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Neuronal travelling waves 
explain rotational dynamics 
in experimental datasets 
and modelling
Ekaterina Kuzmina 1,2,6*, Dmitrii Kriukov 2,3,6 & Mikhail Lebedev 4,5

Spatiotemporal properties of neuronal population activity in cortical motor areas have been subjects 
of experimental and theoretical investigations, generating numerous interpretations regarding 
mechanisms for preparing and executing limb movements. Two competing models, representational 
and dynamical, strive to explain the relationship between movement parameters and neuronal 
activity. A dynamical model uses the jPCA method that holistically characterizes oscillatory activity 
in neuron populations by maximizing the data rotational dynamics. Different rotational dynamics 
interpretations revealed by the jPCA approach have been proposed. Yet, the nature of such dynamics 
remains poorly understood. We comprehensively analyzed several neuronal-population datasets and 
found rotational dynamics consistently accounted for by a traveling wave pattern. For quantifying 
rotation strength, we developed a complex-valued measure, the gyration number. Additionally, we 
identified parameters influencing rotation extent in the data. Our findings suggest that rotational 
dynamics and traveling waves are typically the same phenomena, so reevaluation of the previous 
interpretations where they were considered separate entities is needed.

In motor cortical areas, such as the primary motor cortex (M1) premotor cortex (PMC) and supplementary 
motor area (SMA), most neurons modulate their firing rate in association with preparation and execution 
of limb movements. Nowadays, neurophysiologists strive to record from large populations of single neurons, 
which allows to better understand their ensemble properties. By varying motor tasks and recording from dif-
ferent subdivisions of the brain motor network, one can assess the composition of population activity and the 
information it encodes and processed.

Numerous experimental and theoretical studies have tackled the function of cortical motor networks, and sev-
eral models and interpretations have been proposed. The representational model that dates back to the time when 
neurophysiologists recorded from one neuron at a time posits that neuronal firing rate in motor areas represent 
various parameters, such as spatial target location, limb kinematics, and muscle  force1–5. The representational 
model has been widely used to interpret neurophysiological results and it has been practically tested in brain-
computer interfaces (BCIs) that converted neural activity into the parameters of prosthetic limb  movements6–9.

Yet, the representational model cannot account for the considerable variability of neuronal activity in the 
motor cortex. Neural representation can change across movements, contexts, and  behaviors10. Particularly, 
temporal patterns of single-neuron activity considerably vary whose directional tuning patterns could be very 
different during preparation versus execution of limb  movements11. To account for these peculiarities, more 
parameters should be explicitly added to the representational model—the approach that raises questions about 
the model  reliability10. An alternative interpretation of the highly complex activity of neurons in the motor and 
premotor cortex is based on the dynamical-system approaches where an emphasis is put on the collective activ-
ity of neuronal populations. Thus, the approach called optimal feedback control (OFC) describes how we move 
and utilize peripheral feedback without explicitly specifying each neuron’s activity in terms of represented motor 
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 variables12–17. In 2012, Churchland and colleagues developed a model that, like OFC, describes neural population 
activity using dynamical systems techniques but omits the sensory feedback term. In its simplest form, the model 
can be expressed as: Ẋ = MX , where Ẋ represents the time derivative of the neuronal state space vector, M is 
the dynamical system matrix, and X is the neural state space vector. The dynamical model suggests that neurons 
in the motor and premotor cortex do not so much represent movement parameters as keep an action  going18. 
Neurons become active when movement is  prepared17, with the subsequent dynamics solely governing movement 
progression. By constraining M to possess a skew-symmetric structure, the dynamical system yields rhythmic, 
oscillatory temporal patterns, known as rotational dynamics. Churchland et al. discovered these patterns in the 
motor cortex population activity of rhesus monkeys using joint Principal Component Analysis (jPCA), a linear 
dimensionality reduction method that projects data to the space maximizing rotational pattern and captures 
temporal dependencies between latent  states19. The projections of arm-reaching data were found to resemble 
curved trajectories in state space, indicative of a dynamical system that provides a “basis set for generating the 
necessary patterns of muscle activity”20.

Since the original publication of Churchland and his colleagues, the rotational dynamics perspective and 
the jPCA method have gained a widespread popularity in hundreds of subsequent publications. Rotations of 
low-dimensional jPCA (or PCA) projections have been studied across various brain areas and species (Fig. 1).

In monkeys, the following brain areas have been studied using jPCA: primary motor cortex (M1) and pre-
motor cortex (PM)20–38; somatosensory cortex (S1)22,24–26; supplementary motor area (SMA)28,29,39,40; primary 
visual cortex (area V1)21; frontal  cortex39,40, prefrontal  cortex41–43; and posterior parietal  cortex44. In humans, the 
following areas have been studied: primary motor cortex (‘hand knob’ area)45,46 and left superior temporal gyrus 
(STG)47 in individuals with movement impairment. In rodents, jPCA method has been applied to the data col-
lected in the following areas: auditory and motor cortices of  mice48–50 and primary motor cortex and dorsolateral 
striatum (DLS) of  rats51. Furthermore, jPCA method has been applied across different motor tasks and contexts. 
In monkeys, the following tasks have been studies: center-out hand-reaching  movements20–22,25,26,32,52 (cue-ini-
tiated and self-initiated27,29,35, executed and  observed32, instructed-delayed30,44, with corrective  movements36); 
reach-to-grasp hand  movements31,33,35,53;  isolated22 and delayed grasping  movements37,38; reach-grasp-manipulate 
 movements23,34; and cycling hand  movements28. Additional tasks include posture  perturbation24, time interval 
 estimation39,40, decision-making using working  memory41, perceptual decision-making42,43, perception of cyclic 
visual  stimuli21, and neural activity during sleep and  sedation35. In individuals with movement impairment, the 
following paradigms have been used: finger-reaching  movements45, speech and orofacial  movements46, and lis-
tening to  speech47. In rodents, the following tasks have been studied: mice during reach-to-grasp  movement50, 
listening to auditory  stimuli48 and decision-making  tasks49; rats during reach-to-grasp  movements51.

