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Identification of unique 
genomic signatures in patients 
with fibromyalgia and chronic pain
Gayatry Mohapatra 1*, Fabien Dachet 1, Louis J. Coleman 1, Bruce Gillis 2 & Frederick G. Behm 1

Fibromyalgia (FM) is a chronic pain syndrome characterized by widespread pain. The pathophysiology 
of fibromyalgia is not clearly understood and there are no specific biomarkers available for accurate 
diagnosis. Here we define genomic signatures using high throughput RNA sequencing on 96 
fibromyalgia and 93 control cases. Our findings revealed three major fibromyalgia-associated 
expression signatures. The first group included 43 patients with a signature enriched for gene 
expression associated with extracellular matrix and downregulation of RhoGDI signaling pathway. 
The second group included 30 patients and showed a profound reduction in the expression of 
inflammatory mediators with an increased expression of genes involved in the CLEAR signaling 
pathway. These results suggest defective tissue homeostasis associated with the extra-cellular matrix 
and cellular program that regulates lysosomal biogenesis and participates in macromolecule clearance 
in fibromyalgia. The third group of 17 FM patients showed overexpression of pathways that control 
acute inflammation and dysfunction of the global transcriptional process. The result of this study 
indicates that FM is a heterogeneous and complex disease. Further elucidation of these pathways 
will lead to the development of accurate diagnostic markers, and effective therapeutic options for 
fibromyalgia.

Fibromyalgia (FM) is a chronic pain syndrome that for decades has been questioned as a medical disease or 
merely a collection of symptoms. Those symptoms include chronic, non-remitting pain, body area tenderness, 
persistent fatigue, recurrent headaches, “brain fog,” generalized anxiety, chronic depression, poor sleep, leg 
cramps, numbness and tingling, difficulty concentrating and restless legs while  sleeping1. “Fibrositis” was the first 
name assigned to this collection of medical complaints. The first proposed criteria for identifying FM patients 
were put forth in 1990 by the American College of Rheumatology for the purpose of identifying patients for 
 research2. The proposed criteria included a history of widespread pain and eighteen designated tender points 
on physical examination. In 2016, the American College of Rheumatology put forth provisional criteria for FM 
and revised these in  20163–5. However, these criteria are difficult to assess in the clinical realm and are not widely 
accepted such as evidenced by another diagnostic system proposed by the American Pain Society in  20195.

While there are no biomarkers available for accurate diagnosis of FM, our group used a multiplex cytokine 
assay, to report cytokine profiles for FM  patients6. This study showed that pro-inflammatory cytokines such as 
IL6, IL8, MIP-1 α (CCL3) and MIP-1 β (CCL4) are consistently under expressed in FM patients as compared 
to a control group of healthy individuals. Subsequently, a second independent study demonstrated that these 
biomarkers were unique to FM and did not occur in rheumatoid arthritis or systemic lupus  erythematosus7.

Current investigations into the pathophysiology of FM have focused on the immune system (e.g., inflamma-
tory and anti-inflammatory cytokines)1, the nervous system (e.g., neuro-immune axis, pain processing, neuro-
transmitters, autonomic nervous system)8, the digestive system (a gut-brain axis and the gut microbiome)9,10, and 
genetics (e.g., genome-wide linkage analysis, twin studies, pain and neurotransmitter gene abnormalities)11–14. 
Various approaches have been used to characterize molecular and biological pathways involved in FM. Study 
investigating thrombosis-related parameters in patients with FM reported elevated platelet, RBC counts and 
fibrinogen levels and a decreased prothrombin time suggesting an enhanced inflammatory tone and possible risk 
of thrombosis-related cardiovascular  disease15. Increased levels of C-reactive protein (CRP) and apolipoprotein B, 
two biomarkers linked to cardiovascular events in FM has also been  reported16. Microarray based gene expression 
analysis has implicated an autoimmune component in the pathogenesis of FM with the presence of dual gene 
signatures of TH17 and type I interferon; higher levels of IL-17 producing CD4+ T cells and serum cytokines 
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such as TGF-beta, IL-6, IL-21 and IL-23 that promote Th17 differentiation confirming the presence of chronic 
inflammatory  process17. Proteomic analyses of plasma proteins from women with FM have shown increased 
levels of specific plasma proteins suggesting systemic differences in protein expression associated with different 
clinical  parameters18,19. A hypomethylated DNA pattern enriched for genes implicated in stress response and 
DNA repair has also been reported in  FM20. However, the findings of many of these studies are often contradic-
tory, including a small number of samples and many have not been independently confirmed. Finally, Chronic 
pain may not always be linked to genes but may be caused through interaction between genes, environmental 
and life style  factors21. Due to significant phenotypic heterogeneity, multi-omics approaches may shed light on 
the underlying biological processes involved in FM and chronic pain.

To gain a comprehensive overview of the transcriptional processes and to define a potential genomic sig-
nature of FM, we performed high throughput RNA sequencing (RNA-seq) on peripheral blood mononuclear 
cells (PBMC) from 96 FM patients and 93 control individuals. Inclusion in the FM group required meeting the 
criteria of the 2016 College of Rheumatology and having a positive FM cytokine  assay3,6. Our major objectives 
were to identify transcriptional differences between FM and healthy controls; to identify subgroups within the 
FM cohort, and to improve diagnosis and patient stratification using FM specific biomarkers. First, we assessed 
differentially expressed genes in FM cases compared to healthy controls. We then used bioinformatic tools to 
identify subgroups of FM patients with distinct genetic signatures.

