
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3644  | https://doi.org/10.1038/s41598-024-53833-3

www.nature.com/scientificreports

A macroscopic clock model to solve 
the paradox of Schrödinger’s cat
D. Sokolovski 1,3,4*, A. Uranga 2 & E. Akhmatskaya 2,3

We propose detecting the moment an atom emits a photon by means of a nearly classical macroscopic 
clock and discuss its viability. It is shown that what happens in such a measurement depends on the 
relation between the clock’s accuracy and the width of the energy range available to the photon. 
Implications of the analysis for the long standing Schrödinger’s cat problem are reported.

In non-relativistic quantum mechanics, time is a mere parameter, quite distinct from the dynamical variables 
such as positions and momenta, conveniently represented by Hermitian operators. This often complicates the 
queries, easily answered in the classical context (a good overview has been given in Refs.1  and2). When does a 
quantum particle arrive at a given location (see Egusquiza, Muga and Baute  in1 and Galapon  in2)? How much 
time does a tunnelling particle spend in the barrier (see, e.g.,3,4)? How long does a quantum jump take (see Schul-
man,  in5 and Refs. therein)? These questions continue to cause controversy, and here we add one more to the list.

If an atom, initially in an excited state, emits a photon and is later found in its ground state, when exactly did 
the transition take place? If the decay sets off a chain of events leading to the death of a  cat6, how long ago did 
the cat die? This is another general problem in elementary quantum mechanics, and below we will address it, 
using the simplest model available. Here we take the view found, e.g.,  in7. For any observed sequence of events 
quantum mechanics provides a probability amplitude, essentially a matrix element of an unitary evolution opera-
tor between the states representing the observed conditions. Its absolute square yields the desired likelihood of 
seeing an outcome or outcomes. At the end of the experiment an observer has access to the atom’s condition, plus 
the record of the moment of decay, encoded into the clock’s (the cat’s) condition. Whether quantum mechanics 
can be expected to do more is, indeed, an open question beyond the scope of our paper.

A meaningful question?
Does it make sense to talk about the moment the atom decayed? Not always. Decay of a metastable state is often 
described by a  model8,9 where a discrete state |e� , corresponding to an excited “atom” with energy Ee , is connected 
to “reservoir” states {|Er�} , representing an “atom” in its ground state, Eg = 0 , plus an emitted “photon” with 
energy Er . The corresponding Hamiltonian takes the form,

where �(Er) is the matrix element responsible for the transitions between the system’s discrete and continuum 
states, i.e., for the decay of the excited atom. In the continuum limit, whenever the final probabilities are added 
up, one can replace the sum 

∑

r by an integral 
∫

ρ(Er)dEr , where ρ(Er) is the density of the reservoir  states8.
After preparing an atom in its excited state, and waiting for t seconds, one can find a photon with an energy 

Er . Expanding the transition amplitude �Er | exp(−iĤt)|e� in powers of V̂  reveals a variety of scenarios where the 
photon, emitted for the first time at τfirst is re-absorbed and re-emitted until settling down into its final state |Er� 
at some τlast . Thus, the emission process may not occur via a single transition to the ground state, but can have a 
finite duration τlast − τfirst . Measuring even “the first passage time” τfirst presents considerable  difficulties10, and 
we do not know if τlast − τfirst can be measured at all.

A helpful exception is the first order transition in the weak coupling limit, which does indeed occur via a 
single jump,

(1)

Ĥ = Ĥ0 + V̂ , Ĥ0 = |e�Ee�e| +
∑

r

|Er�Er�Er |,

V̂ =
∑

r

�(Er)(|Er��e| + |e��Er |),
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yet the jump’s precise moment remains indeterminate due to the Uncertainty  Principle7. One way to pinpoint 
the time of transition is to subject the atom to frequent observations every δt = t/K , K >> 1 . This, however, is 
known to lead to the Zeno effect which quenches the transition, whose rate changes from the one given by the 
Fermi’s golden  rule11 for an unobserved atom, ŴFermi = 2π |�(Ee)|2ρ(Ee) to Ŵδt ≈ δt ×

∫∞
−∞ dEρ(E)|�(E)|2 , 

which vanishes as δt → 0 (see, e.g.,5).
Yet, there is a case where the transition proceeds via a single jump, and the Zeno effect does not occur. We 

will discuss it next.