Despite the growing body of work exploring neural rotational dynamics across different brain areas, species, 
contexts, and movements, noticeable inconsistencies in the results and interpretations have emerged. Although 
various metrics exist to measure rotations in  data20,22,35,40,41, a precise definition of rotational dynamics remains 
elusive. In the original paper, rotations were defined as “consistent ordered state-space rotations across dif-
ferent reaching movements”20. Some authors considered trajectories rotational if specific requirements were 

Figure 1.  (a) The brain areas that were explicitly studied with rotational dynamics approach in rhesus monkeys, 
humans and rodents. Green or red colors indicate the discovered presence or absence of rotations respectively, 
while blue color depicts contradictory results. The intensity of the colors correspond to the number of papers 
examining this area of the brain. (b) The complex-valued measure showing the extent of rotational dynamics 
forms the gyration plane. (c) Examples of jPCA projections for different brain areas from datasets that were used 
in our study. The details of the datasets can be found in Supplementary Figs. S4–S5.
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 met42,45, but often, studies claimed the presence of rotational structure based on visual evaluation or R2 fitting 
 coefficients24,29,32,34,35,37,44,47. Visual estimation of rotational dynamics, combined with limited recorded movement 
 conditions22,25,26,45,46, could yield ambiguous results. Furthermore, no consensus exists on the causes of rotational 
dynamics and the significance of state-space rotations. Initially, studies on rotational dynamics implied an intrin-
sic, autonomous dynamical  system17,18,20. However, subsequent work proposed interpretations, including ongoing 
control of  movements24, sensorimotor feedback control and/or cognitive  strategy35,36,54. Interpretation difficulties 
extend beyond the motor cortex. For example, the supplementary motor area (SMA) neurons exhibited varying 
rotational patterns depending on the task. SMA neural activity did not exhibit rotations during reaching  tasks29, 
had rotational “helical population trajectory” during cycling hand  movements28 and rotated during time interval 
estimation  task40. It was suggested that the absence of rotational dynamics in SMA reflected the fact that “SMA 
keeps track of context and must robustly differentiate between actions that diverge with time”55. However, the 
same interpretation was used to explain why rotational dynamics were present in the superior temporal gyrus 
(STG): “structured rotational dynamics can act as clocks” and “indicate transition from one stimulus to the 
other”47. Many studies argued that rotational dynamics were generated due to the intrinsic recurrent connectivity 
of M1 and  PMd18,22,39,48,55,56, with recurrent neural networks (RNN) often used to validate this hypothesis. While 
RNNs (trained to produce muscle activity from neural activity) generated emergent rotational  dynamics18,41,57–59, 
one study found that “rotational dynamics were generated in networks trained with and without intrinsic recur-
rent connections”, which questions the connectivity  hypothesis24.

Some works suggested that rotational trajectories could be artifacts of the jPCA method. Churchland et al. 
proposed that “trivial rotations could emerge due to the method’s power in finding state-space rotations for 
diverse and multiphasic responses”20. To validate rotation importance, they employed data shuffling procedures, 
rearranging neurons between conditions. Additionally, Michaels et al. found that jPCA revealed trivial rotations 
for the representational view model, and the original shuffling procedures failed to differentiate between  them18. 
They proposed a more complex shuffling procedure, preserving the neuron covariance matrix while rearranging 
neurons between conditions. Subsequently, it was observed that previous shuffling procedures destroyed data 
rather than identifying triviality, leading to an even more complex shuffling method confirming that dynamical 
structure was not a byproduct of simpler  features60. Several publications questioned that state-space rotations 
describe any meaningful physiological functions and could be used only as a visualization tool whose interpreta-
tion remains obscure without additional  analyses61. Thus, Lebedev et al. demonstrated that rotations in neural 
population activity could represent spatiotemporal neural patterns best described as travelling  waves62. Travelling 
waves are frequently encountered in neural  datasets63–67, including motor learning  data68, and reach-to-grasp 
 movements51,69, as well as datasets for RNNs trained for muscle activity  production70 and decision-making41. 
Travelling wave patterns can arise in various data generation models, including simple generative models like 
the Generalized Kuramoto model, which is often used for simulating cortical  dynamics71,72 and can produce 
travelling waves and  rotations73, particularly when the structural connections and topology of oscillators are 
appropriately adjusted. Similarly, central pattern generator circuits, such as those in the lobster stomatogastric 
ganglion or the locust flight circuit, generate ordered activation sequences like the travelling waves in dynamical 
 systems20. Additionally, Proix et al.74 demonstrated that a temporal covariance matrix structure creates a horseshoe 
artefact - a frequently encountered consequence of dimensionality reduction methods that yields rotations of 
state-space trajectories.

Despite these ambiguities, rotational phenomena have been found in many brain areas, movements, contexts, 
and behaviors. This ubiquity raises questions about the commonalities between all neural population activities 
mentioned. Most existing works explore rotations heuristically. In contrast, our approach is purely data-driven: 
abstracting from assumptions about the data, like underlying dynamical or representation view models; and 
freeing from any interpretation of rotational dynamics, like an “engine of movement”20 or a “spring box”18. In this 
work, we sought an answer to the question: “Why do neural data rotate?” or, more formally, “What are the neural 
data properties that are necessary and/or sufficient for rotations to occur?” In order to answer this question, we 
analyzed the phenomenon of rotations and explored the necessary and sufficient requirements for its occurrence. 
We distinguished between individual rotations for one behavioral condition and structural rotations for all condi-
tions together, and identified the sources of rotational dynamics. While a travelling wave pattern was found to 
be sufficient for the occurrence of rotations in a single condition, structural rotations for a group of conditions 
were found to depend mostly on the relationship between the inter-conditional and intra-conditional variations. 
We introduced the gyration number, a complex-valued measure, to study neural datasets and detect structural 
rotations, and enable comparison between datasets. We used a simple structural rotation model to examine the 
gyration number properties and identify the data characteristics that influenced the pattern of structural rotation.

Results
We began by distinguishing between two concepts: condition-dependent rotation and structural rotation. The 
former referred to a single condition’s rotation resulting from the neural dynamics of that condition, while 
the latter denoted the tendency of multiple conditions to form a co-directional rotational pattern (similar to a 
“sheaf ” of trajectories). It was crucial not to confuse these two concepts of ‘rotations.’ We separately examined 
conditional and structural rotations, uncovering their nature and finding the necessary and sufficient condi-
tions for their occurrence. Importantly, we highlighted the limitations of dimensionality reduction methods in 
analyzing neural population dynamics data (Fig. 2a).

