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Wavelet‑based information theory 
in quantitative assessment of AFM 
images’ quality
Bartosz Czesław Pruchnik *, Piotr Adam Putek  & Teodor Paweł Gotszalk 

The quantitative assessment of the image quality produced by atomic force microscopy (AFM) is an 
ongoing and challenging task. In our study, we demonstrate Shannon’s application of information 
theory for measuring image quality. Specifically, we propose quantifying the loss of image information 
due to the various distortion processes by exploring the relationship between image information 
based on the information channel capacity (ICC), spectral image representation, and visual quality. 
Since the ideal image is unavailable, the power and noise spectrum, the critical input information for 
the image quality evaluation, must be robustly estimated in the proposed method. The classical, most 
popular Welch method for spectral estimation uses an average of several windowed periodograms and 
can produce biased spectrum estimates. Therefore, in our work, we discuss an alternative technique 
based on the wavelet transform that can be applied to solve this challenging problem, specifically in 
the case of noisy, uncertain AFM measurements. Finally, we validate the performance of the enhanced 
ICC‑wavelet‑based algorithm with noisy measurement AFM data.

Scanning probe microscopy (SPM) based technologies, including atomic force microscopy (AFM), have been 
broadly applied for studying the electrical, mechanical, and other properties of metals, semiconductors, die-
lectrics, or organic structures. Appropriate signal acquisition can analyse the properties of a sample under 
consideration. Measurements of force are performed indirectly. The cantilever used in the process is the force-
displacement transducer; therefore, measurement is vulnerable to the influence of any external forces. Con-
sequently, uncertainties involved in a measurement process may have various origins. Temperature changes 
affect the sensor and the sample, changing the noise properties and dimensions. Acoustic noises generated by 
machines and human activity result in the displacement of the mechanical parts of the detector, influencing the 
measurement. Electromagnetic noise is constantly present in the background and interferes with the electronic 
part of the system in the broad spectrum of frequencies. Although several means are undertaken in the system’s 
design, noises can only partially be sorted out. Therefore, a need emerges to assess the level of noise affecting 
the measured information quantitatively.

In the past two decades, image quality assessment methods have gained increasing attention from academ-
ics and industry for their wide applications in many fields, including compression, fusion, registration, and 
 reconstruction1. Concerning used measures, approaches for image quality evaluation can be classified as quan-
titative and qualitative techniques. These studies focus on the former method, which applies the information-
based capacity criterion by  Shannon2 for image quality assessment in the  AFM3. More specifically, there are 
three inspired by information theory approaches to visual quality assessment (QA): (i) with a complete reference 
model, (ii) with a reduced reference model, (iii) and a no-reference  image4,5. The availability of reference infor-
mation has important practical implications in designing the algorithm for the QA of images. This paper deals 
exclusively with a no-reference quality assessment method for AFM images.

The AFM image quality is metrologically defined as the trueness of the created topographic map to the origi-
nal surface. There are numerous possible discrepancies, which will be elaborated on in the following sections. 
More precisely, due to the measurement procedure in a noisy environment, AFM images can suffer numerous 
artifacts, such as a dust particle stuck to the tip, a drift, the proportional-integral-derivative (PID) loop going 
haywire, the sudden tip-sample interaction changes during scanning, to stay with a few. As a result, certain factors 
decrease the signal-to-noise ratio (SNR), while others can keep SNR-like measures unchanged or even enhance 
them. For instance, on the one hand, the drift might completely ruin measurements of the grating period, but 
on the other hand, it may be a minor problem for roughness measurement. The precisely opposite effect brings, 
for example, tip convolution. Besides, a roughness measurement may have significant lateral positioning errors 
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that will not affect the desired measurement result. Moreover, image quality includes imperfections that influ-
ence spatial imaging, reducing spatial resolution. Thus, in our work, we focus predominantly on the influence 
of the Gaussian-like noise on the AFM procedure, mimicking certain aspects of a harsh environment with a 
Gaussian-like noise model.

The maximum capacity of the information channel (ICC) by  Shannon2, furthermore generalized  in6, is 
explored. According to information theory, the Shannon capacity of a communication channel refers to the 
maximum amount of error-free information that can theoretically be transferred over the channel without error. 
From a purely abstract viewpoint, the imaging procedure can be seen as an instance of a communication process. 
Therefore, assuming that image quality is proportional to the ICC measure, related to the modulation transfer 
function (MTF) and the level of a perturbed  noise4,5,7,8, this technique can also be used for image quality evalu-
ation. In particular, Shannon’s metric was also successfully used  in3 to measure the quality of the AFM imaging 
process quantitatively. However, this measure might be biased due to the uncertainty of the power spectrum 
estimator. Thus, choosing the right spectrum analysis tool might be challenging. The state-of-the-art spectrum 
estimation methods are  periodogram9, Blackman-Tukey10,  Welch11 and Multi-taper  approach12. Since the ICC 
measure might be prone to measurement noise, the wavelet method seems to be a superior tool for spectrum 
 estimation13.