Results and discussion
The wide band (Markovian) case
In the Markovian (wide band)  approximation8, both �(Er) and ρ(Er) , are taken to constant, very small and very 
big respectively, i.e. � → 0 , ρ → ∞ , in such a manner that a product ρ�2 remains finite,

The model admits an exact solution for any Ŵ , and there is no need to limit oneself to the first order approxi-
mation (5). The amplitudes of the four possible processes are given  by8:

By (4), atom’s decay is exponential at all times, and by (5), the energy distribution of the emitted photons is 
Lorentzian

Further helpful to our purpose is the fact that, according to Eqs. (5) and (6), the atom can emit a photon only 
once, and never re-absorbs it afterwards. The moment of transition can, therefore, be defined at least in terms of 
the virtual scenarios available to the system. With the purely exponential decay in Eq. (4) frequent checks of the 
atom’s state do not affect the decay rate, which stays the same with or without such checks [hence, the adjective 
Markovian, PdecayM (t) = 1− exp(−Ŵt) = 1− [exp(−Ŵt/K)]K = P

decay
δt (t) ]. Even so, destruction of coherence 

between the moments of emission in Eq. (5) must change something akin to the interference pattern in a double 
slit experiment. Below we will show that it is the energy spectrum of the emitted photons (8) that is affected by 
the measurement’s accuracy.

A quantum hourglass and its macroscopic limit
Suppose Alice the experimenter, does not wish to subject the system to frequent checks, and prefers instead to 
have, at the end of the experiment, a single record of the moment the atom decayed. For this purpose, she might 
consider a clock which stops at the moment the atom leaves its excited state. The clock could be an hourglass, in 
which case the number of the sand grains escaped, would tell Alice the time of the event. A quantum analogue 
of an hourglass is not difficult to find. Alice could use an array of identically polarised distinguishable spins 
precessing in a magnetic field, and estimate the elapsed time by counting the spins which have been flipped. 
Alternatively, Alice can employ a large number of non-interacting bosonic atoms, N >> 1 , initially in the left 
well of a symmetric double well potential (see Fig. 1).

The clock Hamiltonian given by

 where â+R(L) creates a boson in the right (R), or left (L) well, and ω is the hopping matrix element and the ampli-
tude of finding n bosons in the right well is easily found to be

where CN
n = N !

n!(N−n)! is the binomial coefficient.
Alice can choose ωt << 1 , so that the Rabi period of a single boson is very large, and have a practically 

irreversible flow of bosons from left to right. She can also assure, by making N very large, that the mean number 

(2)�Er | exp(−iĤt)|e� = −i�(Er)

∫

t

0

dτ exp[−iEr(t − τ)] exp(−iEeτ)+ O (V3),

(3)2πρ�2 ≡ Ŵ < ∞.

(4)�e| exp(−iĤt)|e� = exp(−iEet − Ŵt/2),

(5)�Er | exp(−iĤt)|e� = −i�

∫ t

0
dt′ exp[−iEr(t − t ′)] exp(−iEet

′ − Ŵt′/2),

(6)�e| exp(−iĤt)|Er� = 0, since � → 0,

(7)�Er′ | exp(−iĤt)|Er� = exp(−iEr t)δrr′ , since �Er′ |Ĥ|Er� = Erδrr′ .

(8)P(Er ← e, t → ∞) = ρ�2

(Er − Ee)2 + Ŵ2/4
.

(9)Ĥclock = ω

[

â+R âL + â+L âR

]

,

(10)Aclock
Bose (n ← 0, t) = (−i)n

√

CN
n p

n(t)(1− p(t))N−n, p(t) ≡ sin2(ωt),
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of atoms in the right well is also large (except perhaps at very short times), n(t) ≡ p(t)N >> 1 . Under these 
conditions, binomial distribution under the root sign in (10) can be approximated by a normal  distribution12, 
and after some algebra [see the “Methods” section (Derivation of Eq. (11))] we have

Alice can now count the atoms in the right well and use tn in Eq. (11) as an estimate for the elapsed time. 
Equation (11) shows that her estimate is likely to be within an error margin �t of the true value t. A good clock 
is the one which has a small relative error. If ωt is kept constant while N → ∞ , the error tends to zero, since 
�t/tn = 1/

√
n ≈ 1/(ωt

√
N) ∼ 1/

√
N  , and with many bosons Alice has a good clock (see Fig. 2).

(11)Aclock
Bose (n ← 0, t) ≈ (−i)n

[2πn]1/4 exp

[

− (tn − t)2

�t2

]

, tn ≡ ω−1
√

n/N , �t = ω−1N−1/2.

Figure 1.  A classical hourglass (left), and its quantum version (right). (a) With the barrier closed (the clock is 
switched off) the bosons remain in the left well. (b) If the barrier is down (the clock is switched on), the number 
of bosons escaping into the right well allows one to estimate the elapsed time.