Material and methods
Study participants
This study was performed with the approval of the institutional review board of the University of Illinois at 
Chicago (Office for the Protection of Research Subjects, OPRS) and all methods were performed in accord-
ance with the relevant guidelines and regulations. The study groups consist of 96 FM patients (91 females and 
5 males) and 93 control cases (41 females and 52 males). The participants (FM and controls) included in this 
study did not overlap with the participants from the previous study published in  20126. All participants provided 
written informed consent. The inclusion criteria for FM followed the 2016 criteria of the American College of 
 Rheumatology3–5 and had a positive fibromyalgia assay (FM/a)3,6. The control group did not fulfill the 2016 crite-
ria of the College of Rheumatology and had a negative fibromyalgia assay (FM/a). The FM/a included expression 
analysis of four cytokines, IL6, IL8, Mip1-α/CCL3 and Mip1-β/CCL4 and relied on the functioning of viable 
PBMC as previously  described6. Exclusion criteria, both for patients and controls, were the presence of any other 
chronic disease (diabetes, heart disease or cancer). A questionnaire was used for the collection of demographic 
and clinical data from participants. None of the patients were treated with anti-inflammatory drugs at the time 
and 3 months before the start of the study.

Sample collection, RNA extraction, library construction and sequencing
For genomic analyses, blood samples (9–10 mL) from FM and control individuals were collected in Streck tubes 
(Streck, La Vista, NE). Samples were centrifuged at 2500 rpm to separate the plasma, PBMC and RBC layers. After 
removing plasma, the RBCs were lysed using Qiagen RBC lysis buffer and centrifuged for 20 min at 2500 rpm at 
room temperature. Cell pellets were washed in PBS twice to remove any trace of RBC, then homogenized using a 
QIAshredder homogenizer in 600 μL RLT buffer containing β-mercaptoethanol. Total RNA was extracted using 
QIAamp RNA blood mini kit (Qiagen, Germantown, MD). RNA quality was assessed using Agilent RNA screen 
tape and TapeStation 4200 (Agilent Technologies, Santa Clara, CA) and a nanodrop spectrophotometer was used 
to estimate the concentration and purity of RNA (Nano-Drop Technologies, Wilmington, DE).

RNA libraries were prepared using Agilent SureSelectXT RNA Direct workflow following manufacturer’s 
instructions. Briefly, 200 ng of RNA was transferred into strip tubes and samples were completely dried at 30 °C 
in a vacufuge (Eppendorf). RNA-seq fragmentation mix was added to each sample, mixed by vortexing gently 
at 2000 rpm for 10 s. Fragmentation was carried out at 94 °C for 8 min and kept at 4 °C. RNA-seq first strand 
master mix was added to each sample and the first strand was synthesized using the following thermal cycling 
condition 25 °C (10 min), 37 °C (40 min) then maintained at 4 °C with heated lid on. The first stand was puri-
fied using Agencourt AMPure XP beads (Beckman Coulter Genomics). Second-strand cDNA was synthesized 
and end-repaired at 16 °C for 1 h. The second-strand cDNA was purified using Agencourt AMPure beads. 
The 3’ ends of cDNA were dA-tailed at 37 °C for 30 min and adaptors were ligated to each dA-tailed cDNA at 
20 °C for 15 min. The adaptor ligated cDNA was purified using Agencourt AMPure beads and was amplified 
using pre-capture thermal cycling conditions. The quality of the pre-captured library was assessed using D1000 
ScreenTape on Agilent 4200 TapeStation system. The region between 150 and 400 bp was used for quantifica-
tion. Hybridization was carried out overnight at 65 °C in a thermal cycler using 200 ng of pre-captured library. 
For capturing the targets, SureSelectXT Human All Exon V6 baits were used (Agilent Technologies Inc., Santa 
Clara, CA). The captured libraries were then amplified to add the index tags and were purified using Agencourt 
AMPure beads and finally eluted in low TE buffer. The quality and quantity (region of 150–500 bp) of libraries 
were assessed using high sensitivity D1000 screen tape on a 4200 TapeStation system. Paired-end sequencing 
was performed at 2 ng/µL concentration on a NovaSeq 6000 system pooling 25 libraries/S4 flow cell (Illumina, 
San Diego, CA) with an average of 136 million reads per sample. Raw data have been submitted to NCBI and 
GSE221921 provides access to all data (https:// www. ncbi. nlm. nih. gov/ gds/? term= GSE22 1921).

Data analysis
FASTQ files corresponding to the forward and reverse reads for 189 samples in total, 96 FM and 93 control 
were obtained from Illumina BaseSpace and used for analysis. The files were processed using the Trim Galore 
(Babraham Bioinformatics) and Cutadapt (DOI: https:// doi. org/ 10. 14806/ ej. 17.1. 200) tools to perform a quality 
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trimming by removing short, low-quality reads and the adapters. RNA-seq reads were mapped to the refer-
ence genome (Gencode.v38) and aligned using STAR  aligner22. Duplicate reads were removed, and uniquely 
mapped transcripts were selected using  Samtools23. The TPMs (Transcripts per million) were computed using 
 StringTie24 corrected by  IsoformSwitchAnalyzeR25 and normalized using TMM (Trimmed Means of M value)26. 
Differential expression analysis was performed using  DESeq227, using all annotated genes. Ontological analysis 
of gene expression was carried out using the Qiagen Ingenuity Pathway Analysis (IPA), and Gene Set Enrich-
ment Analysis (GSEA)28. The Interactome analysis was carried out by Pearson Correlation clustering using the 
914 most differentially expressed genes for FM1, the 361 most differentially expressed genes for FM2 and the 
402 most differentially expressed genes for FM3 and FM4 using  Cytoscape29, the clusters were determined by 
AlegroMcode (AllegroViva Corporation, 2011) using default parameters.