On the one hand, this paper’s main contribution is to enhance the assessment method for the quality of the 
AFM imaging process. On the other hand, an equally important objective is to provide robust spectral estimates 
from noisy, uncertain AFM measurements, enabling the extraction of a reliable AFM image spectrum. A spec-
trum estimation approach based on a wavelet transform is proposed for these reasons. The main challenge for 
wavelets in this application lies in their capability to deal with singularities and irregular structures apart from 
the trade-offs they offer in terms of varied metrics, including frequency resolution and variance of the estimated 
power  spectrum14,15. According to the author’s best knowledge, applying the wavelet transform to quantitative 
AFM image assessment in the context of information theory has not been studied yet in the proposed framework.

AFM image quality assessment
In the case of the AFM technique, the signal-to-noise ratio (SNR) plays a crucial role in assessing image quality 
apart from the MTF. However, calculating those parameters requires measurements on a specially prepared so-
called reference sample, which might seem complicated due to manufacturing uncertainties. Moreover, informa-
tion on the potential improvements in image quality is often demanded in the early stage of the measurement 
process. For instance, it allows for calibrating the AFM setup. For this purpose, a single parameter methodology 
was proposed  in3, which allows for quantitative image quality assessment. Another solution, developed  in16, 
relies on estimating the normalized power spectrum’s variance, which requires recording images with relatively 
high SNR values.

Information channel capacity as image quality measure
The visual quality quantification process is crucial to various image and video processing applications, including 
AFM measurements. Within this context, we propose measuring the loss of image information due to the various 
distortion processes by exploring the relationship between image information based on the information theory 
by  Shannon17, its spectral representation, and visual quality. In the following, likewise, as  in4,5,7, we presume that 
Shannon’s information capacity could measure perceived image quality determined by the MTF and noise. As a 
result of this assumption, the imaging procedure is seen in our work as an instance of a communication process. 
Consequently, Shannon’s information channel capacity (ICC), which is a function of both bandwidth W and the 
signal-to-noise ratio 

(

S
N

)

 , can be treated as a suitable measure for image quality  assessment3–5,7,16,18.
According to Theorem 2,  from2, the complete one-dimensional equation for Shannon capacity, derived for 

the signal perturbed by the white thermal noise of power N in the band W , is given by

with resulting units of information expressed in bits per second, [b/s] , where S denotes the mean power of a 
signal. The straightforward generalization of Eq. (1) to the case of the arbitrary Gaussian noise, reads  as2,3

where ξ denotes the frequency of the spectral component of S (ξ) and N(ξ) , respectively. More specifically, in 
Eq. (2), the signal and noise power spectrum under the Gaussian assumption can theoretically be estimated by 
P (ξ) = σ 2[Sideal(ξ)] and N(ξ) = σ 2[N(ξ)] with variance denoted by σ , respectively. In particular, we suppose 
that the measured signal includes noise that results in P (ξ)+N(ξ) =: σ 2[S (ξ)] . Finally, we conclude that, 
as  in2,17, in our notation N(ξ) denotes the noise measured in the presence of signal Sideal(ξ) (not narrow-band 
noise of frequency (ξ) ). Furthermore, it is also worth noting that in Eq. (2), the predominant measure of ICC 
corresponds to the SNR values, while the bandwidth W is a result of signal representation only. In addition, the 
uncertainty of the tested sample design results in uncertainty of its spectrum. Nevertheless, under the assump-
tion that the white model noise is appropriate for the slow scan axis due to the relatively long measurement time, 
ICC is finally estimated by
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where SN (ξ) refers to the power spectrum of the noisy signal, and F [ · ] is the function filter responsible for 
the thresholding operation of values smaller than 1 to avoid integration of negative values of logarithms due to 
the uncertain power spectrum estimator.