Figure 2.  Comparison between Eqs. (10) and (11). Out of N = 105 bosons, 250 are in the right well..
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We make a further remark. As N → ∞ , a large system of independent particles begins to develop certain clas-
sical  properties13,14 [see also the “Methods” section (Derivation of Eq. (11))]. For example, denoting one-partial 
states in the wells as |L� and |R� , and preparing the bosons in a state |�clock

Bose (0)� =
∏N

i=1 |L�i , one later finds them 
in |�clock

Bose (t)� =
∏N

i=1[uLL(t)|L�i + uRL(t)|R�i] , where uLL(t) = cos(ωt) and uRL(t) = −i sin(ωt) are the matrix 
elements of the one-particle evolution operator. The evolved state |�clock

Bose (t)� is not an eigenstate of an operator 
n̂ =

∑N
i=1 |R�i�R|i = â+R âR , which gives the number of bosons in the right well. However, expanding it in the 

eigenstates of n̂ , n̂|n� = n|n� , n = 0, 1 . . .N , one  finds14 the coefficients localised in a range ∼
√
N  around a mean 

value n(t) ≡ ��clock
Bose (t)|n̂|�clock

Bose (t)� = N sin2(ωt) ≈ Nω2t2∝ N,

A similar localisation would occur if |�(t)� expanded in any basis, and this has important consequences. 
Firstly, one can accurately measure n̂ (or any other  operator14) and obtain a result close to its mean value ( ∼ N ) 
with an error margin ∼

√
N  . This is a good measurement, since its relative error tends to zero. Secondly, one can 

measure it inaccurately, e.g., by using a von Neumann pointer prepared in a Gaussian state of a width ∼ N
1/2+ε , 

where 0 < ε < 1/214. This is still a good measurement since ∼ N
1/2+ε/N → 0 , but also one which in the limit 

N → ∞ leaves the state (12) almost intact, since N1/2+ε/
√
N → ∞ [see the “Methods” section (A macroscopic 

clock) for details]. Alice can keep reading this macroscopic nearly classical clock without affecting its operation, 
like she would do with a classical wrist watch.

A clock which first runs and then stops
Next Alice needs to make the clock run until the moment the atom emits a photon. This can be achieved by 
coupling it to the atom-photon Markovian system (M) by means of a Hamiltonian

where π̂e projects onto the atom’s excited state (for possible realisation of coupling a Bose–Einstein condensate 
to quantum dots see, e.g.15–17). The corresponding Schrödinger equation is easily solved, and the amplitude for 
the composite {(a)tom+(ph)oton + clock} , starting with the right well empty, to end with n bosons there, is found 
to be [see the “Methods” section (Coupling the clock to a quantum system)]

where Aclock
Bose (n ← 0, τ) is given by Eq. (11), and Aa+ph(j ← e, t|τ ) is the amplitude for the atom-photon system 

to reach a final state |e� or |Er� after remaining in |e� for exactly τ seconds,

where Ûa+ph(t|τ) is the conditional evolution operator. This is clearly the desired result. The clock runs only 
while the atom remains in the excited state, and the amplitudes are added for all possible durations τ , which 
may lie between 0 and t. The integral in Eq. (15) is evaluated by noting that adding �π̂e to ĤM only shifts the 
energy of the discrete state Ee by � [see the “Methods” section (Timing the transition in the Markovian case)]. 
The result ( 0 ≤ τ ≤ t)

confirms what is already known from Eqs. (4) and (5). An atom, still found in the excited state at t, has remained 
in that state all the time. An atom, found in the ground state, has not returned to the excited state after making 
a single transition at some τ between t = 0 and t.

Alice the practitioner can now prepare the atom in its excited state, couple it with a “good” clock (11), wait 
until time t, and then measure the energy of the photon (if any), as well as count the bosons in the right well. 
She can find no photon and n bosons, with a probability

where PclockBose (n ← 0, t) = |Aclock
Bose (n ← 0, t)|2 [see Eq. (11)]. She may find n bosons, a photon with an energy Er , 

and conclude that the emission occurred around [see Eq. (11)]

(12)�n|�clock
Bose (t)� ≈

(−i)n

[2πn(t)]1/4
exp

[

− (n− n(t))2

2n(t)

]

.

(13)Ĥa+ph+clock = ĤM + π̂eĤ
clock, π̂e ≡ |e��e|,

(14)
A
a+ph+clock
Bose (j, n ← e, 0) =

∫ t

0
Aclock
Bose (n ← 0, τ)Aa+ph(j ← e, t|τ )dτ ,

j = e or Er , n = 0, . . .N ,

(15)
Aa+ph(j ← e, t|τ ) = �j|Ûa+ph(t|τ)|e�,

Ûa+ph(t|τ) ≡ (2π)−1

∫ ∞

−∞
exp[i�τ − i(ĤM + �π̂e)t]d�,

(16)
Aa+ph(e ← e, t|τ) = exp(−iEet − Ŵt/2)δ(τ − t),

Aa+ph(Er ← e, t|τ) = −i� exp[−iEr(t − τ)] exp[−i(Ee − iŴ/2)τ ]

(17)P(e, n ← e, 0) = exp(−Ŵt)PclockBose (n ← 0, t),

N
∑

n=0

PBose(n ← 0, t) = 1,

(18)τn = ω−1
√

n/N .
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The error of this result is determined by the width of the Gaussian (11) which, restricts the possible values 
of τ in Eq. (14). Alice’s relative error is, therefore, �t/τn ∼ 1/

√
n << 1 , where �t = ω−1N−1/2 was defined in 

Eq. (11). The probability of this outcome is given by the absolute square of Aa+ph+clock
Bose (Er , n ← e, 0) in Eq. (14). 