Results
Clinical characteristics of FM patients
The median age of patients participating in this study was 48 years of age with overall ages ranging from 28 to 
77 years. The median age of the onset of FM was 36 years of age. The median age of control patients was 39 years, 
with ages ranging from 20 to 69 years. The clinical characteristics of the entire cohort are presented in Table 1.

We performed hierarchical clustering to test whether using clinical characteristics alone, the FM and control 
cases can be sub-grouped. A near perfect separation of two groups was observed (Fig. 1A) based on clinical 
symptoms. Only a minority of cases were misclassified: three control subjects: #286, #332, #335 were assigned 
to the FM group while two FM patients: #028, #078 were assigned to the control group. These five cases were 
not included in the downstream analysis.

Hierarchical clustering of patient symptoms in the FM cohort indicated that there were three questions that 
were redundant: (1) patients with poor sleep and insomnia also had memory impairment, (2) depression was 
related to anxiety and nervousness, and (3) patients who had body pain were more susceptible to have tender 
points (Fig. 1B). Principal component analysis (PCA) of the symptoms in FM patients indicate that the non-
random explanation of variance is represented only on the first component and accounts for 18% of the observed 
variance (Supplementary Fig. 1). This suggests that globally the symptoms of FM patients were homogeneous, 
except for patient #078 who appeared to be the only outlier marked by the absence of body pain and tender areas 
but instead reported the presence of depression with physical fatigue.

Cluster analysis of RNA-seq data
Differentially expressed genes were obtained using linear model with the software ‘R’ (https:// www.R- proje ct. 
org/). To visualize the results of unsupervised clustering we plotted the logarithm of the TPMs using the heatmap 
function of ‘R’. A total of 1720 differentially expressed transcripts were used to draw the heatmap using the algo-
rithm of TPMs. Of the 90 control cases, 70 formed a tight cluster and 20 were outliers (Fig. 2A, Supplementary 
Fig. 2). The 20 outliers from the control group dispersed among FM1-3 patients. However, the entire cohort of 
94 FM and 90 controls were used for all downstream analyses. The PCA indicated a homogeneous group of 43 
patients which we labeled as FM1 and another group of 30 patients labeled as FM2 with unrelated underlying 
gene expression. The remaining group of 21 patients could be separated into two clusters of 8 and 9 patients 
each (FM3 and FM4) and 4 outliers (Figs. 2B, 6A). For further analysis, we focused on FM1, FM2 and combined 
FM3 and FM4 as a group.

A total of 1720 differentially expressed genes (DEGs) were identified in the entire FM cohort with FM1 hav-
ing 914 DEGs, FM2 having 361 DEGs, FM3 and FM4 having 402 DEGS. Of the 1720 DEGs detected, 1695 were 
protein coding, 24 lncRNA and 1 miRNA (Supplementary Table 1).

Table 1.  Clinical characteristics of FM and control groups.

Clinical features FM group (96) Control group (93)

Gender F- 91, M–5 F–43, M–50

Age Median–48 (range 28–77) Median–45 (range 20–69)

Age of onset/diagnosis Median–36 (range 12–66) N/A

Muscle/Body pain 93 (97%) 0

Tender areas 91 (95%) 0

Chronic fatigue 92 (96%) 4 (4%)

Sleep disorder 85 (88.5%) 4 (4%)

Anxiety 77 (80%) 11 (12%)

Joint aches 84 (87.5%) 6 (6.5%)

Frequent headaches 56 (58%) 2 (2%)

Restless legs/Leg cramps 69 (72%) 5 (5.4%)

Numbness or tingling 74 (77%) 6 (6.5%)

Trouble remembering 87 (90.6%) 0

Trouble concentrating 90 (94%) 8 (8.6%)

Depression 64 (67%) 10 (10.8%)

https://www.R-project.org/
https://www.R-project.org/
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Analysis of FM1 subgroup
The FM1 subgroup consisted of 43 patients with a similar gene expression pattern. PCA analysis of 480 most 
DEGs in the 43 FM1 patients and 90 control patients showed a clear separation of patients between FM1 and con-
trols (Fig. 3A). The first component of the PCA encompassed 82% of the total variation indicating that the disease 
state (Control vs FM1) is the major cause of gene expression difference between these two groups. To understand 
biological pathways that are specific to the group of 43 FM1 patients, we first performed interactome analysis 
to identify functional interactions and to pinpoint the DEGs which are most susceptible to being expressed in 
the same cells. Then we performed IPA on these DEGs to identify the pathways that are associated with these 
genes. The interactome analysis identified a major cluster composed of 338 DEGs represented in magenta and a 
smaller cluster of 24 DEGs represented in green (Fig. 3B). The DEGs represented in magenta indicate the pres-
ence of a cell (or group of cells) with coordinated gene expression across patients of the FM1 subgroup while 

Figure 1.  Hierarchical clustering of FM patients and controls. (A) Hierarchical clustering of patient symptoms 
indicates a near perfect separation into two groups. A minority of patients were misclassified: three control 
subjects #286, #332, #335 were assigned to the FM group while two FM patients #028, #078 were assigned to the 
control group. Average linkage using Euclidean metrics with k = 2 classes, control patients represented in blue, 
FM patients represented in red, misclassified patients are identified by an asterisk. (B) Clustering of FM patient 
symptoms. The symptoms were grouped by hierarchical clustering using average linking of Pearson correlation 
metric. The vertical bars represent the three groups of correlated symptoms that are present. The star ’*’ or ’0’ 
represents the significance of the cluster. ’0’: No significant correlation, ’*’ : adjusted p-value ≤ 0.01.
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the DEGs represented in green appear to represent a biological process. We used the genes included in each of 
these clusters for IPA analysis and found that the significant pathways represented by the major magenta DEGs 
belonged to extra-cellular matrix genes involved in connective tissue disorders (pulmonary fibrosis, wound heal-
ing, cytoskeletal organization, etc.) (Fig. 3C, Table 2). Also, these DEGs pinpoint the presence of upregulated 
GP6 pathway and the downregulation of Rho GDP-Dissociation Inhibitors (RHODGI) signaling (Fig. 3D). The 
minor cluster is composed of 24 DEGs that correspond to cell cycle associated genes (Fig. 3E).