Moreover, one-dimensional Eq. (3) can straightforwardly be adjusted to a 2D case

where u and v denote the spectral component frequency in x and y direction, respectively. Correspondingly, after 
using a polar coordinate system with the spectral radius denoted by

with unit (μ  m−1) and considering the weak dependence S and N on θ , it can finally be transformed into an 
equation in one dimension as

with κ = 2π and the constant level of white noise denoted by N. The transformation defined by Eq. (6) can also 
be justified by the fact that significant variation is predominantly concentrated at specific scales in the centre of 
the 2D power spectrum. Thus, the one-dimensional power spectrum is expressed as

where S 2D
N

[·] denotes the 2D centred power spectrum, approximated by Eq. (8). The unit of the estimated C 1D
r  

is given in bits per μm (b/μm). It shows the maximum amount of bits of information that (b/μm) of the scanned 
distance can  transmit3. The appropriate reduction of the dimensionality through equivalence classes was also 
recommended  by2,7,17. There exist varied methods which allow for estimating the power spectrum SN (ξ) for 
example, the periodogram  technique9, the Blackman-Tukey  method10, and the Welch  approach11. Another group 
of algorithms for the power spectrum estimation is the multitaper spectrum estimator proposed by  Thomson12 
and its natural extension, the wavelet packet  approach13.

Fourier transform‑based method for power estimation
The common feature of the first group  method9–11 to estimate the power spectrum is the usage of the two-
dimensional (2D) Fourier transform. Denote by g(x, y) ∈ L2(R2) a square-integrable function whose domain 
is the spatial location within an image located at coordinates, (x, y), and whose gray level intensity range at this 
location is bounded by 0 ≤ Iv ≤ 255 . Here, 0 is related to black, while 255 corresponds to white. The exemplary 
result of the AFM measurement is depicted in Fig. 1. It is treated in our research as the case study for it is not 
burdened with purposely generated noise. In the experimental part, samples were measured in three different 
configurations using various intensities of correlated noise. Only based on them the actual information channel 
capacities were calculated, contributing to the case study. Out of conducted measurements and calculations, 
several are presented as appendices to the manuscript.

In the classic approach, measurement data g(x, y) are transformed by a windowed 2D Fourier transform 
given in the continuous form  by19,20
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Figure 1.  Example of AFM measurement result.
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with j =
√
−1 , x1 = nx0, y1 = my0, u = lu0, and v = pv0 , n,m, l, p ∈ N , where ◦ represents an windowing opera-

tor with the window function denoted by h(x, y).
Furthermore, the application of Parseval’s theorem, which asserts that the Fourier transform preserves energy, 

yields the estimation of the power spectrum

with the standard ℓ2-norm (the Euclidean norm) defined by | · | . It is a well-known fact that the result of the power 
estimation depends strongly on the window function to be  used9. In the simplest form, the periodogram utilizes 
a rectangular window. However, its counterpart in the frequency domain is a sinc function, which results in a 
high sidelobe and significant leakages in the power estimates. For this reason, a window function with a taper 
that smoothly decays on both sides is  used21, for example, Hamming, Blackman-Harris, Tukey and Blackman. 
The second serious issue with estimating power spectral density with the periodogram is that it results in signifi-
cant variance and low precision, which cannot be alleviated using more data. The averaging operation of power 
spectral density is often used as a remedy. The so-called Blackman-Tukey method and the Welch periodogram 
originated from this idea. For instance, the 1D power spectrum was calculated using Eq. (7) for both presented 
methods and shown in Fig. 2a and b, respectively.

In addition, we also investigated the influence of wavelet denoising properties on the smoothness of the 1D 
power spectrogram calculated by either the standard 2DFFT periodogram or the Welch periodogram method 
(WPM). However, since the noise reduction procedure can also remove information while reducing N(f) at 
high spatial frequencies below its proper appriori unknown value, and therefore, potentially affecting the MTF 
(sharpness) of the image, information capacity measurements should be analyzed with caution. Results of filter-
ing 2D AFM image of the case study sample when using the biorthogonal wave function (Specifically, in our 
computation, (bior4.4) has been used for filtering 2D AFM image which is implemented in MATLAB filter 
bank.)23 are depicted on Fig. 3a and b, respectively. Since a spike on a relatively smooth power spectrum curve 
can be easily identified, one can find the cutoff frequency and then estimate the noise level as the average value 
of the flat part of the  spectrum24. This might, in turn, allow for designing a fully automated algorithm for the 
quality assessment of AFM images.