Extending in Eq. (14) the limits of integration to ±∞ , and evaluating Gaussian integrals yields

for 0 < τn < t , and P(Er , τn ← e, 0) = 0 otherwise.
The net probability of an outcome τn is

and replacing 
∑

n →
∫ t
0 dτn helps to verify that the overall decay rate is not affected by the presence of the clock, 

P
decay
�t (t) =

∑

n P(τn ← e, 0) = 1− exp(−Ŵt) . Finally, the spread of the energies of the emitted photons is no 
longer Lorentzian, but Gaussian,

and becomes broader as Alice’s accuracy improves, �t → 0 . [Note that we cannot arrive at the Lorentzian 
distribution (8) simply by sending �t → ∞ in Eq. (21), since Eq. (20) was derived under assumption that the 
number of bosons in the right well is large].

A clock which first waits and then runs
Alice can also consider a Markovian clock which starts running only after the transition has taken place and 
continues doing so until the time of observation t. (It will be clear shortly why this case is of interest). Replacing 
in Eq. (13) projector π̂e by 1− π̂e =

∫∞
−∞ dEr |Er��Er | , τ with t − τ , and acting as before yields [see the “Methods” 

section (Coupling the clock to a quantum system)]

where δn0 is the Kronecker delta. Now the number of the bosons in the right well is determined by the time which 
has elapsed since the moment of emission, and we can attend to the cat which dies as a result of the atom’s decay.

Exploding powder kegs and poisoned cats
It is difficult to resist the temptation to relate the present discussion to the famous Schrödinger’s Cat problem. 
In 1935 Einstein and Schrödinger discussed a hypothetical case in which explosion of a powered keg was caused 
by a photon emitted by a decaying atom.  In6 Schrödinger dramatised the narrative further by replacing the 
unstable powder by a now famous live cat, which dies in the event. The perceived contradiction was due to the 
fact that, prior to the final observation of the cat’s state, the wave function of the joint system was deemed to be 
a superposition of the states |atom: excited� ⊗ |cat: alive� and |atom: decayed� ⊗ |cat: dead� . With wave func-
tion believed to reflect on the actual condition of a system, this left a big question mark over the cat’s situation 
prior to be found either dead or alive. The same contradiction was observed in the powder keg example, where, 
again, macroscopically distinguishable states |unexploded� and |exploded� were forced into superposition through 
entanglement with the atom.

It is worth revisiting the situation by replacing the cat (the keg) with the (nearly) classical clock of Section 
“A clock which first waits and then runs”. So far, the cat paradox did not arise because we only required a matrix 
element of a unitary operator Ûa+ph+clock(t) = exp(−iĤa+ph+clockt) between the states |Er� ⊗ |n� and |e� ⊗ |0� in 
the Hilbert space of the composite a+ph+clock . The question, we recall, was “is there a photon, and how many 
bosons are there in the right well at t?” Although there appears to be no need for it, one can create a kind of “cat” 
problem by looking at the ket

and object the appearance of a superposition of distinguishable macroscopic states in r.h.s. of Eq. (23). Indeed, 
for an accurate clock, i.e. �t → 0 ( N >> 1 ), the clock’s states in the r.h.s. of Eq. (23) are practically orthogonal 
[cf. Eq. (12)], ��clock

Bose (τ
′)|�clock

Bose (τ )� ∼ exp
[

−(τ − τ ′)2/�t2
]

−−−→
�t→0

0 . Alternatively, one can avoid the paradox 

(19)P(Er , τn ← e, 0) ≈ π�2

ω
√
nN

exp(−Ŵτn)×
�t√
2π

exp[−(Er − Ee)
2�t2/2]

(20)P(τn ← e, 0) =
∫

dErρ(Er)P(Er , τn ← e, 0) ≈ Ŵ

2ω
√
nN

exp[−Ŵτn]

(21)P(Er ← e, t → ∞) =
∑

n

P(Er , τn ← e, 0) ≈ �t√
2π

exp[−(Er − Ee)
2�t2/2],

(22)

A
a+ph+clock
Bose (e, n ← e, 0) = exp[−iEet − Ŵt/2]δn0,

A
a+ph+clock
Bose (Er , n ← e, 0) ≈ (−i)n+1�

[2πn]1/4 ×
∫ t

0
exp

[

− (tn − τ)2

�t2

]

exp{−iErτ − i(Ee − iŴ/2)(t − τ)}dτ ,

(23)
Ûa+ph+clock(t)|e, 0� = exp[−iEet − Ŵ/2t]|�clock

Bose (0)� ⊗ |e�+
∑

r

∫ t

0
dτ ′Aa+ph(Er ← e, t|t − τ ′)|�clock

Bose (τ )� ⊗ |Er�
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of the cat being both dead and alive by considering the superposition to be a transient artefact of the calculation, 
needed only to establish the likelihood of finding n escaped bosons, and having no further significance.