Necessary requirements for one-condition rotation
A necessary requirement refers to a parameter estimated from the data that unequivocally signifies the presence 
of rotations. Any one-condition neural recordings have a form of time-dependent vector that can be also treated 
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as a point moving in high-dimensional space and forming a trajectory. To answer the question “Is the trajectory 
rotational?” we had to define the concept of ‘rotations’ in general and develop a method to measure them. Several 
studies proposed to measure an angle between the radius vector to point trajectory and its velocity  vector20,41,42,45 
that detects the ‘rotational’ pattern but does not give much information about its magnitude. Instead of measur-
ing the angle, we propose to measure the curvature of a trajectory. Curvature is a measure of non-collinearity 
between velocity and acceleration vectors that is a differential measure of trajectory rotation at each point. Like 
angle, curvature has a clear interpretation as the inverse radius of the inscribed circle ( κ ∼ 1/Rκ ) tangent to the 
given point on the trajectory (Fig. 2a, embedded image).

Upon deriving the expression for the curvature (see “Methods”), we estimate it directly from the neural 
population data by calculating numerical gradients along the trajectory. An example of a one-condition projec-
tion on PCA1-2 space is shown in Fig. 2b, with the corresponding curvature calculated for both the curve in the 
original n-dimensional space (Fig. 2c) and the projected curve (Fig. 2d). This example illustrates how curva-
ture can change when applying dimensionality reduction techniques. In the original n-dimensional space, the 
curve exhibits strictly positive curvature, which should be interpreted as turning in one direction. The varying 
curvature magnitudes represent sharper turns in high-dimensional space. It is worth noting that these turns 
may disappear following the projection procedure (Fig. 2a). An examination of conditions in experimental 
datasets (Supplementary Fig. S2) reveals distortions of neural trajectories after PCA dimensionality reduction. 
They include trajectories whose direction of rotation is changed after projection, trajectories with locally huge 
curvatures after projection, and trajectories that are not much distorted after PCA projection. The latter typically 
occurs when PCA plane closely coincides with the plane which the trajectory lies in. To better understand how 
common trajectories are distorted across datasets and conditions, we compared curvature profiles before and 
after PCA compression in condition-wise manner (Supplementary Fig. S3). The figure clearly demonstrates how 
the original curvature profiles (Supplementary Fig. S3) become more sharp and reach very high values due to the 
artifacts of projection discussed earlier (Fig. 2a). We also quantified the differences between uncompressed and 
compressed versions of curvature profiles (Supplementary Fig. S3) with substantial distortions. These findings 
agree with our previous results regarding trajectory distortions after compression.

Therefore, we argue that the curvature profile provides an insight into the actual neural dynamics than its 
angle-based counterpart. Furthermore, a non-zero curvature value is a necessary requirement for the one-con-
dition rotation, as it directly indicates a non-zero angle between the acceleration and velocity of a moving point.

R 

 ~ 1 R/

Curvature of 218-dimensional neural data Curvature of 2-dimensional PCA data

PCA (2 components)Example of PCA rotations

a b

c d

Figure 2.  The necessary requirements for one condition rotation. (a) A schematic illustration of how 
dimensionality reduction techniques could distort the original shape of the trajectory. The embedded plot 
demonstrates the concept of curvature graphically. (b) Projection of one condition onto the PCA1-2 space. (c) 
The curvature of the original 218-dimensional curve changing across time. (d) The curvature of the projected 
2-dimensional curve changing across time. “Go cue” point refers to the movement onset time point. The data for 
panels (b, c, d) are taken  from20.
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Sufficient requirements for one-condition rotation
A sufficient requirement refers to the presence of a structure in the data that generates the observed rotational 
dynamics. We begin by examining the travelling wave approximation of neural population dynamics proposed 
 elsewhere62.

We constructed a peri-event time histogram (PETH) to visualize neuronal activity changes and their tim-
ings (Supplementary Fig. S5). By organizing neurons according to the peaks in their smoothed spike trains (see 
“Methods”), we identified a travelling wave pattern propagating through the neural network in published data. 
Authors of travelling wave  model62 speculated that this pattern is sufficient for generating rotational dynamics 
and even proposed a simple model (referred to as “naive”) consisting of basic Gaussian functions (Supplementary 
Fig. S8) shifted in time from each other (Fig. 3a). The underlying Gaussian function takes the following form:

where k is the time point of wave peak, σ determines “width” of the wave. One important observation is that the 
parameter k can be expressed as a function from the ordered indices of neurons, namely:

where j is an index of a peak-ordered neuron; b is a parameter determining incline of the wave on the Fig. 3a, we 
will also refer to it as a wave speed; a is an initial shift of the wave. Previously, it has been shown that if b = 0 the 
wave does not propagate and the related rotational dynamics  collapses62 (Supplementary Fig. S8). This is due to 
the activity of all neurons being strongly correlated and the corresponding covariance matrix (which is used for 
PCA computation) becoming singular. The other extreme case arises when the activity of neurons do not correlate 
(Supplementary Fig. S8) with each other ( b → ∞ ) leading to a diagonal covariance matrix and an absence of 
any rotational structure in the data (eigenvectors of such covariance matrix are just columns of identity matrix).

To elucidate the origins of rotational dynamics in the travelling wave structure, we propose two types of 
evidence: weak and strong, which demonstrate the sources of such dynamics. For the weak evidence, we need 
to examine the following extreme case in which only two neighboring (by index) neurons are correlated. In our 
naive model example, this case implies a tridiagonal Toeplitz feature covariance matrix (of size n× n , where n 

(1)f (k, t, σ) = exp

(

−(
t − k

σ
)2
)

(2)k = k(j, a, b) = bj + a

a b

c

d

e

Peri-event time histogram

jPCA projectionNeuron covariance matrix

Figure 3.  The sufficient requirements for one condition rotation. (a) Peri-event time histogram (PETH) of 
the simulated Gaussian travelling wave. (b) Oscillating eigenvectors of the Toeplitz Neuron covariance matrix 
structure corresponding to the simulated travelling wave. (c) Toeplitz covariance matrix for the simulated 
travelling wave. (d) Toeplitz-like differential covariance matrix ẊXT for the simulated travelling wave. Small 
distortions at the corners of the matrix are related to the cutoff of the wave at the edges of the PETH. (e) jPCA 
projection of the PETH data demonstrates the proper rotational dynamics.
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is the number of neurons). This matrix possesses a remarkable property: its eigenvalues and eigenvectors can be 
expressed in a closed  form75, specifically:

where ρ is the correlation coefficient between two neighboring neurons, and l is the index of a component of 
the j-th eigenvector. We can see from the eigenvector expression that it contains a sinusoidal function with an 
increasing period as the corresponding eigenvalue index increases. Plotting the first and second eigenvectors of 
the tridiagonal covariance matrix provides insight into the nature of rotational dynamics in naive model-derived 
 data76, where we observe a cyclic pattern, also known as a “horseshoe”74, generated by two orthogonal sinusoidal 
vectors with different periods. Consequently, the minimal model with the simplest covariance structure (con-
ditioned by the travelling wave) generates oscillating eigenvectors (Fig. 3b), explaining the rotational structure 
of projected data. We can generalize this approach by adding diagonals to the feature covariance matrix, which 
corresponds to the finite b coefficient in Eq. (2). One can demonstrate that the Toeplitz covariance matrix (Fig. 3c) 
also preserves the oscillating eigenstructure in this case. Moreover, this fact can be proven rigorously for the 
generalization of Toeplitz to Circulant  matrices77.

