.29 0.27 0.33 0.31 0.22 0.20 0.21 0.20

2

0.1
230 3.01 2.89 2.87 2.78 1.02 0.98 1.01 0.98 3.14 3.04 1.01 0.98 1.00 0.98

240 2.95 2.83 2.82 2.72 0.96 0.92 0.95 0.92 2.98 2.86 0.95 0.92 0.94 0.92

0.5
230 4.55 4.17 1.70 1.64 0.76 0.73 0.75 0.73 1.81 1.74 0.72 0.70 0.71 0.70

240 4.50 4.11 1.66 1.58 0.71 0.67 0.70 0.67 1.72 1.64 0.68 0.66 0.67 0.66

0.9
230 4.39 4.38 0.34 0.33 0.28 0.26 0.27 0.26 0.26 0.25 0.17 0.16 0.16 0.16

240 4.35 4.31 0.29 0.28 0.22 0.20 0.21 0.20 0.25 0.24 0.16 0.15 0.15 0.15

3

0.1
270 1.70 1.49 3.36 3.28 1.19 1.16 1.18 1.16 3.69 3.59 1.18 1.16 1.17 1.16

280 1.64 1.42 3.31 3.21 1.12 1.09 1.11 1.09 3.49 3.38 1.11 1.09 1.10 1.09

0.5
270 1.68 1.52 2.09 2.01 0.93 0.90 0.92 0.89 2.23 2.14 0.88 0.86 0.87 0.86

280 1.57 1.45 2.03 1.95 0.86 0.83 0.85 0.83 2.11 2.02 0.83 0.81 0.82 0.81

0.9
270 1.55 1.34 0.45 0.43 0.36 0.33 0.35 0.33 0.34 0.33 0.22 0.21 0.21 0.21

280 1.42 1.27 0.38 0.36 0.29 0.27 0.28 0.27 0.32 0.31 0.21 0.20 0.20 0.20

4

0.1
330 2.32 2.04 3.46 3.37 1.22 1.19 1.21 1.19 3.79 3.69 1.21 1.19 1.20 1.19

340 2.27 1.97 3.39 3.30 1.15 1.12 1.14 1.12 3.57 3.47 1.14 1.12 1.13 1.12

0.5
330 2.25 2.00 2.15 2.06 0.95 0.92 0.94 0.92 2.29 2.20 0.90 0.88 0.89 0.88

340 2.12 1.94 2.08 1.99 0.88 0.85 0.87 0.85 2.16 2.07 0.85 0.83 0.84 0.83

0.9
330 1.80 1.51 0.46 0.44 0.37 0.34 0.36 0.34 0.35 0.33 0.23 0.22 0.22 0.22

340 1.75 1.45 0.39 0.37 0.30 0.27 0.29 0.27 0.33 0.31 0.22 0.20 0.21 0.20

5

0.1
80 3.60 3.48 2.89 2.73 1.02 0.97 1.01 0.96 3.17 2.99 1.01 0.96 1.00 0.96

90 3.54 3.42 2.84 2.67 0.96 0.91 0.95 0.91 3.00 2.81 0.95 0.91 0.94 0.91

0.5
80 3.46 3.23 1.84 1.68 0.82 0.75 0.80 0.75 1.96 1.79 0.76 0.72 0.75 0.72

90 3.32 3.16 1.79 1.63 0.76 0.69 0.74 0.69 1.86 1.68 0.72 0.68 0.71 0.67

0.9
80 2.08 1.93 0.44 0.37 0.35 0.28 0.33 0.28 0.33 0.28 0.21 0.18 0.20 0.18

90 1.95 1.87 0.37 0.31 0.28 0.23 0.27 0.23 0.31 0.26 0.20 0.17 0.18 0.17

6

0.1
130 1.95 1.78 2.86 2.91 1.01 1.03 1.00 1.03 3.13 3.18 1.00 1.03 0.98 1.03

140 1.89 1.72 2.80 2.84 0.96 0.97 0.94 0.97 2.95 3.00 0.94 0.97 0.92 0.96

0.5
130 1.70 1.28 1.82 1.84 0.80 0.82 0.79 0.82 1.94 1.96 0.75 0.78 0.73 0.78

140 1.62 1.21 1.76 1.78 0.75 0.76 0.73 0.76 1.83 1.84 0.71 0.74 0.70 0.74

0.9
130 1.30 1.11 0.42 0.42 0.34 0.32 0.32 0.32 0.32 0.32 0.21 0.21 0.20 0.21

140 1.17 1.05 0.36 0.35 0.28 0.26 0.26 0.26 0.30 0.30 0.20 0.19 0.19 0.19
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Various information regarding the blocks of Agra district are reported in Table 3, whereas for easy reference, the 
parameters for each domain are shown in Table 4.