The analogy can be taken further. Neither the cat’s demise, nor an explosion are purely instantaneous events. 
By looking at the deterioration of the cat’s body (we leave outside the question of what it means to be alive) 
one can tell how long ago it stopped functioning. By looking at how much of the powder has been burnt, or 
how much dust thrown up in the air has settled, it is possible to deduce the moment when explosion started. 
Remarkably, the waiting clock of Section “A clock which first waits and then runs” keeps a similar record, only 
in a more direct way (Fig. 3).

Alice may find no bosons in the right well (cat is alive), or a certain number of them (a particular stage of 
decay of the dead cat’s body). The more accurately Alice is able to deduce the “moment of death”, the broader 
will be the energy distribution of the photon whose emission has killed the cat [cf. Eq. (21)]. A valid analogy 
could be a very long fuse, whose burnt length (number of bosons in the right well) would let one deduce the 
moment when it was set on fire.

Beyond the wide band approximation
Next we revisit a more general (non-Markovian) case of Section “Results and discussion” [cf. Eq. (2)], where the 
product |�(Er)|2ρ(Er) may depend on the photon’s energy, 

∫∞
−∞ dE|�(Er)|2ρ(Er) is finite, and the transition 

occurs via a single jump. Only a small proportion of all atoms will be found decayed by the time t, but Alice 
may still want to know when this unlikely transition did occur. A simple calculation [see the “Methods” section 
(Timing the first order transition in a non-Markovian case)] shows that the probability of the clock’s reading τn 
for a system ending in a state |Er� , is still given by an expression similar to Eq. (19),

so that measuring the moment of emission to an accuracy �t broadens the range of the photon’s energies, which 
grows as 1/�t owing to the Gaussian in r.h.s. of Eq. (24). Therefore, it is the availability of the final system’s states 
that restricts the decay rate, and is responsible for the Zeno effect already mentioned in Section “Results and 
discussion”. Indeed, acting as before (cf. Section “Methods”), for the probability to decay by the time t we find

In the Markovian wide band limit Ŵ�t in Eq. (26) does reduce to Fermi’s golden  rule11, Ŵ�t = ŴFermi = 2π�2ρ . 
But if the integration of an ever broader Gaussian is restricted to a finite range, the factor of �t in Eq. (26) is 
no longer cancelled, and the decay rate eventually decreases as the measurement becomes more accurate. For 
example, consider a special case of an energy band of a width �Er = Emax − Emin , wherein ρ(Er)�2(Er) = const . 
Comparing the decay rates prescribed by Eq. (26) and by Fermi’s rule, we have

The accuracy with which the moment of emission can be determined without significantly altering the decay 
rate is, ultimately, limited by the width of the energy range, available to the emitted photon. What happens for not 
too small values of �t depends, however, on whether the excited atom’s energy lies within the allowed range, as 
explained in Fig. 4. If Ee < Emin or Ee > Emax unobserved atom cannot decay, and the decay rate first increases 
as �t becomes smaller, leading to a kind of “anti-Zeno”  effect18. It eventually begins to fall off in agreement with 
Eq. (27), when the exponential in Eq. (24) can be approximated by unity.

(24)P(Er , n ← e, 0, t) ≈ π�2(Er)�t2

[2πn]1/2 exp[−(Er − Ee)
2�t2/2],

(25)P
decay
�t (t) =

∑

n

∫

dErρ(Er)P(Er , n ← e, 0, t) = Ŵ�t × t,

(26)Ŵ�t ≡
√
2π�t

∫

dErρ(Er)�
2(Er) exp[−(Er − Ee)

2�t2/2].

(27)Ŵ�t/ŴFermi −−−→
�t→0

�Er�t√
2π

.

Figure 3.  An artists’s impression of a primitive cat (a) alive and well, and (b) sadly, dead for some time. Any 
resemblance to real cats, living or dead, is purely coincidental.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3644  | https://doi.org/10.1038/s41598-024-53833-3

www.nature.com/scientificreports/

With all this in mind, we can revisit the analysis  of5, where the duration of a jump was estimated in the fol-
lowing manner. Every δt seconds one checks whether the atom continues in its excited state. The jump time, τJ , 
is then taken to be the δt for which the checks begin to affect the atom’s decay rate. For τJ,5 finds

where τz ≡
[

�e|Ĥ2
a+ph|e� − �e|Ĥa+ph|e�2

]−1/2
 is the “Zeno time”. In the regime studied  in5 δt is short enough for 

the transition to occur via a single jump. One can, therefore, equally interpret τJ as the uncertainty in the moment 
at which an instantaneous transition takes place. In the case we have studied here, Alice’s clock begins to affect 
the decay rate when its error is of order of the inverse band width, �t ∼ 1/�Er [cf. Eq. (27)]. It is easy to check 
(see the “Methods” section [The “jump time” in Eq. (28))] that Eq. (28) yields a similar result, τJ ∼ 1/�Er.