The strong evidence of rotational structure in travelling wave data arises from another object implicitly 
used in the jPCA procedure. The original paper describes jPCA as an approach to finding a projective space in 
which rotations are most  explicit20. To achieve this, the authors suggest finding a system matrix in the equation 
Ẋ = MX under the constraint that matrix M is a skew-symmetric matrix, i.e., M = −MT (referred to as Mskew ). 
This property implies that all eigenvalues of this matrix are purely imaginary, meaning that matrix Mskew acts as 
a rotation operator on X without inflating or contracting the corresponding trajectory. To confirm this fact, one 
can consider the solution to the jPCA problem in continuous time:

It is known that eMskew is an orthogonal matrix and, therefore, does not inflate (or contract) the trajectory X(t) 
over time. Thus, if neural population data have a specific structure implying a skew-symmetric system matrix, 
the data automatically generates rotational dynamics. What structure should the data have to imply a skew-
symmetric M? One can demonstrate that it is enough to examine the structure of the so-called time differential 
covariance matrix XTẊ78 (see Supplementary derivation A).

Figure 3d demonstrates that travelling wave data generated from our model (equation (1)) yield almost 
(omitting edge effects) skew-symmetric neuron differential covariance matrix ẊXT (the corresponding time 
differential covariance matrix is depicted in Supplementary Fig. S7). Moreover, we can show rigorously that the 
model of equation (1) generates skew-symmetric neuron differential covariance matrix satisfying the definition 
XTẊ = −(XTẊ)T (see Supplementary derivation B). Thus, the generated data implies rotational dynamics on 
the jPCA plot (Fig. 3e).

Thus, the proposed weak and strong evidence comprehensively demonstrate the presence of rotational dynam-
ics in the data with a travelling wave structure. Therefore, we contend that the presence of a travelling wave in 
a neural population data is a sufficient requirement for one-condition rotation but not for structural rotations 
discussed below.

Requirements for structural rotations
To better understand structural rotations, we constructed a complex-valued measure that can detect structural 
rotations in any time-course data, irrespective of the underlying model. We will then examine how the naive 
travelling wave model can generate such data and identify key parameters of this model that influence the occur-
rence of structural rotations.

Model-free approach for detection of structural rotations
Distinct experimental conditions produce varying neural population behaviors. However, when one condition is 
similar to another, they exhibit similar dynamics. When considering these similar conditions collectively, we can 
envision them as a “sheaf ” of trajectories in a multidimensional space. Dimensionality reduction techniques, such 
as PCA or jPCA, enable the visualization of multidimensional trajectories by projecting the original data onto 
a 2 or 3-dimensional subspace spanned by vectors that maximize variance (PCA) or the rotational component 
(jPCA). The standard jPCA procedure involves stacking different conditions within a single tall matrix in order 
to perform dimensionality reduction and then unstacking to reveal the desired ”sheaf ”  pattern20. However, the 
“sheaf ” pattern is usually not a subject of great interest due to the high similarity across the conditions. Conse-
quently, to highlight the differences between conditions the cross-conditional mean is usually subtracted from 
data, which is nearly equivalent to subtracting the first principal component. This is where structural rotations 
could emerge. High correlation of conditions and sufficient variation between values of conditional means 
(Supplementary Fig. S1) results in the formation of the low-dimensional manifold that exhibits rotations that 
could be detected by jPCA. However, in a classic jPCA problem, the matrix M fits data undergoing a procedure 
of compression (and thus the loss of information) with PCA. Otherwise, when fitting to full data, the method 
may experience convergence problems.

Next, we consider whether it is possible to capture the low-dimensional rotation pattern with a single-measure 
calculation from the complete dataset. In the previous paragraph, we provided a preliminary consideration of 
this question by examining the time differential covariance matrix XTẊ , which is directly related to the form 
of matrix M. It can be shown that if XTẊ exhibits skew-symmetry, then, ẊXT will also possess this property 

(3)�j = 1+ 2ρ cos
jπ

N + 1
vjl =

√

2

N + 1
sin

jlπ

N + 1
j, l = 1, . . . ,N

(4)X(t) = eMskewtX(0)
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(Supplementary Fig. S7)—we refer to ẊXT as the spatial differential covariance matrix. This matrix has a useful 
property: its eigenspectrum can detect low-dimensional rotations. Specifically, we can propose the following 
empirical rule: if the first pair of complex-conjugated eigenvalues ( �1 and �2 ) predominates compared to the 
power of the entire spectrum, and the imaginary parts of these eigenvalues are greater or approximately equal 
to their real parts, the entire dataset will exhibit structural rotations, i.e.

Thus, the data displaying a purely skew-symmetric spatial differential covariance matrix exhibit pronounced 
structural rotations (which we discuss below). In the experimental datasets, the matrix is not entirely skew-
symmetric and has a symmetric component that affects the corresponding real part of eigenvalues. When the 
eigenvalues possess a small negative real part (relative to the imaginary part), the jPCA of the data reveals a 
spiral-like decaying pattern. In contrast, a positive real part corresponds to an expanding spiral. However, if 
the real part of the eigenvalues becomes too large, the linear projective methods capture something other than 
a rotational pattern, resulting in the destruction of the observed rotation. In the limiting case, the differential 
covariance matrix may have purely real eigenvalues—in such a scenario, no rotational structure can be observed.

In light of these considerations, it is natural to allocate neural population dynamics datasets in the space 
spanned by real and imaginary parts of their first pair of complex-conjugated eigenvalues normalized by the 
spectrum power (Fig. 4)—we will refer to this approach as Gyration Plane. The normalized imaginary part meas-
ures the structural rotation component in the data and the normalized real part measures the inflation/deflation 
component of the data. This visualization approach provides a holistic view of the rotational dynamic problem 
allowing a comparison of different datasets with each other in the model-agnostic (no fitting as in jPCA) manner 
without the need for a dimensionality reduction procedure.