Gene set enrichment analysis (GSEA) of FM1 subgroup
Independent of IPA results that searched pathways inside a private database, we also analyzed the whole gene set 
using GSEA (Gene Set Enrichment Analysis)28. This type of analysis ranks the genes from the most differentially 
expressed to the least differentially expressed and searched among all the known gene sets present in public 
databases to identify the most enriched gene set. We also analyzed a custom gene set that code for nine proteins 
composed of the extra-cellular matrix extracted from (Reactome.org): Collagen, Fibrinogen, Elastin, Fibrillin, 

Figure 2.  Summary of DEGs identified in FM subgroups. (A) Representation of the proportion of controls 
and FM patients based on their gene expression. 70 control patients with similar gene expression clustered 
together. The 20 controls that did not have similar gene expression profile are indicated as outliers. Among the 
FM patients, subgroups with different gene expression profiles were detected. The major group called ‘FM1’ was 
formed by 43 patients, a second group called ‘FM2’ was formed by 30 patients. The rest of the FM patients could 
be separated into two clusters of 8 and 9 cases respectively and 4 outliers. (B) PCA of FM and controls. PCA of 
the entire cohort of 94 FM and 90 controls was performed using 1169 DEGs that showed the most significant 
differential expression. The first component axis shows 46.1% while the second component shows 8.8% of the 
information. No other components than the first and second components were found useful. Ellipses show 
80% confidence interval of each group, the supersized dot corresponds to the centroid of the group. Control 
patients are represented by a dark blue dot, control patients classified as outliers are represented by a cyan dot, 
fibromyalgia patients FM1, FM2, FM3, FM4 are represented by a red, green, magenta, orange dot respectively. 
The 4 FM patients that did not group together are represented by brown dots.
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Figure 3.  Analysis of DEGs in FM1 subgroup. (A) PCA of the 90 controls and the 43 patients of FM1 subgroup 
using 480 DEGs that showed the most significant differential expression. The near perfect separation shows 
that most of the variation is represented by the first component (82%). Blue dots: control patients, Red dots: FM 
patients, the ellipses correspond to the threshold at 80% confidence. Cyan dots show the outlier controls. (B) 
The interactome analysis of 43 FM1 patients showed a group of 338 DEGs (magenta color) and a small cluster of 
24 DEGs (green color). Each dot represents a DEG, the gray dots represent DEGs that did not reach significance. 
(C) Pathway analysis of the DEGs in the major cluster (magenta) and the minor cluster (green) using a threshold 
of –log (p value) ≥ 2. (D) Summary of biological functions related to the pathways identified in FM1 patients. (E) 
Small clusters of 24 genes (green) including coding and lncRNA from the interactome analysis, are associated 
with cell cycle regulation. Blue: Downregulation, Orange: Upregulation.
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Fibronectin, Fibulin, Laminin, Matrilin and Tenascin. GSEA of the FM1 dataset revealed that the expression 
pattern most prominently correlates with olfactory receptor activity (NES = 2.1, p-value < 0.05) and extracellular 
matrix 9 proteins (NES = 2.0, p-value < 0.0001) (Fig. 4A,B).

Analysis of FM2 subgroup
The FM2 subgroup was composed of 30 patients who showed a similar type of gene expression pattern. Principal 
component analysis of the 361 DEGs in the 90 control and 30 FM2 patients showed a separation of patients 
between the controls and FM2 on the first component (Fig. 5A). The first component of the PCA encompassed 
34% of the total variation while the second encompassed 6.3% indicating that the disease state (Control vs FM2) 
is an important cause of gene expression differences between these two groups of patients. Interactome analysis 
separated the DEGs of the FM2 patients into two distinct clusters (Fig. 5B). These 2 clusters correspond to the up-
regulated and down-regulated DEGs. IPA analysis of the DEGs identified that the most significant results in this 
group were the suppression or dysregulation of inflammatory processes (Fig. 5C). The top-ranked dysregulated 
pathways include phagosome formation, pyroptosis signaling pathway, TREM1 signaling, neuro-inflammation 
signaling, Th1 pathway, IL1-mediated inhibition of RXR function, crosstalk between dendritic cells and natural 

Figure 3.  (continued)
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Table 2.  Top ranked canonical pathways in FM1.

Ingenuity canonical pathways  − log(p-value) zScore Genes

GP6 signaling pathway 5.82 3.32 COL12A1, COL1A2, COL24A1, COL3A1, COL6A6, COL9A1, FGG, LAMA1, LAMA2, 
LAMA3, PIK3CA

Wound healing signaling pathway 4.29 1.94 COL12A1, COL1A2, COL24A1, COL3A1, COL6A6, COL9A1, FN1, IL1RAPL2, LAMA1, 
LAMA2, LAMA3, MMP10, TRAP1

RHOGDI signaling 3.69  − 2.24 CDH10, CDH12, CDH6, CDH8, CDH9, GRIP1, ITGB6, MYH1, MYH2, MYH4, MYH7

Phagosome formation 3.2 4.58
ADGRA3, ADGRB3, ADGRG6, FN1, GPR156, GPRC6A, GRM1, HTR4, ITGB6, LGR5, 
MYH1, MYH2, MYH4, MYH7, OPRM1, PIK3CA, PLA2G4F, PLA2R1, RAPGEF4, RXFP2, 
TACR3