Feynman’s “only mystery of quantum mechanics”
All this leaves one with a question: “what can be said about the moment of emission if it has not been timed by 
a cat, gunpowder, or a clock?” Very little, according to  Feynman7,19. In a double slit experiment a particle can 
reach a point on the screen by passing through the holes, with the probability amplitudes A1 and A2 , respec-
tively. The probability of arriving at the screen with both slits open is |A1 + A2|2 , while with only the first one 
open it is |A1|2 . With no restriction on the signs of the amplitudes, it is possible to have (e.g., near a dark fringe) 
|A1 + A2|2 < |A1|2 , so that eliminating one of the routes increases the number of arriving particles. For this 
reason, it is not possible to assume that a setting of the particle’s internal machinery (or any other hidden vari-
able) predetermines the hole to be chosen by each particle on its way to the screen. The mathematics cannot 
be simpler, and one must conclude that “... when you have no apparatus to determine through which hole the 
thing goes, then you cannot say that it either goes through one hole or the other”. This is an illustration of the 
Uncertainty  Principle7 which states that one cannot determine which of the alternatives has been taken without 
destroying interference between them.

The same principle, applied to the case of a decaying atom, states that with no apparatus to determine the 
moment of decay, one cannot say that the atom emits a photon with an energy between Er and Er + dEr at one 
moment or the other. Indeed, if each atom were predestined to decay at a given time, the number of decayed atoms 
could only increase or stay the same as the time span available for the atom’s decay becomes longer. However, the 
corresponding probability is given by W(Er ,Er + dEr) = P(Er)dEr , and P(Er) = ρ|

∫ t
0 A

a+ph(Er ← e, t|τ)dτ |2 , 
shown in Fig. 5, can decrease with t. (Note that the probability in Fig. 5 is that of a single measurement made at 
different times. If the decayed atoms are counted twice, the number measured at a later time is, of course, always 
greater.) The decrease cannot be blamed on the re-absorption of the photon, impossible in the Markovian model 
[cf. Eq. (6)]. Neither can it be explained by the change in the emitted photon’s energy [cf. Eq. (7)].

This seems even stranger than the double slit case. One could imagine the routes passing through different 
holes merged, like two confluent rivers, where it is impossible to say on which of the two a boat is. Merging 
time intervals may be even more difficult to fathom, but to conclude that an unobserved transition has occurred 

(28)τJ ≈ ŴFermiτ
2
z ,

 

Figure 4.  The rate of decay into a finite-sized band Emin ≤ Er ≤ Emax as a function of the clock’s accuracy �t 
[ ξ = 2(Ee − Emin)/�Er ]. For Emin < Ee < Emax better accuracy means a smaller decay rate (Zeno effect); for 
Ee < Emin there is an initial increase in the value of Ŵ (anti-Zeno effect). Both possibilities are illustrated in the 
inset. The anti-Zeno effect also occurs in the case Ee > Emax , not shown here.
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at a particular moment would lead to “an error in prediction”19, as was discussed above. This is, according to 
 Feynman7, the only mystery of quantum mechanics, which defies “any deeper explanation”.

Conclusions
The story of the Schrödinger’s cat, whose death is caused by the decay of an excited atom, is one of the best known 
illustration of a problem which one expects to arise when the classical world meets its quantum  counterpart6. 
A classical system, believed to have an unbroken continuous history, appears to loose this property if forced to 
interact with a quantum object, for which no continuous description is thought to be  available21. To bridge the 
gap between the classical and quantum views we design a nearly classical macroscopic clock, capable of timing 
the moment of decay to a good, yet finite accuracy. The complete narrative is as follows.

An atom, prepared in its excited state is found decayed at time t, after having emitted a photon with energy Er . 
The instant of emission is unknown, and to determine it the experimenter needs a device which would measure 
it. One suitable choice is a clock consisting of large number N of noninteracting bosonic atoms, initially trapped 
in the left well of a double well potential. Finding that n bosons have made the transition to the right well, one 
can estimate the elapsed time t as tn ≈ ω−1√n/N  , with an error �t ≈ ω−1/

√
N  . With the transition amplitude 

ω small, and the number of bosons large, N >> 1 the clock is a source of irreversible current flowing from left 
to right. With many bosons in the right well, N >> n >> 1 , the clock is seen to acquire an important classi-
cal property. Its wave function becomes localised, and one is able to measure time to a good accuracy without 
significantly perturbing the clock’s evolution (for more details see  also14).