From the domain sizes (N1, N2, N3, N4, N5, N6) = (38, 53, 66, 45, 44, 53) mentioned in Table 4, we have 
selected samples (n1, n2, n3, n4, n5, n6) = (8, 11, 13, 9, 9, 11) , respectively. Out of these selected samples, 
the responding units are taken as r1 = (5, 7) , r2 = (7, 9) , r3 = (9, 11) , r4 = (5, 7) , r5 = (5, 7) , and r6 = (7, 9) , 
respectively. Taking the parameters of domain given in Tables 3 and 4, we have computed the MSE of the pro-
posed synthetic estimators.

The results based on the real data for synthetic estimators are reported in Table 5, respectively, which show 
the dominance of the proposed synthetic Searls type logarithmic imputation methods over the corresponding 
synthetic mean, ratio, and logarithmic type imputation methods. Under both schemes, the proposed synthetic 
imputation methods outperform the corresponding synthetic mean, ratio, and logarithmic type imputation 
methods. The MSE of the adapted and proposed synthetic estimators decreases as the responding units increase 
under both schemes in each domain. Moreover, the adapted synthetic ratio imputations, synthetic logarithmic 
imputations and the proposed synthetic Searls type logarithmic imputations perform better in scheme II com-
pared to scheme I.

Conclusions
In the current article, we have adapted synthetic mean, ratio, and logarithmic imputation methods, while pro-
posing synthetic Searls type logarithmic imputation methods for the estimation of domain mean in the case of 
missing data under simple random sampling. The algebraic expressions of MSE for the proposed imputation 
methods are derived to first order approximation. The algebraic conditions are obtained by comparing the MSE 
expressions of the proposed and adapted imputations. Furthermore, a comprehensive simulation is executed 
using a deliberately drawn normal (symmetric) and gamma (asymmetric) population in order to assess the 
performance of the suggested imputation approaches. The EMSE and TMSE obtained in simulation study show 
that for varying amounts of correlation coefficient as well as responding units in each domain, the suggested 
synthetic Searls type logarithmic imputation techniques excel compared to the adapted synthetic mean, ratio, and 
logarithmic imputation methods. Further, from the results of Tables 1 and 2, the EMSE and TMSE of the adapted 
and suggested estimators are observed to be very close to each other under both the schemes in each domain. In 
addition, an actual data set based on the production of Bajra crops in the Agra district of Uttar Pradesh, India, 
is also used to demonstrate the applicability of the suggested imputation approaches. The results of the real data 
also favour the suggested imputations compared to the adapted imputations. Therefore, under SAE, if missing 
data is identified, survey practitioners may be advised to employ the suggested imputation procedures.

Table 3.   Total production and area under Bajra crop in Blocks of Agra district for agricultural season 
2021–2022.

S.  No. Blocks of  Agra  District Number of  villages in  blocks
Total production  (in tonne) under the  Bajra crop 
in 2021–2022 ( Yd)

Total area  (in hectare) under the  Bajra crop in 
2021–2022 ( Xd)

1 Akola 38 12,516 5289

2 Broli Aheer 53 18,574 8125

3 Fatehabad 66 30,507 12628

4 Jaitpur Kalan 45 19,990 8165

5 Sainya 44 14914 7016

6 Shamshabad 53 26,111 10,162

Total 299 122,612 51,385

Table 4.   Population parameters for different domains.

Domains Nd Ȳd X̄d Syd Sxd ρyxd

1 38 329.37 139.18 248.07 99.73 0.965

2 53 350.45 153.30 334.28 142.61 0.985

3 66 462.23 191.33 422.58 165.61 0.986

4 45 444.22 181.44 263.40 115.00 0.983

5 44 338.95 159.45 223.79 99.51 0.982

6 53 492.66 191.74 318.35 124.93 0.987
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