Wavelet‑based approach for power estimation
The multitaper spectrum estimator is another solution that improves vorticity and reduces sidelobe and leakage 
by developing a set of orthogonal tapers or  windows25. The wavelet-based approach for spectral estimation is the 
natural extension of that method, which also uses different orthogonal decompositions as prototype  filters14,15. 
In the continuous form, a two-dimensional mother wavelet, ψ(x, y) with dilatation and translation controlled 
by (a1, a2) and (b1, b2) , respectively, is defined  as20

where ai , bi ∈ R and ai  = 0 . Analogously as in the case of the Fourier transform, Parseval’s theorem in the wavelet 
framework states as

(8)S
2D
N (u, v) =

(
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Figure 2.  1D power spectrum with varied windows function calculated for the case study sample: (a) 2DFFT 
periodogram; (b) Welch periodogram method.
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with u(x) corresponded to a complex conjugate of u(x), where the Fourier transform of the wavelet function is 
given as

Form Eq. (11) it can be concluded that the wavelet transforms also preserves energy conservation. However, the 
definition of the wavelet power spectrum as the squared amplitude of the wavelet  transform26 might be trouble-
some from a physical perspective due to units. Besides, the power wavelet spectrum calculated this way might 
be distorted and biased in terms of large  scales27. A few solutions to this problem are given  in28,29. In the end, the 
two-dimensional wavelet transform of g(x, y) is given  by20

In the case of the wavelet transform, calculating a wavelet radius requires only averaging the resulting matrix 
versus other parameters such as a or θ . Many distinct types of  wavelets26 have found a broad application in the 
image and signal  processing14,15,23. In particular, selecting an appropriate wavelet function, ψ is a crucial issue 
when comparing the radially averaged Fourier power spectrum against the global wavelet power  spectrum30,31. It 
results from the fact that this function determines the distribution of the wavelet spectrum. A wide wavelet func-
tion provides a more smooth spectrum due to a similarity measure (a scalar product) between each frequency 
signal component and the windowed wavelet function, which is used for power spectrum estimation. Specifically, 
the well-known Morlet type wavelet,27,28, which employs more sinusoidal cycles than other wavelet transforms 
to form the analyzing wavelet, seems particularly attractive for this  purpose29,32. Moreover, since the Morlet 
wavelet transform is defined in the complex domain, the Morlet power spectrum and the Fourier spectrum can 
be interpreted similarly. The 2D Morlet complex wavelet (or Gabor wavelet) consists of a complex exponential, 
which is multiplied by a Gaussian window with associated directional dependence  as33

with σ ∈ R , ω0 ∈ R , ε ∈ R . To fulfill the admissibility condition ω0 = 5.33631.
Another type of wavelet used for a power spectrum analysis is a Fan wavelet function, which is, in essence, a 

summation of several directional 2D Morlet wavelets spaced along with different directions to have a direction 
insensitive amplitude  response34. Thus, the superposition of the Morlet wavelet is  average32

over a finite number of directions with θi = θ0 + iδθ , where δθ = 16.29◦ for ω0 = π
√

2/ ln 2 ≈ 5.336 . In  work32 
reported that the Fan and Morlet wavelets belong to the most successful in reproducing the Fourier power 
spectra. It can be explained by pointing out that these wavelets are, in the space domain, complex exponentials 
modulated by a Gaussian envelope, which are, in fact, very similar to the Fourier basis functions. For instance, 
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Figure 3.  1D power spectrum with varied windows function and additionally denoised with the aid of a 
biorthogonal wavelet (bior4.4) calculated for the case study sample: (a) 2DFFT periodogram; (b) Welch 
periodogram method.
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the wavelet-based spectrum using varied mother wavelet function is compared to the classic 2DFFT periodogram 
technique in Fig. 4.

The following section uses Fourier and wavelet transform for 1D spectrum estimation of AFM images.

Numerical results and discussion
The proposed wavelet-based ICC method for AFM quality assessment was verified using three data series , which 
include an academic benchmark with generated noised synthetic data, and the analyzed referenced sample 
affected by two type of various noise sources.

Benchmark with synthetic white noise
To validate the procedure for assessing image quality based on ICC metrics compound with various spectral 
analyses, we generated artificially an image, shown in Fig. 5, which served as the academic test case. The arti-
ficial surface described with the sawtooth signal profile was generated because of a resemblance to the actual 
measured sample. It was further burdened with white noise generated by a pseudo-random numbers generator 
recalling the values from a tabularized Gaussian distribution. The matrix of resulting noise was normalized to 
values of signal-to-noise ratio in the range of 10, 1 and 0.1 dB and subsequently summed with corresponding 
values of the surface model.