Intrinsic prothrombin activation pathway 2.58 2.00 COL1A2, COL3A1, F11, FGG

Pulmonary fibrosis idiopathic signaling pathway 2.24 3.32 COL12A1, COL1A2, COL24A1, COL3A1, COL6A6, COL9A1, FN1, ITGB6, MMP10, MMP20, 
PIK3CA

Synaptic long term depression 2.24 2.83 GRID2, GRM1, GUCY2C, PLA2G4F, PLA2R1, PLCH1, PRKG2, RYR3

Oxytocin signaling pathway 2.23 2.53 ABCC9, GUCY2C, KCNT2, MYH1, MYH2, MYH4, MYH7, PIK3CA, PLA2G4F, PRKG2

Sperm motility 2.04 2.24 ALK, EPHA3, PDE1C, PLA2G4F, PLA2R1, PLCH1, PRKG2, ROS1, TEK

Cell cycle: G2/M DNA damage checkpoint regulation 1.44 n/a AC005578.3, CAB39L, CCNB2, CDKN3, CETN3, DNAJC27, EARS2, ELP4, FAM83D, 
FBXO24, ING1, LINC00167, LYPD3, PPP5D1, RPA2, SARNP, SCOC, SPATA24, SUCO, SYP

Figure 4.  Results of GSEA analysis of the whole transcriptome for FM1 group. (A) Enrichment of olfactory 
receptor activity (Normalized Enrichment Score = 2.1, p-value < 0.05). (B) Enrichment of the genes expressing 
nine proteins associated with the extra cellular matrix (Normalized Enrichment Score = 2.0, p-value < 1E-4).
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killer cells, toll-like receptor signaling, inflammaosome pathway, Th2 pathway (Fig. 5D, Table 3). These results 
indicate a lymphocyte to monocyte ratio imbalance in FM2 patients (Fig. 5C). The CLEAR signaling pathway 
and LXR/RXR activation pathways were upregulated (Fig. 5D).

Analysis of FM3 and FM4 subgroups
The FM3 and FM4 subgroups were composed of 17 cases together. Principal component analysis of the 361 DEGs 
in the 90 control and 17 FM patients showed a separation of patients between the controls, FM3 and FM4 on the 
first component (Fig. 6A). The first component of the PCA encompassed 29.5% of the total variation while the 
second encompassed 4.3% indicating that the disease state (Control vs FM3 and 4) is an important cause of gene 
expression differences between these groups of patients. Interactome analysis did not establish any significant 
interactions due to the small sample size. IPA analysis of the DEGs identified the following top-ranked dysregu-
lated pathways including interferon signaling, death receptor signaling, natural killer cell signaling, JAK/STAT 
signaling and the processing of capped intron-containing pre-mRNA pathway (Fig. 6B, Table 4).

Figure 5.  PCA and pathway analysis of FM2 subgroup. (A) PCA of the 90 control and the 30 FM2 patients 
using 361 DEGs. PCA could separate most of the control and FM2 patients. Blue dots: control patients, green 
dots: FM2 patients, the ellipses correspond to the threshold at 80% confidence. Cyan dots indicate the outlier 
controls. (B) Interactome analysis of 361 DEGs that separated the FM2 using the 90 control patients as reference 
into two distinct clusters of up and down regulated DEGs. Blue: down regulated genes, Red: up regulated genes. 
(C) IPA analysis shows the most significant pathways found in FM2 until –log (pvalue) ≥ 3. The gene expression 
indicates numerous pathways associated with inflammatory response are downregulated and the CLEAR 
signaling pathway is upregulated. (D) Summary of biological functions related to the pathways identified in 
FM2 patients. Blue: downregulation, Orange: upregulation.
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Discussion
FM was previously characterized as a syndrome with widespread pain and localized  tenderness30. Conceptually, 
the definition of FM has evolved over time and is perceived as a continuum representing an increased and height-
ened processing of pain within the nervous  system31. In 2016, nociplastic pain was proposed as a mechanistic 
descriptor for FM and chronic pain. Nociplastic pain is defined as pain arising because of an increased sensitivity 
due to alterations in the peripheral and central nervous  system5. In FM patients, nocipalstic pain can occur as a 
comorbidity with an inflammatory, immune, endocrine, genetic and psychosocial factors; all these phenotypes 
leading to a sensitization phenomenon characterized by a decrease in pain tolerance to afferent nociceptive 
 stimuli1,32,33. Over the years, there has been increasing recognition that chronic pain conditions are heterogene-
ous with a degree of overlap of  phenotypes1,34. However, to date, there is no clear explanation to account for 

Figure 5.  (continued)
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this clinical heterogeneity. Our group reported a multiplex cytokine assay that could be used for achieving an 
objective diagnosis of FM  patients6. The present study aimed to further define these patients via the identifica-
tion of genomic markers or signatures to aid diagnosis and possibly lead to the development of mechanism 
based targeted therapy rather than symptom-based treatment. To this end, we utilized high throughput RNA-
sequencing for whole transcriptome analysis in 94 patients with FM and 90 healthy control subjects (who had a 
negative cytokine assay result) using RNA from peripheral blood. The results of our analysis identified multiple 
subgroups within the cohort of FM patients with distinct non-overlapping gene signatures. Of note, subgroups 
of FM were identified with enough patients in two subgroups (FM1 and FM2) and combined FM3 and FM4 for 
detailed downstream analysis. The presence of multiple subgroups within FM patients reflects the inherent clini-
cal heterogeneity associated with FM and chronic pain disorders which explains the diagnostic difficulty often 
encountered in a clinical setting. The two major subgroups displayed distinct transcriptional profiles indicating 
two different etiologies that are grouped together under the same general diagnosis of FM. Although we did not 
identify a specific cause of FM, identification of these subgroups will help develop additional novel diagnostic 
markers and therapeutics for these patients. The differences observed among the patients suggest that different 
treatment approaches will be required for patients with FM.