The clock can be arranged to run until the moment of emission, which would yield a good estimate of the 
time of emission provided �t/tn << 1 , except in the unlikely case of the decay occurring almost immediately. 
The effect of the measurement on the atom’s decay depends on the range of energies �Er , available to the emitted 
photon. In the wide band limit, �Er�t >> 1 the decay rate Ŵ remains the same, and destruction of interference 
between the moments of emission leads only to broadening of the photon’s energy spectrum, whose shape is 
no longer Lorentzian, but Gaussian, with a width ∼ 1/�t . Having obtained a result tn , and knowing that more 
measurements could have been added both before and after t = tn (almost) without altering the clock’s evolu-
tion, the experimenter has a complete history of what has happened. The atom remained in its excited state 
until tn −�t � tn +�t , and then continued in the ground state until the time when the clock is read. Note 
that essential for recovering such a continuous description is the classical property of the macroscopic clock 
reached in the limit N >> 1.

The Zeno effect sets in when the inverse clock’s accuracy become comparable to the range of available photon’s 
energies, �Er�t � 1 . Now the notion of the moment of decay is meaningful only in the weak coupling limit, 
ŴFermit << 1 [cf. Eq. (2)]. In the “narrow band” limit, �Er�t << 1 , the decay rate is proportional to �t , and 
the unlikely atomic decay is further suppressed as �t → 0.

The clock set up to run after the decay has occurred, helps provide an additional insight into the fate of the 
Schrödinger’s  feline6. Now one knows that there were no bosons in the right well until tn (within an error margin 
�t ), after which their number there was steadily growing. One can leave the question of what it means to be 
alive outside the scope of quantum theory, and concentrate instead on the deterioration of the cat’s macroscopic 
physical body. The waiting clock is a blueprint for a very primitive “cat”, said to be alive if there are no bosons 
in the right well, n = 0 , and dead in some stage of decay with n >> 1 . If the analogy holds, a real cat’s physical 
frame should be characterised by a quantum uncertainty �tcat , which limits the ability of an experienced forensic 

Figure 5.  Probability of finding the photon in a unit interval around energy Er in a single measurement made at 
time t. Note that similar results were observed  in20.
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scientist to determine the time of death by studying the cat’s remains. The cat’s fate depends, therefore, on the 
details of the atom’s decay. In the wide band model, the probability of survival up to time t decreases as exp(−Ŵt) , 
regardless of the �tcat . However, in the finite band case, a cat whose body would allow to determine the moment 
of death with greater precision should have a better chance to survive its ordeal.

Methods
Derivation of Eq. (11)
The normal approximation to Aclock

Bose (n ← 0, t) = (−i)n
√

CN
n p

n(1− p)N−n reads ( p(t) = ω2t2 << 1)

In new variables tn ≡ ω−1√n/N  and �t ≡ ω−1N−1/2 we have

As N → ∞ , �t → 0 , and the exponential is sharply peaked around tn ∼ t , or n ∼ Nω2t2 , and the amplitude 
can be approximated by

which is Eq. (11).

A macroscopic clock
Consider N non-interacting bosons, each occupying the same state |φ� , |�� =

∏N
i=1 |φ�i . Expanding the |φ� s in 

an orthonormal basis |j� , j = 1, 2 , |φ� = α|1� + β|2� yields

where CN
n1

 is the binomial coefficient, and |n1,N� describes a state with n1 particles populating the state |1� . Sup-
pose one wants to measure the number of particles in the state |1� , N̂1 =

∑N
i=1 |1�i�1|i , using a Gaussian von 

Neumann pointer, whose initial state is G(f ) = C exp[−f 2/�f 2] . After the measurement for the entangled state 
of the pointer and the bosons, |�� , one finds

The distribution of the pointer’s readings f and the mixed state of the bosons ρ̂ are, therefore, given by

and

With N , |α|2N >> 1 the readings lie near the mean value n1 = |α|2N . Using the normal approximation for 
the binomial distribution |Bn1 |2 , and replacing the sum by an integral yields

where σ =
√

N |α|2(1− |α|2) . For a large N it is possible to choose σ << �f << n1 . This yields a good meas-
urement, w(f ) ∼ exp

[

−2(f − n1)
2/�f 2

]

 , with a relative error ∼ �f /n1 << 1 . What is more, since the non-zero 
Bn1 s lie within a range ∼ σ around n1 , all relevant factors In′1n1 in Eq. (35) can be replaced by unity. Thus, the 
bosons’ state is almost unperturbed by a good, yet weakly perturbing measurement, and is ready for the next 
observation. Since the choice of the basis |j� is arbitrary, one can say that, for a large system, different collec-
tive (macroscopic) variables acquire well-defined “classical” values even when the corresponding one-particle 
projectors n̂1 = |1��1| and n̂1′ = |1′��1′| do not commute. By the same token, the progress of a large system can 
be monitored by consecutive measurements of the same macroscopic quantity without seriously affecting its 
evolution. This is “classicality by numbers”14.

Coupling the clock to a quantum system
Consider an evolution operator for a system (s) coupled to a clock,

(29)Aclock
Bose (n ← 0, t) ≈ (−i)n(2πNp)−1/4 exp[−(n− Np)2/4Np].