Furthermore, we applied the formula (3) with the 2DFFT periodogram with i, j = 0, . . . , P , P = 255 , Welch 
periodogram, and wavelet-based method to estimate the ICC metric. As recommended  in27,29,32, we have 
used the Morlet and Fan wavelets ψM(6, 1, 1) and ψF(6, 1, 1, 8) to calculate the wavelet-based power spectro-
grams, defined by (13) with (14) or (15). For this reason,  following26, we have specified the simulation setup: 
s = s02

j/J = [1, . . . , 180.76] with the smallest resolvable scale given by s0 = 1.0144 and an integer j = [0, . . . , J] 
corresponding to the level number with J = 363 , and, finally, a uniform grid for θ = lπ/L = [0, . . . , 3.115] with 
l = 0, . . . , L , L = 63.

Furthermore, to approximate the ICC measure (7), we used the classic trapezoidal method with N + 1 evenly 
spaced  points22,35

with a posteriori error estimation given by

where for the last term of (17), an asymptotic error estimate for N → 0 is conducted with η = −π/6 and the first 
and second derivative denoted by f ′, f ′′ , respectively. Please note that the approximation error is proportional 
to ξ 2h and depends on the regularity of spectrum given by f (ξ).

However, if a (spectrum) function f (ξ) has no bounded a second derivative, i.e. is only a ’rough’ continuous 
function, the error bound given by (17) is not applicable any more. In such a case, the following sharp error 
bound for the trapezoidal rule has to be  applied36

where sup and inf  denotes suppremum and infimum over a set I, respectively.
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Figure 4.  Wavelet spectrum compared to standard 2DFFT periodogram.
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In fact, since the spectral analysis has been applied to the sawtooth signal profile, we suppose that the sharp 
error bound given by (18) is the reliable error estimation. Finally, the results with error analysis provided by (18) 
estimate are listened in Table 1. In summary, we can conclude that based on the provided error analysis, the ICC 
measure wavelet approximation seems less biased than those estimations provided by Welch and 2FFT peri-
odogram method, at least for a moderate, practically occurred noise levels. It is strictly related to the regularity 
of the integrand and the grid size used for the integration.

The artificially generated test case allows us to demonstrate the applicability of the proposed approach in the 
more challenging measurement setting.

AFM measurements
The first part of the measurement was performed with a white noise signal, in which the root mean square (RMS) 
value was changed from 0 to 20 V with 5 V step. In the second part, acoustic noise was delivered to the system. 
The varied music tracks were played during the measurement, acting as the known noise source.

All measurements were performed in contact mode with a sinusoidal speed profile. The speed was one line 
per second. The scanned area of samples was specified either as 2 by 2 (μm) or 1 by 1 (μm). The reason for the 

Figure 5.  Image generated artificially with various level of synthetic white noise in the range of 10, 1  and 0.1 
dB.

Table 1.  ICC-based metric for artificially generated image with varied white noise level from 10 dB till 0.1dB.

Images shown in Fig. 5 ICC2DFFT
δ̃2DFFT

ICC2DFFT
ICCWPM

δ̃WMP

ICCWMP
ICCψM

δ̃ψM
ICCψM

ICCψF

δ̃ψF
ICCψF

Unit (b/μm) (%) (b/μm) (b/μm) (b/μm) (%) (b/μm) (%)

Pure image (reference) 3.18 0.41 3.20 0.34 3.84 0.26 3.95 0.25

Image with  10 dB 2.94 0.44 2.95 0.37 3.56 0.28 3.67 0.27

Image with 1 dB 1.95 0.62 1.99 0.48 2.77 0.35 2.93 0.32

Image with  0.1 dB 0.38 1.4 0.69 0.62 0.86 0.53 0.60 0.62
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change in sample area was to alter the frequency of details in the topogram. Therefore, the results consisted of a 
series of AFM images with different noise levels.

Noise modelling
In our paper, two types of noise inputs were utilized to test the influence of types of external noise sources. A 
distinction is made between white noise and nondeterministic noise. Electronic processing of the signal bur-
dens it with wideband noises. Those wide spectral signals are often referred to as noises of different colours due 
to similarities to the light spectrum. Among them is white noise, which characterizes the equal distribution of 
spectral density over all spectrums. This noise was used to elevate the background noise level in the spectrum 
homogeneously. Moreover, we applied a generator embedded in the function generator to generate white noise. 
The noise was generated with different RMS values: 5, 10, 15, and 20 V. The results are to be consulted in the 
appendix Fig. 1.