Model-based validation of the approach
The considerations above can be tested using the naive model of structural rotations—the travelling wave model. 
We have already described this model for single-condition rotation, and it can be easily generalized to pro-
duce structural rotations (see “Methods”). The primary motivation for this generalization is to explore different 
parameters of this model to better understand dataset behavior in the Gyration Plane. Let D ∈ R

c×t×n represent 
a dataset of neural population dynamics across c conditions. Based on Eqs. (1) and (2), we can formulate the 
following model to generate the dataset:

The function f now is an extended version of the Eq. (1), specifically:

Here, six parameters of the naive model define a specific synthetic dataset. Al represents the average amplitude 
of a wave in a given l condition, which can be perturbed with random noise εA ∼ N(0, σA) within the condition. 
k(j, a, b) = bj + a is defined as the phase (or shift) of the travelling wave, depending on neuron index j, wave 
speed b, and initial phase a; this can now be perturbed with phase noise εk ∼ N(0, σk) . σ is the average “width” 
of the wave in a specific condition, which can be perturbed with random noise εA ∼ U(0, σσ ) . Overall, this 
model represents a set of c travelling waves with a particular average amplitude Al that varies across conditions.

Figure 4b displays multiple datasets D generated by various parameter sets. Each embedded miniature rep-
resents the jPCA visualization of the corresponding dataset, positioned according to its coordinates in Rotation 
Space. The coordinates can be computed using a three-step algorithm: (i) stack the conditions of matrix D into 
the tall matrix X ∈ R

c·t×n ; (ii) identify the eigenvalues of the squared matrix ẊXT ; and (iii) calculate the coor-
dinates x and y in Rotation Space using the following formulae:

where �1 and �2 are the first pair of complex conjugated eigenvalues (or the first two largest eigenvalues for the 
case of real eigenspectrum).

To investigate how varying model parameters affect the position of a dataset D in the gyration plane, we 
begin with noise-free synthetic datasets comprising 8 conditions (chosen as it is the most common number of 
conditions found in the  literature18,22,24–26), 200 neurons ( n = 200 ), and Al ranging from 0.5 to 1.0. All preproc-
essing steps for jPCA construction, including cross-conditional mean subtraction and soft-normalization, are 
maintained. Miniatures with green borders display noise-free cases where only wave speed b and wave width σ 
parameters are altered. We observe that decreasing travelling wave speed transforms structural rotations toward 
a spiral-like pattern results in collapsed rotations as wave speed approaches zero. Conversely, simultaneously 
increasing wave speed and decreasing wave width results in pure imaginary rotations (leftmost green miniature), 
corresponding to a purely skew-symmetric spatial differential covariance matrix. This leads to our first conclu-
sion: the imaginary part of the first eigenvalue is associated with the roundness of the dataset, whereas the real 
part is related to its stretchiness.

(5)(
|�1| + |�2|
∑n

i=1 |�i|
≈ 1) and (|Im(�1,2)| ≥ |Re(�1,2)|).

(6)D = {f (t, j,Al , a, b, σ , εA, εk , εσ ) | j = 1, . . . n, l = 1, . . . c}.

(7)f (t, j,Al , a, b, σ , εA, εk , εσ ) = (Al + εA) exp

(

−

(

t − (k(j, a, b)+ εk)

σ + εσ

)2
)

.

(8)x =
|Re(�1)| + |Re(�2)|

∑n
i=1 |�i|

; y =
|Im(�1)| + |Im(�2)|

∑n
i=1 |�i|

;
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Introducing noise shifts the dataset towards the origin of the gyration plane and distorts the trajectories, which 
leads to the second conclusion: adding noise increases the dataset’s intrinsic dimensionality. Indeed, a noise-free 
dataset can be well-described by two complex-conjugated jPC components capturing pure rotations (round or 
stretched). In contrast, noise-contaminated travelling waves necessitate more components for accurate descrip-
tion. The rotation space captures noise-affected datasets in the vicinity of the origin, where the magnitudes of 
the first pair of complex-conjugated eigenvalues are no longer comparable with the entire spectrum (Eq. (5)).

We examined different numbers of conditions (Supplementary Fig. S9) and found that the relationships 
between datasets positions on gyration plane were preserved. We also examined different numbers of neurons, 
and again the relationships between datasets remained consistent. Altering the range of condition average ampli-
tudes (parameter Al from the Eq. (7)) makes the entire dataset more resistant to noise. A change in the initial 
shift of the wave (parameter a in the Eq. (2)) reduced the decay component (Supplementary Fig. S9).

Testing the approach on experimental datasets
We compared five experimental datasets containing 59 recordings in total, using the gyration number measure 
(Supplementary Fig. S6 and Fig. 5). These datasets varied in sampling frequency, movement timings, number 
of conditions, and neurons, and include diverse brain areas such as motor and premotor cortex (M1 and PMd), 
somatosensory (S1) cortex, supplementary motor area (SMA), prefrontal cortex (PFC), and parietal cortices. 

Gyration plane (generated data)

Ro
ta

tio
n 

ax
is

Decay axis

- wave amplitude noise
- wave width noise
- wave phase noise
- wave speed
- wave width
- noise free data
- data with noise

Figure 4.  The gyration plane for simulated datasets. Insets demonstrate differently parameterized synthetic 
datasets including limit cases (located on the perimeter) of gyration number. Each inset is attributed with a 
corresponding set of parameters used for simulation (based on the equation (7)). The parameters represent εA
—amplitude noise, εσ—noise is the wave width, εk—phase noise, b—wave speed and σ—wave width. The green-
colored insets boundaries represent noise-free cases ( εk , εA , εσ = 0), while blue-colored insets contain noise.
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More detailed description of the datasets can be seen in Supplementary Table 1. Four of the datasets were 
recorded from rhesus monkeys during hand-reaching movements while one dataset contained the recordings 
from SMA during grasping movements, where presumably the dynamics were non-rotational. We preprocessed 
the data according to the source papers and allocated all datasets in the gyration plane.

All datasets could be fitted to the naive model of a travelling wave with a high R2 and the peri-event time his-
togram (PETH) for each dataset exhibited a travelling wave structure (Supplementary Fig. S5). We also included 
three shuffled versions of the original dataset  from20, with the shuffling procedures implemented as described in 
the source article. In Supplementary Fig. S6 and Fig. 5 the datasets where no rotational dynamics were reported 
in the original papers are delineated with red bounds. This includes M1 and SMA recordings during grasping 
 movements22 and shuffled versions of dataset  from20.