Our study identified subgroups of FM defined by transcriptional signatures. The first group, FM1, included 
individuals with a signature enriched for gene expression of extracellular matrix (ECM) associated with connec-
tive tissue disorders and down regulation of Rho GDP Dissociation Inhibitor (RhoGDI) signaling pathway. The 
second group, FM2, included individuals that showed a profound reduction in the expression of inflammatory 
mediators and increased expression of genes involved in the Coordinated Lysosomal Expression And Regulation 
(CLEAR) signaling pathway. The other two, FM3 and FM4 subgroups, while distinct from the FM1 and FM2, 
had two few subjects to clearly define the pathways involved. A combined analysis of FM groups 3 and 4 identi-
fied overexpression of interferon alpha/beta and JAK/STAT pathways and downregulation of the processing of 
capped intron containing pre mRNA pathway.

Table 3.  Top ranked canonical pathways in FM2.

Ingenuity canonical pathways  − log(p-value) zScore Genes

Phagosome formation 6.97 removing to present data consistently from 
table 2–4  − 4.85

ADGRE1, ADGRE3, ADGRG1, AP1S2, C5AR1, CCR1, 
CCR2, CD14, CD36, FCER1G, FCGR1A, FCGR2A, 
FGR, FPR1, FPR2, HCK, HMOX1, HRH2, IGHM, 
ITGAM, LPAR1, LYN, P2RY13, PAK1, PLB1, PRKCD, 
PTAFR, S1PR3, TLR2, TLR4, TLR8

CLEAR signaling pathway 6.33 0.47
ASAH1, ATP6V0B, ATP6V0C, ATP6V0D1, 
ATP6V1B2, DDIT4, GAA, GABARAP, GNS, IFI30, 
INSR, PRKCD, PSAP, RXRA, TLR2, TLR4, TLR8, 
TNFRSF1B

Pyroptosis signaling pathway 5.79  − 3.16 CASP4, IL1B, MEFV, NLRC4, NLRP12, PYCARD, 
TLR2, TLR4, TLR8, TNFRSF1B

TREM1 signaling 5.57  − 3.00 CD86, IL1B, NLRC4, NLRP12, TLR2, TLR4, TLR8, 
TREM1, TYROBP

Neuroinflammation signaling pathway 5.05  − 3.36
CD86, CSF1R, CYBB, FOS, GABRR3, GRINA, 
HMOX1, IFNA4, IFNGR2, IL1B, NCF2, PSEN1, 
PYCARD, TLR2, TLR4, TLR8, TREM1, TYROBP

Th1 pathway 4.73  − 0.71 CD247, CD86, GATA3, IFNGR2, KLRD1, LGALS9, 
NOTCH2, PSEN1, STAT4, TBX21

LPS/IL-1 mediated inhibition of RXR function 4.39  − 1.34
ALDH2, ALDH3B1, CD14, CHST15, CYP2S1, GSTP1, 
IL1B, IL1RN, NDST1, RARA, RXRA, SULT1A1, TLR4, 
TNFRSF1B

Crosstalk between dendritic cells and natural killer cells 4.11  − 0.71 CD226, CD86, KLRD1, LTBR, PRF1, TLR4, 
TNFRSF1B, TYROBP

Fcγ receptor-mediated phagocytosis in macrophages 
and monocytes 4.01  − 2.83 FCGR1A, FCGR2A, FGR, HCK, HMOX1, LYN, PAK1, 

PRKCD

Production of nitric oxide and reactive oxygen species 
in macrophages 3.74  − 3.16 CYBB, FOS, IFNGR2, LYZ, NCF2, PRKCD, SIRPA, 

SPI1, TLR2, TLR4, TNFRSF1B

Toll-like receptor signaling 3.71  − 2.24 CD14, FOS, IL1B, IL1RN, TLR2, TLR4, TLR8

Inflammasome pathway 3.67  − 2.00 IL1B, NLRC4, PYCARD, TLR4

G-protein coupled receptor signaling 3.63  − 2.86 ADGRE1, ADGRE3, ADGRG1, AMOT, ARRB2, 
C5AR1, CCR1, CCR2, DUSP1, DUSP6, FOS, FPR1

Th2 pathway 3.57  − 1.00 CCR1, CD247, CD86, GATA3, NOTCH2, PSEN1, 
SPI1, STAT4, TBX21

LXR/RXR activation 3.21 1.41 CD14, CD36, IL1B, IL1RN, LYZ, RXTA, TLR4, 
TNFRSF1B

Role of pattern recognition receptors in recognition of 
bacteria and viruses 3.16  − 1.89 C5AR1, IFNA4, IL1B, NLRC4, OAS1, PRKCD, TLR2, 

TLR4, TLR8

Glycolysis I 3.15  − 2.00 ALDOA, FBP1, GAPDH, PKM

Necroptosis signaling pathway 3.14  − 1.67 CASP10, CYBB, IFNA4, PELI1, PYCARD, PYGL, 
SLC25A5, TLR4, TNFRSF1B
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In the FM1 subgroup, among the biological processes regulated by the DEGs, include the processing of the 
ECM protein collagen, wound healing, fibrosis, and genes associated with cell cycle and DNA damage checkpoint 
regulation (Table 2). Genes associated with the RhoGDI signaling pathway were under-expressed. RhoGDI 
signaling pathway is the regulator of the Rho family of GTPases that are implicated in the formation of stress 