Music samples were used to simulate natural noise background in the environment with people. The main 
concern of this measurement was not necessarily a quantitative assessment of the noise level but the ability 
to differentiate topograms influenced by different types of music, representing different types of background 
noises. For that purpose, a few pieces of music were used. They were varied from classical music: “Étude Op. 
10, No. 12” by F. Chopin, “Piano Concerto no. 4” by S. Rachmaninoff, “Symphony No.9 by A. Dvorak, “Ride of 
the Valkyries” by R. Wagner, to the modern rock and heavy metal: “You Can’t Teach An Old Dog New Tricks” by 
Seasick Steve, “Stargazers” by Nightwish, and “Chippin’ in by Samurai. Indeed, different music sounds should 
contribute differently to the overall noise spectrum. The effect of AFM measurement are to be acquainted with 
in the supplementary material.

The influence of narrowband noises, which come from mechanical sources, especially motor drives present 
in pumps, fans, and generators - devices characterized by constant engine speed - is not considered in our paper.

Quantitative assessment of AFM images’ quality
The AFM images of the reference sample were measured to demonstrate the performance of the proposed quality 
assessment method. These reference samples’ topographies look similar in various configurations of the noise 
excitation. However, differences in AFM images might be rather identified and assessed qualitatively. A power 
spectral analysis of images may support the rough observations. For this reason, the ICC-based measure, whose 
calculation procedure was described in Section "Information channel capacity as image quality measure", was 
used to assess the quality of the recorded AFM images. The methods for the power spectra estimation, including 
the 2DFFT periodogram, the WPM, and the wavelet-based periodogram technique, described in Section "AFM 
image quality assessment", were implemented in Matlab�22. The implementation of the ordinary periodogram 
method with the use of the 2DFFT routine and varied windows function has been straightforward.

The WPM provides the power spectral density estimate with the aid of overlapped segment averaging estima-
tor, where each segment can be windowed with various types of windows, as stated in Section Fourier transform-
based method for power estimation. In our simulations, we considered the maximal size of the segment of 256 
by 256 with 50% overlap. Furthermore, for mapping the resulting 2D power spectra into the 1D space, we used 
Eq. (7). In the end, the 1D power spectral density plots were prepared for all gathered AFM images with the vari-
ous source of noise as described in Section Noise modelling. Furthermore, since the spectral analysis provided 
by the standard 2DFFT periodogram and the WPM look similar, specifically compared to the wavelet-based 
spectra, only the results for the 2DFFT power spectrum are presented in Fig. 6a and b, respectively.

As to the wavelet-based power spectrograms, we applied the Morlet and Fan wavelets as recommended  in32. In 
our simulations, the fast Morlet and Fan wavelet  transform27,29 was used for wavelets ψM(6, 1, 1) and ψF(6, 1, 1, 8) . 
For convenience, we defined scale s as base 2  exponentials26, that is, s = s02

j/J = [1, . . . , 180.76] , s0 = 1.0144 
denoted the smallest resolvable scale and an integer j = [0, . . . , J] representing the level number with J = 363 . 
However, we used a uniform grid for θ = lπ/L = [0, . . . , 3.115] with l = 0, . . . , L , L = 63 . To demonstrate the 
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Figure 6.  Radial power spectrogram from calculated 2DFFT of reference sample using Blackman-Harris 
window for: (a) white noise; (b) music as noise model.
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improvements of the wavelet-based method, we compare the 1D wavelet power spectrum results shown in Fig. 7a 
and b with those provided with the 2DFFT method (cf. Fig. 6a and b) using noised AFM images. It should be 
noted that the resulting wavelet power spectra’ smoothness properties, on the one hand, allow for automatiz-
ing the ICC-based metric of AFM images. For example, a simple procedure for finding an inflection point can 
be used to identify the background noise. On the other hand, the wavelet-based ICC estimation quality can be 
significantly improved since the cutoff frequency can be precisely found. In our work, similarly  to24, the noise 
level was estimated as the mean value of the flat part of the spectrum SN(ξ) . Finally, we explored the ICC metrics 
proposed  in24, defined by Eq. (6) with κ = 2π to assess the quality of the recorded AFM images quantitatively. 
The ICC-based metrics calculated for all gathered AFM images are listed in Tables 2 and 3, respectively.

Adopting the Shannon theorem from the telecommunication  technologies2, the higher values of ICC will 
specify the higher quality image. This conclusion results from the fact that the amount of error-free information 
that may be transmitted through the channel is determined by the bandwidth of the communication channel 
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Figure 7.  Wavelet power spectrum calculated for reference sample using Morlet wavelet ψM(6, 1, 1) for: (a) 
white noise; (b) music as noise model.

Table 2.  ICC-based metric for AFM images with varied white noise level 10%−80%.