The gyration plane can be empirically subdivided by the main diagonal into two areas. Datasets above the 
diagonal exhibit structural rotational dynamics, whereas those below it do not have structural rotational dynam-
ics. However, this division is empirical and the rotational and decay axis represent more of a gradient than a strict 
transition from structural rotations to unstructured ones. Nevertheless, it is useful to note that the majority of 
datasets that are assumed to have rotational structure concentrate in the area above the diagonal.

Figure 5b-f shows zoomed gyration plane insets. The datasets in Fig. 5b exhibit prominent rotations with 
high scores along the rotation axis. All the datasets in Fig. 5b are the neural recordings from M1 and PMd dur-
ing hand-reaching movements. The datasets in Fig. 5c have a higher score along the decay axis, but one can still 
observe prominent rotational dynamics visually. One of the main differences from the datasets in Fig. 5b is the 
diverse radius of conditions trajectories within each dataset. The conditions trajectories in each jPCA projection 
plot of Fig. 5c range from noisy conditions with small or non-rotational trajectory to conditions with a huge 
radius and clear rotational structure. Consistently with the gyration plane for the generated data (Fig. 4), the 
experimental datasets in Fig. 5c have more “stretched,” ellipsoidal shapes of rotations. Figure 5c contains data 

Figure 5.  The gyration plane for real neural population dynamics datasets. (a) Gyration plane—the visual 
representation of the developed complex-valued measure of structural rotations - gyration number. The real 
part of the gyration number corresponding to the decay axis shows the strength of the “stretching” force in the 
dataset which can be negative—trajectories contract, or positive—trajectories inflate. Both types deteriorate a 
pattern of structural rotations and, thus, the absolute value is demonstrated. The imaginary part of the gyration 
number corresponding to the rotation axis shows the strength of the “rotation” force in the dataset. The higher 
the imaginary part a dataset has, the stronger its structural rotations are. Typically (but not necessarily), a high 
imaginary part of a dataset’s gyration number is associated with proper structural rotations on the jPCA plot. 
b–d) The zoomed insets demonstrate the clear structural rotations pattern across datasets with different but 
high imaginary parts (above the diagonal line on the gyration plane as in Eq. (5)). More ”round” datasets are 
mostly concentrated near the rotation axis (inset b) while the more distorted ones (insets c, d) either have lower 
imaginary parts or significant real parts. e) The zoomed inset demonstrates datasets with low imaginary parts 
and high real parts of gyration numbers. The datasets demonstrate the deterioration of structural rotations as 
the imaginary part decreases culminating with the absence of rotational structure in the bottom part of the inset. 
f) The zoomed inset demonstrates datasets with small imaginary parts of the gyration number. The datasets 
demonstrate significant distortions of structural rotations reflecting the increase in the intrinsic dimensionality 
of data.
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from somatosensory (S1, A2) and parietal (A5) areas and a recording of M1. All recordings were made during 
hand-reaching movements, as in Fig. 5b.

In Fig. 5d, various datasets from M1 and PMd during hand-reaching movements are shown, as well as two 
datasets recorded during hand-grasping tasks. All these datasets exhibit an average degree of structural rota-
tions, with diverse radii of trajectories. The roundness of trajectories is also relatively small. These datasets are 
usually presumed to have a rotational structure. Figure 5f and e contain the shuffled dataset from Churchland 
et al.20 (red-green color scheme) and PFC dataset (green-blue color scheme), which contain a high frequency 
component that perturbs the structural rotational pattern. Thus, all datasets have a low rotational component in 
the data corresponding to a gyration number of approximately 0.15. Visually, we can evaluate those datasets as 
having weak and noisy structural rotational patterns. All datasets in Fig. 5e are below the main diagonal. There 
are two shuffled datasets of Churchland et al.20, one from Mante et al.43, and one is the neural activity of SMA 
recorded during grasping movements from Suresh et al22. All the datasets have been reported to have no rota-
tional dynamics. One can see that the worsening of rotational dynamics (e.g. because of the shuffling procedures) 
is accompanied by a gradual decrease of the rotational component of the gyration number.

Overall, these results demonstrate the high similarity of datasets and the usefulness of the gyration number 
measure in characterizing structural rotational dynamics in neural data.

Discussion
Although rotational dynamics have been investigated for different datasets for over a decade, several issues 
remain unclear. The two leading hypotheses, the dynamical model and the representational model, continue 
to coexist even though they offer very different interpretations. The former model posits that “rotations of 
neural state space are an indicator of the dynamical system”20, while the latter considers rotational dynamics as 
a derivative of  representations62,74,76. Attempts to merge these two models have been  made51,79,80, framing the 
representational perspective as addressing “What motor parameters are involved?” and the dynamical system 
perspective as focusing on “How does neuronal activity evolve in time?”11,81.

The dynamical system approach faces the same challenges as the representational model: rotations exhibit 
diverse shapes and occur during various movement types, contexts, and behaviors (see “Introduction”), which 
are difficult to explain by either model or their  combination16,17,29,51. As noted  in61,74, interpreting rotational 
structure following dimensionality reduction should be conducted cautiously, as it is easy to misconstrue the true 
meaning of the data structure. None of the interpretations named above can account for rotational phenomena 
from a data-driven perspective. Several approaches have been developed to study neural data  rotations82,83, 
including the probabilistic jPCA  method84, which isolates neuronal rotations from motor cortex hypotheses. 
The sequence-like response data model proposed by Lebedev et al.62 comes closest to achieving this goal. While 
not a comprehensive model of how cortical dynamics develop, accounting for different phenomena (such as the 
high variability of single-neuron  responses55), this model explains rotations by identifying a prominent structure 
in the data, namely, a travelling wave pattern.

In our study, we examined the idea of sequence-like responses further and expanded the analysis of rotational 
dynamics using a model-free perspective. We did not propose alternative models for generating neural activity 
or explanations for the underlying neurophysiological processes involved in voluntary movement generation. 
Instead, we demonstrated that a travelling wave is sufficient but not necessary for rotations to occur. Furthermore, 
we proposed an explanation for the structure and properties in the data that give rise to rotational patterns. This 
explanation allows us to construct a natural complex-valued measure of rotations, a gyration number, that pro-
vides a strict definition of rotational dynamics. With this measure, we were also able to compare different real 
datasets of neural dynamics. We distinguished between single-conditional rotations and structural rotations, 
and for the case of structural rotations identified the necessary and sufficient requirements for their emergence. 
We proposed that curvature, measured in high-dimensional space, is a good measure of rotationess of a single 
trajectory. Strictly positive curvature indicates rotation in one direction, which is necessary for single-condition 
rotation. The absolute value of curvature points to particular twists of the trajectory and provides an intuition 
about the multidimensional behavior of the trajectory. However, a clear rotations of the original multidimen-
sional single-condition trajectory could be distorted after dimensionality reduction methods (like PCA) due 
to improper projection (Fig. 2b). The jPCA method better maintains single-condition rotation; however, like 
all projection techniques, it is prone to altering the actual curvature of trajectories when dealing with multiple 
conditions, as shown in Fig. 2a.