Figure 6.  PCA and pathway analysis of FM3 and FM4 subgroups. (A) First component axis is showing 29.5% 
and was used for separation of control patients from FM3 and FM4. Ellipses show 80% confidence interval of 
each group, and the supersized dots correspond to the centroid of the group. Control patients are represented 
by a dark blue dot, control outliers are represented by a cyan dot, FM3 are represented by a magenta dot while 
FM 4 are represented by an orange dot. The 4 outlier FM cases were represented by brown dots. (B) IPA analysis 
shows the most significant pathways found in FM3&4 until –log (pvalue) ≥ 2. The gene expression indicates 
numerous pathways associated with acute inflammatory processes are upregulated and the processing of pre-
mRNA pathway is downregulated.
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fibers and in pain perception through somatosensory  neurons35. In this group of patients, deregulation of ECM 
and tissue homeostasis is likely mediated by fibrocytes. Fibrocytes are bone marrow-derived mesenchymal 
progenitor cells that directly contribute to tissue remodeling and fibrosis of tissues throughout the body by pro-
ducing ECM proteins (collagen 1 and collagen III) and by secreting matrix metalloproteinases following injury, 
wound healing and during fibro-proliferative disorders in response to local tissue  injury36,37. Fibrocytes traffic 
to sites of injury during the earliest phase of the innate immune response and exhibit both the inflammatory 
features of macrophages and the tissue remodeling properties of fibroblasts. They are also an important cellu-
lar source of inflammatory cytokines, chemokines, and growth factors that contribute to important autocrine 
and paracrine signals within the tissue  microenvironment38. Fibrocytes are distinguished by the simultaneous 
expression of CD34 or CD45 and  collagen36,37. Inhibition of Rho kinase increases resting tissue tension which 
regulates actomyosin contractility, the formation of stress fibers (actin-myosin filaments) and the maturation 
of focal  adhesions35,39. Our results suggest that Rho-dependent remodeling of cell matrix is affected in the FM1 
subgroup. At the local cellular level, matrix tension has been shown to influence a wide variety of cellular events 
including neurite growth and  angiogenesis40,41. Thus, cell-mediated regulation of connective tissue tension may 
be important to protect blood vessels, sensory and autonomic nerves from prolonged tissue loads induced by 
various body positions such as sitting, standing, and sleeping positions. In vivo connective tissue tension may 
not only impact connective tissue homeostasis but also the vascular, nervous, and immune cell populations that 
reside within the connective tissue network as well as in adjacent organ-specific cell populations. The presence 
of cell cycle associated genes in the signature indicates persistent stimuli triggered by stress or chronic inflam-
mation that leads to defects in DNA repair mechanisms prompting the activation of  fibrocytes42,43.

In the FM2 subgroup, there was a significant immune dysregulation as reflected by the under expression 
of genes involved in phagosome formation, pyroptosis signaling, TREM1 signaling, neuro-inflammation, Th1 
and Th2 pathways, crosstalk between dendritic cells and natural killer cells, toll-like receptor signaling and the 
inflammasome pathway, among others (Table 3). One of the top-ranked pathways that showed overexpression 
of genes includes the CLEAR signaling pathway. CLEAR pathway is a cellular program that regulates lysosomal 
biogenesis and participates in macromolecule  clearance44. CLEAR network is activated by lysosomal storage. The 
transcription factor EB (TFEB) is a master regulator of lysosomal  function44,45. TFEB promotes the expression 
of genes involved in lysosomal biogenesis, such as the mannose 6-phospate receptors, which transport newly 
synthesized lysosomal enzymes from Golgi to lysosomes. The activity of TFEB is regulated by multiple kinases, 
in particular the mechanistic target of rapamycin complex 1 (mTORC1)46–48. When phosphorylated, TFEB is 
retained in the cytoplasm and inhibited. Several stress signals including nutrient deprivation, proteotoxicity, 
and lysosomal damage, which have been reported to promote TFEB dephosphorylation, nuclear transloca-
tion and activation, leading to an increase in the number and activity of  lysosomes49. mTORC1 is activated 
by nutrients and growth factors, and conversely is inhibited by  starvation50. The activation or inactivation of 
mTORC1 in response to nutrient availability occurs on the lysosome and is regulated by several lysosomal 
membrane-associated  proteins51,52. Thus, the lysosome not only functions as a scaffolding organelle but also 
participates in the nutrient sensing process. The regulation of mTORC1 signaling by the lysosome also occurs 
through a transcriptional mechanism mediated by TFEB, which is activated in response to lysosomal stress. TFEB 
direct target genes were identified by combining ChIP-seq, TFEB overexpression, promoter analysis and co-
expression meta-analysis53. These genes encode for proteins that can be grouped into several distinct categories, 

Table 4.  Top ranked canonical pathways in FM3 and FM4.

Ingenuity canonical pathways −log(p-value) zScore Genes

Processing of capped intron-containing pre-mRNA 6.62  − 0.63
ACIN1, BUD13, CCAR1, CSTF2, CWF19L2, FYTTD1, HNRNPA3, MAGOH, MAG-
OHB, METTL14, MTREX, NCBP1, PCF11, PRPF3, PRPF38A, PRPF4, PRPF40A, 
RBM39, RBM7, SRSF4, WDR70, WTAP, ZMAT2

Interferon alpha/beta signaling 3.66 2.12 ADAR, ISG20, MX2, PTPN6, SAMHD1, STAT1, STAT2, XAF1

Necroptosis signaling pathway 3.65 1.73 CASP1, CASP10, CFLAR, EIF2AK2, IKBKB, MLKL, PPP3CB, STAT1, STAT2, TIMM13, 
TNFSF10, ZBP1

Death receptor signaling 3.50 1.00 ACIN1, CASP10, CSFLR, IKBKB, MAP4K4, PARP2, PARP4, PARP9, TNFSF10

DDX58/IFIH1-mediated induction of interferon-alpha/beta 3.34 0.71 CASP10, HERC5, HSP90AA1, IKBKB, NLRX1, RIG1, TAX1BP1, TRIM25