AFM images ICC2DFFT ICCWPM ICCψM
ICCψF

Unit (b/μm) (b/μm) (b/μm) (b/μm)

Sample with 10% 4.95 4.67 5.49 5.58

Sample with 20% 4.32 3.75 5.02 5.14

Sample with 30% 3.55 3.25 4.19 4.17

Sample with 40% 2.96 2.94 3.56 3.41

Sample with 50% 2.58 2.68 3.03 2.84

Sample with 60% 2.38 2.54 3.02 2.73

Sample with 70% 2.23 2.47 2.63 2.33

Sample with 80% 1.91 2.21 2.43 2.01

Table 3.  ICC-based metric for AFM images noised by varied music types.

AFM images ICC2DFFT ICCWPM ICCψM
ICCψF

Unit (b/μm) (b/μm) (b/μm) (b/μm)

Sample with Chippin’ 4.20 3.92 4.31 4.34

Sample with Etude 5.51 5.27 5.30 5.33

Sample with Symphony 4.67 4.23 4.26 4.15

Sample with Piano concerto 4.43 3.69 4.09 4.04

Sample with Seasick Steve 5.19 4.56 5.39 5.56

Sample with SiC 6.04 5.00 5.54 5.75

Sample with Stargazers 5.22 4.90 5.46 5.67

Sample with Valkyries 4.41 3.71 4.37 4.16
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and the signal-to-noise ratio. In our work, we mainly focused on studying the influence of the signal-to-noise 
ratio as the limitation for the amount of error-free information. In fact, even a cursory examination of Table 2 
allows for verifying this theorem in the context of spectral analysis of AFM images: a higher level of noise limits 
the quality of images. Even though the ICC metrics computed based on three studied methods for power spectra 
estimation are consistent, the less biased ones seems to be those provided by the wavelet-based method. It results 
from the fact that background noise can be identified more precisely when considering a smooth continuous 
spectrum, which might improve the calculation reliability based on the formula (3).

Furthermore, the ICC measure can also be applied to a noise model, which is random but not equally dis-
tributed in the frequency spectrum noise model (cf. Fig. 7a and b). An example of such a noise is music, which 
was used to simulate a noise produced by a human. Undoubtedly, music, being not perfectly described ambient 
noise source (especially considering its spectrum), is more of a qualitative indicator and a means to provide 
noise-differentiated samples into exemplary calculations. Also, in this case, the resulting ICC values summarized 
in Table 3 produced by three different methods show convergence.

Experimental procedures and methods
Principles of AFM operation and sample characterization
SPM techniques, including electrostatic force microscopy (EFM) or AFM, have found broad application in 
analyzing the surface properties of varied  materials3,19. AFM belongs to the SPM family, whose main principle 
of the measurement is detection of a singular interaction between the probe and the surface - so called atomic 
forces. Microcantilevers are most often used as probes. In contact mode, a change in sample height is detected 
by bending a probe by imposing a constant force. Typically, in non-contact mode, a change in the amplitude 
or frequency of the cantilever vibration is sought, which does not cause surface wear. Additionally, there is no 
lateral contact force between the probe and the surface, so it is possible to investigate more fragile surfaces (e.g., 
biofilms, proteins) in this  mode37. Among the AFM modes, there is also a place for mixed techniques, which 
combine properties of both contact and non-contact, e.g., a tapping mode in which the probe touches the surface 
only at specific points, see, e.g., for  details38–42.

Experimental set‑up
In our studies, we applied the AFM system for contact measurements with an optical beam deflection (OBD) in 
the experiment. The purpose of conducting measurements was to register signals with different noise levels. A 
typical AFM system registers low-band signals - in this case, the upper band limit is 10 kHz, therefore the actuator 
should have a band broader than from 0.1 to 10 kHz and be applied to the cantilever as closely as possible. Both 
demands are satisfied by a piezoelectric chip actuator. In our research, we used the Thorlabs piezoelectric chip 
PA4HEW. A phosphor bronze spring held it together with the cantilever in the holder. Schematics of the setup 
are presented in Fig. 8. The signal to the piezoelectric chip was delivered from the signal generator Tektronix 
AFG3021B via the infinite impulse response (IIR) low-pass filter with a cutoff frequency 10 kHz. The filter was 
necessary to eliminate a resonance of the piezoelectric chip (165 kHz).