While we acknowledge that low-dimensional manifolds can describe population dynamics, we emphasize 
that projective methods could generate false negatives and hide rotational dynamics in data where it actually 
exists. Given that all datasets in this study exhibited travelling wave data patterns, we assumed that a simple 
travelling wave model can reproduce the rotational dynamics of single-condition  data62. We demonstrated that 
such patterns imply a Toeplitz-like covariance matrix with oscillating eigenvectors (Fig. 3), and produce a clear 
horseshoe pattern in full coherence with PCA rotations of real neuron population data. Travelling wave data 
patterns also imply a skew-symmetric differential covariance matrix that yields an orthogonal rotational operator 
acting on the initial point of the data trajectory, as shown in the analytical solution of the jPCA problem (Eq. (4)). 
Thus, we conclude that the travelling wave pattern is the sufficient requirement for a single-condition rotation.

Dealing with structural rotations, we wondered how different datasets with different numbers of conditions, 
neurons, and time points can be compared with each other in terms of the extent of their rotations. As an answer 
to this problem, we proposed the gyration number as a complex-valued measure of structural rotations in neural 
population datasets. This two-fold measure captures rotation and decay, with the imaginary part of the gyration 
number indicating the strength of rotations, and the real part measuring the stretchiness of trajectories in the 
dataset. The gyration number, visualized on a complex plane, enables model-agnostic comparison of different 
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datasets in terms of their ’rotationess” (Fig. 4), without requiring dimensionality reduction and preserving the 
full data information. Datasets recognized as  rotating20,24,25 exhibit a high imaginary part of the gyration number, 
while those with poor or no rotations have a high real  part22. The gyration number provides a basis for meta-
analysis of neural population data, although the rationale for such an analysis is subject to further discussion.

Upon the introduction of the “rotationess” measure, we aimed to explore the possibility of different structural 
rotations. To achieve this, we generalized the travelling wave model for multiple conditions by introducing diver-
sity in parameters typically observed in real data (see Eq. (7)). Our observations revealed a crucial relationship 
between the intra-conditional variation (variance of the amplitudes of travelling waves within a condition) and 
inter-conditional variation (variance of the means of the conditions), which determines the existence of structural 
rotations (Supplementary Fig. S1). This relationship also affects the direction of the principal axes of a dataset and 
its corresponding jPCA (or PCA) representation. If the relationship favors the variance of the conditional means, 
a pronounced “sheaf ” pattern appears on the jPCA plot before the cross-conditional average subtraction, and 
clear circular structural rotations emerge after the subtraction. Conversely, if the intra-conditional variation is 
high, the structural rotations vanish. It is also worth noting that the operation of subtracting the cross-conditional 
average serves only for the decoration of jPCA  plot62 but does not alter the dynamics of structural rotations 
and merely changes the starting point of about half of them to the opposite sign. Consequently, all conclusions 
regarding the ratio of the internal conditional variation and variance of the conditional means remain valid.

Furthermore, we found that data processing steps significantly affect rotational dynamics. The part of the 
signal used for projection can at least bias the visual evaluation of rotational consistency. Additionally, the 
relatively small number of conditions recorded in some  studies24,45, can also affect rotational dynamics. The 
pre-processing step of applying a smoothing kernel to a spike train also greatly impacts rotational dynamics. 
For instance, we observed that slight changes in smoothing kernel width (from 10 to 20 ms) in the grasping 
movements  dataset22 resulted in either complete absence or presence of rotations for the neural activity recorded 
from the somatosensory cortex (Brodmann’s areas 3a and 2) (not shown). All these peculiarities raise additional 
questions regarding the interpretation and comparison of different works on rotational dynamics. We also 
demonstrated that structural rotations are not an artifact of the jPCA  technique62, but rather a property of the 
eigenstructure of the differential covariance matrix. To validate the importance of rotations, Churchland et al. and 
other  researchers18,20,45 employed various shuffling procedures. However, from a data-driven viewpoint, shuffling 
procedures are simply alternative ways of introducing additional intra-conditional variation to the initial dataset. 
Consequently, such procedures increase the dataset’s intrinsic dimensionality and modify the orientation of its 
principal axes, as we have described earlier (see Supplementary Fig. S1).

After considering the evidence presented, it is apparent that in many datasets, structural rotations are accom-
panied by a travelling wave pattern seen in the peri-event time histogram (PETH). The propagation speed, width, 
and consistency of this wave pattern provide a clear representation of the trajectories of conditions. Conversely, 
the absence of a travelling wave pattern results in the destruction of structural rotations. Supporting this, the 
naive travelling wave model can accurately describe real data, as demonstrated by its high R2 score and ability 
to reproduce structural rotations (Supplementary Fig. S5). It is possible to hypothesize that in arm-reaching 
movements, the time order of neurons’ firing is fixed, while it is not the case for grasping movements. In datasets 
without rotational patterns, the behavior of each neuron varies significantly between conditions (as seen in the 
grasping dataset). This leads to different patterns of travelling wave propagation, resulting in the destruction of 
structural rotations in the low-dimensional projection. Thus, structural rotations in the data only indicate the 
propagating wave of activity in the neural population, providing no insight into the underlying dynamical system 
that generates motor cortex activity.

After examining rotational dynamics from a data-driven perspective, we have concluded that developing a 
model of cortical dynamics based on such limited data may be an endless process, and debates about the nature 
of structural rotations may be unproductive. This raises the important question: “Are the rotations of low-
dimensional data projections encountered during numerous movements and in numerous brain areas useful?” 
Although there have been attempts to use rotational dynamics for BCI and hand kinematic  decoding23,85,86, this 
approach has not been widely adopted.