Role of PKR in interferon induction and antiviral response 3.02 1.27 CASP1, EIF2AK2, HSP90AA1, HSPA5, IKBKB, METAP2, RIGI, STAT1, STAT2, TIRAP

Pyroptosis signaling pathway 2.96 2.12 CASP1, GBP1, GBP4, GBP5, MEFV, PRKAR1A, PTGER4, TXNIP

ISG15 antiviral mechanism 2.92 1.13 EIF2AK2, HERC5, KPNA2, MX2, RIG1, STAT1, TRIM25

Interferon gamma signaling 2.84 2.12 GBP1, GBP4, GBP5, PTPN6, STAT1, TRIM22, TRIM25, TRIM38

Natural killer cell signaling 2.72 1.16 CFL1, HSPA5, LAT, MICA, NFAT5, PIK3C3, PIK3R1, PTK2B, PTPN6, RAP1B, STAT4, 
TNFSF10

Role of hyperchemokinemia in the pathogenesis of influenza 2.61 2.65 CASP1, CCL2, EIF2AK2, ISG20, RIGI, STAT1, STAT2

ISGylation signaling pathway 2.61 1.41 DTX3L, EIF2AK2, HERC5, NFAT5, RIG1, STAT1, STAT2, TRIM25

JAK/STAT signaling 2.49 1.13 PIK3C3, PIK3R1, PTPN6, RAP1B, STAT1, STAT2, STAT4

Activation of IRF by cytosolic pattern recognition receptors 2.49 1.63 ADAR, IKBKB, RIG1, STAT1, STAT2, ZBP1

Interleukin-2 family signaling 2.40 2.24 PIK3R1, PTK2B, PTPN6, STAT1, STAT4

RIPK1-mediated regulated necrosis 2.22 2.00 CFLAR, HSP90AA1, MLKL, TNFSF10

Salvage pathways of pyrimidine ribonucleotides 2.17 1.89 CSNK1A1, EIF2AK2, NME1, UCK2, UCKL1, UPP1, UPRT
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including lysosomal hydrolases and accessory proteins, lysosomal membrane proteins, subunits of the proton 
pump, proteins participating in autophagy and non-lysosomal proteins involved in lysosomal  biogenesis53. Our 
data show differential expression of genes encoding lysosomal hydrolases and accessory proteins ASAH1, GAA, 
GNS, IFI30, PSAP; and genes involved in lysosomal acidification ATP6V0B, ATP6V0C, ATP6V0D1, ATP6V1B2 
(Table 3) suggesting dysregulation of lysosomal homeostasis in FM2 patients. TFEB also promotes the forma-
tion of autophagosomes and their fusion with lysosomes through the upregulation of several key autophagy and 
lysosomal genes, a process that is initiated by nutrient starvation and executed by the inhibition of extracellular 
signal regulated kinase 2 (ERK2)-mediated phosphorylation of TFEB at  Ser14248. Our results show differential 
expression of the autophagy gene GABA type A receptor–associated protein (GABARAP) (Table 3). GABARAP 
is a ubiquitin-like modifier that plays a role in intracellular transport of GABA(A) receptors and its interaction 
with the cytoskeleton. It is involved in autophagy while the microtubule-associated protein 1A/1B-light chain 
3 (LC3) is involved in elongation of the phagophore membrane. The GABARAP subfamily is essential for a 
later stage in autophagosome  maturation54. Through its interaction with the reticulophagy receptor TEX264, 
GABARAP participates in the remodeling of subdomains of the endoplasmic reticulum into autophagosomes 
upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum  turnover55. Other TFEB direct 
targets are genes belonging to distinct families of pattern recognition molecules including membrane-anchored 
Toll-like receptors (TLRs), which are involved in the innate immune detection of danger signals and microbial 
 motifs56 and the insulin signaling  pathway53. Taken together, these results indicate defects in vesicle transport 
and lysosomal homeostasis in FM2 patients.

In the FM3 and FM4 patients, we identified pathways related to acute inflammatory associated with the Th1 
responsive processes with overexpression of interferon pathway, JAK/STAT pathway, IL2, pyroptosis, cell death 
receptor and necroptosis pathways. Strong down regulation of processing of pre-mRNA pathway indicates global 
dysregulation of the transcription machinery (Table 4).

There were many limitations in this study inherent to conducting research involving live human subjects 
and a disease where biology is poorly understood. This study was biased because only individuals who tested 
positive for the cytokine assay (FM/a) were included. Although this test was developed and validated by our 
group, it is not widely used or validated by an outside group. Since these criteria were used for patient selection, 
the study was inherently biased. However, all analyses were performed using the clinical diagnostic criteria for 
FM recommended by the American College of Rheumatology. We also included only patients with FM rather 
than patients with chronic pain. In that regard the study is biased towards a subset of patients with FM and the 
results may not apply to all patients with chronic pain disorder. Future studies are necessary to gain insight into 
the biological problems in people with chronic pain.

In conclusion, the whole transcriptome analysis of FM patients identified novel gene expression signatures. To 
our knowledge, this is the first study to report genetic heterogeneity within FM patients. The two major groups 
of FM patients reported here have defects in the tissue homeostasis associated with ECM and the lysosomal 
biogenesis pathway. We provide possible mechanisms of FM pathogenesis that need to be further validated to 
gain precise understanding of the biology of FM and develop novel treatment approaches.

Data availability
Raw data have been submitted to NCBI and GSE221921 provides access to all data (https:// www. ncbi. nlm. nih. 
gov/ gds/? term= GSE22 1921). List of differentially expressed genes that are used in the analysis to support the 
figures are provided in supplementary table 1.
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