In the further phase of our research, we slightly modified the setup to assess the impact of typical acoustic 
noises on the measurement process. Even though, music usage may seem nonintuitive, we have found it a useful 
noise source for several reasons. Specifically, we considered music the least consistent noise source, being chaotic 
in some sense while remaining in a typical frequency range for human activity; concurrently, it is repeatable and 
of somehow controlled characteristics. The choice of different pieces from different music genres pushed rand-
omization even further, excluding the domination of one set of frequencies. Therefore, it states the intermediate 
step between a deterministic noise source and an entirely stochastic model. In our case, during the measurements, 
a noise was emitted with speakers ZX-SPACE ZoltriXound connected to the PC shown in Fig. 9. Speakers were 
chosen to simulate a noise background typical for the presence of people in the surroundings. They were to emit 
noise in the acoustic subspectrum between 20 and 10 kHz.

Figure 8.  Measuring setup schematics: (a) block diagram of used devices and transmitted signals; (b) cross-
section through a cantilever holder with the included piezoelectric chip (not to scale).
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We analysed the same surface in all measurements, SiC with 1.5 nm atomic steps calibration sample. The 
used cantilevers was a model PPP-CONTSCPt by NANOSENSORS™. They belong to the family of typical contact 
probes with resonant frequency in the range 1–57 kHz (typically 25 kHz), force constant between 0.01 and 1.87 
N/m (typically 0.2 N/m) and full PtIr coating.

The measurement setup offers a sensitivity of 125 nm/V, derived from calibration sample measurements. 
However, the information capacity of a scanned surface is invariant concerning the transformation of measure-
ments from the voltage to the height domain. In fact, we could even operate on unaltered values as given by the 
measurement setup.

Measurements performed with the AFM at lower resolutions are highly vulnerable to external noises, which 
can be present in different forms. In all electronic systems, electrical noises are always  present2,3,24, yet, the pro-
gress in the field of integrated circuits decreases the influence of those noises. Another source is the construction 
of actuators for height compensation. In dedicated systems, noises are well-characterized and relatively low. The 
laser detector light is a typical noise source, apart from the mechanical construction (inert elements, material 
creep) or temperature (thermal expansion, parasitic thermal deflection). External mechanical noises of acoustic 
and sub-acoustic frequencies seem most influential. Despite active and passive methods of mechanical noise 
damping, those signals are frequently observed in measurements.

Acoustic noises consist of harmonic and impulse signals, whereby harmonious signals can be filtered out 
entirely with active and partly with passive damping. Active vibration cancelling relies on generating signals 
identical to noise in a reversed phase to cancel both signals in superposition. The passive damping is acoustic 
filtering, so the system’s physical properties limit the filtered band. Another purpose of passive filtering is, on 
the one hand, to shift the system’s resonant frequency as low as possible to eliminate the possibility of resonant 
excitation. On the other hand, impulses are easily damped by passive filtering and are impossible to eliminate 
with active filtration. Nevertheless, harmonious and impulse noises are finally present in the resulting picture.

In the frequency spectrum, noises are visible as peaks corresponding to specific frequencies (mainly harmoni-
ous noises), constant band elevation (thermal, electric, and mechanical noises, also impulses), and frequency-
dependent band elevation (e.g., 1/f noise).

Conclusion
Our work has briefly explained the methodology of measurements conducted with the AFM setup to address 
the important problem of the QA process of AFM images, which must be quantitatively assessed to improve 
the measurement process or find measurements with the highest quality. However, the ideally conducted data 
series in the sense of the reference measurements do not exist in this case. Therefore, we have had to apply the 
ICC metric, adopted from telecommunication technologies and initially proposed  by24. In fact, this metric has 
been widely used in various applications to assess image quality under the assumption to be correlated with 
MTF and  noise4,5,7,8. As this measure is predominantly susceptible to signal-to-noise ratio and image resolution, 
the superior tool for estimating power spectra is the taper wavelet-based method. On the one hand, it allows 
for estimating background noise that is a source of bias in the ICC metric. On the other hand, it provides a 
smooth approximation of power spectra, limiting the spectrum distribution uncertainty. For these reasons, the 
fast Morlet and Fan wavelet methods have been used in our studies. We used data noised by white noise and a 
random but not equally distributed frequency spectrum noise model for numerical experiments. Thus, based on 
our numerical experimentation, we claim that the ICC metric, primarily based on the wavelet approach, could 
be a robust method enabling the metrological assessment of the recorded AFM  images43. In addition, applying 
the wavelet-based method for the power spectrum estimation might result in a fully automatic procedure for 
AFM image assessment.

The wavelet transform can also be perceived as an intermediate step between filtration and spectral analy-
sis, which allows for extracting essential features of AFM images. It is seen as a promising direction for future 
investigations.

Figure 9.  Measuring setup with a source of synthetic acoustic noise and frequency spectrum as measured on 
cantilever deflection signal for continuous 50 Hz acoustic noise.
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