The main assumptions behind the travelling wave model were explained previously in Lebedev et al.62. In 
our analyses of the PETH diagrams for different datasets we used several simplified assumptions: (i) neuronal 
populations generally exhibit a travelling wave pattern; (ii) each neuron’s activity is represented by a uniform, 
simple-shaped unimodal Gaussian function (Eq. (1)); (iii) activity is uniformly time-shifted, modeled by a linear 
relationship in Eq. (2); (iv) parameters for individual wave generation in the population are assumed to follow 
Normal or Uniform distributions (noise parameters in Eq. (7)). These assumptions enabled the construction of 
a simple, yet flexible, model for analyzing structural rotations. However, this model, as a generalization of the 
travelling wave pattern, has inherent limitations. For instance, the Gaussian function representing individual 
neuron activity does not incorporate multiphasic neural activity. Moreover, travelling wave parameters vary 
across the datasets, with some exhibiting non-constant wave speeds and temporal shifts (e.g., Supplementary 
Fig. S5 for Gallego et al.25). Consequently, the model’s fit quality varies with dataset characteristics such as 
recording length, neuron count, conditions, sampling rate, and smoothing kernel width. High-frequency noise 
in datasets, as seen in Supplementary Fig. S4 for Mante et al.43, may not be accurately captured by our model. 
Notably, our usage of the travelling wave model is predominantly phenomenological. We do not advocate it as 
a data generation model, especially in the contexts beyond evident travelling wave patterns. This approach is 
both a limitation and a feature of our model, restricting neurobiological interpretations and speculations about 
potential generating dynamics. However, in our paper, the tightening of interpretations widens the space for 
fruitful and deep data analysis with mathematical frameworks for the patterns that we can observe in the data. It 
is crucial to differentiate a data model from a real-world object model. Our model (Eq. (7)) describes data well, 
as does the dynamical system  model20 (Eq. (4)), with its more complex formulation. However, the capability to 
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describe data does not necessarily imply accurate representation of the real-world phenomena. Asserting a data 
model as a real-world object model requires extensive validation beyond our study’s scope.

In conclusion, while enriches data analysis, we emphasize the importance of careful interpretation, avoiding 
overextension of its applicability to the dynamics in experimental datasets. It is important to keep in mind that 
the model of the rotations in the data is not a model of how the motor cortex generates volitional movements. 
The different goals that motivate model construction can affect model fitting and selection in dramatic  ways87. 
For example, in Lebedev et al.62, neural data  from20 was fitted to Lissajous curves with high precision. However, 
this does not imply that the underlying dynamics of the motor cortex are related to those curves. Eventually, as 
Bassett et al.  states87, “Perhaps the first and most fundamental question that one can ask about a model is whether 
it is a simple representation of data or a theory of how the system behind the data might work”88.

Methods
Data preprocessing
All data used in the study (see Supplementary Table 1) were preprocessed as in the original articles that provided 
data. All neuron firing rate recordings were sorted according to movement condition, smoothed with Gaussian 
kernels (from 10 to 30 ms), cropped, and soft-normalized before jPCA analysis. The shuffling procedures were 
implemented as in the original paper.

Peri-event time histograms (PETHs)
PETHs were first computed for each neuron and each condition. Next, across-condition averages were calculated 
for each neuron, and these average PETHs were used to sort neurons by their time of peak activity, that is to reveal 
an average travelling wave pattern. The same sorting was kept when individual conditions were inspected for the 
presence of the travelling wave. The function that performed this processing was similar to the one described in 
Lebedev et al.62. The function first normalized the data using Min-Max normalization. The mean across condi-
tions was subtracted. The data was then sorted by the average wave maximum.

It should be noted that unlike the dynamics observed for individual conditions which often contain mul-
tiphasic responses, PETHs sorted the way described above simplify neuronal response patterns which appear 
as unimodal in these population plots, as demonstrated in Lebedev et al.62. As such, these population PETHs 
visualize the travelling wave that persists across different conditions but mask the dynamics of individual neurons 
which could significantly vary across the conditions.

Measuring the curvature
Curvature is a measure of non-collinearity between velocity and acceleration vectors that has a differential meas-
ure of trajectory rotation at each point. Consider a time t parameterized space curve in n dimensions (with n 
representing the number of neurons in a condition) given in Cartesian coordinates by x(t) = [x1(t), . . . , xn(t)]

T . 
The original expression for curvature is as follows:

The presence of the cross product ( × ) in the numerator of the formula poses a challenge. It is well-known that 
the cross product is poorly defined for dimensions other than 3 or  789. Consequently, computing the result of the 
cross-product explicitly for an n-dimensional space is problematic. Fortunately, it is enough for us to estimate 
only the norm of curvature in order to understand its magnitude, which results in a significant simplification 
of the equation:

 where α represents the angle between the velocity and acceleration vectors. Consequently, the output is the abso-
lute value of the curvature. Although this could pose an issue when analyzing data with a change in the direction 
of rotation (e.g., an S-shaped trajectory), this is not an issue here because neural population data consistently 
exhibit strictly positive curvature (see Supplementary Figs. S4–S5).

The difference between curvatures
To conduct the analysis presented in Supplementary Fig. S3, we computed the curvature for each condition for 
every real neural activity dataset X, for both the uncompressed and PCA-compressed X̂ cases. Subsequently, we 
calculated the mean absolute error (l1-norm) between the corresponding curvature trajectories time points by 
averaging these values and measuring the difference.

 for l = 1, . . . , c is a condition for a dataset with c number of conditions. Notably, during compression, some 
trajectories exhibited very high curvature values. To facilitate the meaningful comparison, we clipped curvature 
values that exceeds 1000 before taking average. This approach ensures consistency of conditions comparison in 
our analysis while accommodating the variances introduced by compression.

(9)κ =
||x′(t)× x′′(t)||

||x′(t)||3

(10)κ =
||x′(t)|| · ||x′′(t)|| sin α

||x′(t)||3
=

√

||x′(t)||2 · ||x′′(t)||2 − (x′(t)Tx′′(t))2

||x′(t)||3

MAEl =
||κ(Xl)− κ(X̂l)||1

Ntimepoints
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Plotting rotational trajectories in jPCA plane
We utilized the repository available at https:// github. com/ bantin/ jPCA for plotting jPCA plots. This repository 
provides all necessary code for proper data normalization before jPCA plotting according to the original  study20. 
We added a minor customization of the original code to use different color schemes when it was needed.

Fitting running waves to real neural datasets
To demonstrate that the naive travelling wave model can accurately describe real data we used scipy.optimize.
curve_fit function to fit a naive travelling wave model to individual neural recording trajectories (i.e. the wave 
parameters are fitted to a recording of one neuron in one condition). We next calculated the R2 score for each fit 
and plotted the distribution of obtained R2 scores per dataset (Supplementary Figs. S4–S5).

Data availability
Datasets are available by links in Supplementary Table 1. All datasets are in open access.

Code availability
Code of this project is available on https:// github. com/ NevVe rVer/ neural- dynam ics- gyrat ion.
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