(30)Aclock
Bose (n ← 0, t) ≈ (−i)n(2πNω2t2)−1/4 exp[−(t2n − t2)2/4t2�t2].

(31)Aclock
Bose (n ← 0, t) ≈ (−i)n(2πn)−1/4 exp[−(tn − t)2/�t2],

(32)|�� =
N
∑

n1=0

Bn1 |n1,N�, Bn1 =
√

CN
n1
αn1βN−n1 ,

(33)�f |�� =
N
∑

n1=0

Bn1G(f − n1)|n1,N�.

(34)w(f ) =
N
∑

n1=0

|Bn1 |2G2(f − n1),

(35)ρ̂ =
N
∑

n1,n
′
1=0

B∗n′1
Bn1 In′1n1 |n1,N��n′1,N |, In′1n1 ≡

∫

G(f − n′1)G(f − n1)df .

(36)w(f ) ≈ C2

σ
√
2π

∫

exp

[

− (n1 − n1)
2

2σ 2
− 2(f − n1)

2

�f 2

]

dn1 ∼ exp

[

− 2(f − n1)
2

�f 2 + 4σ 2

]

,
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where π̂ projects onto a sub-space h of the system’s Hilbert space. Since Ĥclock commutes with both Ĥs and π̂ we 
can write ( δ(x) is the Dirac delta, and � is a c-number)

[It is also straightforward to verify that the r.h.s. of Eq. (38) satisfies the correct equation of motion, 
i ddt Û

s+clock] =
(

Ĥs + π̂Ĥclock
)

exp(−i
(

Ĥs + π̂Ĥclock
)

t)  ] .  B u t 

δ(�− Ĥclock) = (2π)−1
∫∞
−∞ dτ exp(i�τ − iĤclockτ) , and we have

where Û s(t|τ) = (2π)−1
∫∞
−∞ d� exp(i�τ) exp[−i(Ĥs + �π̂)t] evolves the system under an additional condi-

tion that it must spend τ seconds in the chosen sub-space, and Ûclock(τ ) = exp(−iĤclockτ) evolves the clock for 
precisely τ seconds.

If the clock is set to measure the duration spent by the system in the sub-space orthogonal to h, π̂ is replaced 
by 1− π̂ , and Eq. (39) becomes

with the clock running whenever the system is not  in the subspace h. For a transition amplitude between states 
|ψ s

i �|φclock
i � and |ψ s

f �|φclock
f � , As+clock(ψ s

f ,φ
clock
f ← ψ s

i ,φ
clock
i , t) = �ψ s

f |�φclock
f | exp(−iĤs+clockt)|ψ s

i �|φclock
i � we 

have

where As(ψ s
f ← ψ s

i , t|τ) is the amplitude of the system found in its final state while spending a duration τ in h, 
and Aclock(φclock

f ← φclock
i , τ) is that of the clock reaching |ψ s

i � after τ seconds. For a clock measuring the dura-
tion spent in the part of the Hilbert space, orthogonal to h, τ should be replaced by t − τ as it has been done in 
Eq. (40).

Timing the transition in the Markovian case
Now the system including the atom and a photon (if any) is described by the Hamiltonian (1), π̂e ≡ |e��e| projects 
onto the atom’s excited state (no photons). Thus introducing �π̂e to the Hamiltonian simply adds � to the energy 
of the excited state Ee → Ee + � . We may evaluate the amplitudes for the modified Hamiltonian, Ĥ + �π̂e and 
then perform the Fourier transform. We have

Similarly, we find

which is the second of Eq. (16). The remaining amplitudes are

and

Timing the first‑order transition in a non‑Markovian case
In the general non-Markovian case, to calculate the required amplitude we expand, to the first order in V̂  , a 
transition amplitude

(37)Û s+clock(t) = exp[−i(Ĥs + π̂Ĥclock)t],

(38)Û s+clock(t) =
∫ ∞

−∞
d�δ(�− Ĥclock) exp[−i(Ĥs + �π̂)t].

(39)Û s+clock(t) =
∫ ∞

−∞
dτ Û s(t|τ)Ûclock(τ ),

(40)Û s+clock(t) =
∫

Û s(t|τ)Ûclock(t − τ)dτ =
∫

Û s(t|t − τ)Ûclock(τ )dτ

(41)As+clock(ψ s
f ,φ

clock
f ← ψ s

i ,φ
clock
i , t) =

∫

As(ψ s
f ← ψ s

i , t|τ)Aclock(φclock
f ← φclock

i , τ)dτ ,

(42)
Aa+ph(e ← e, t|τ) = (2π)−1

∫ ∞

−∞
d� exp[i�τ − i(Ee + �)t − Ŵt/2]

= exp(−iEet − Ŵt/2)δ(τ − t).

(43)
Aa+ph(Er ← e, t|τ) = −i� exp(−iErt)

∫ t

0
dt′ exp[−i(Ee − Er)t

′ − Ŵt ′/2]δ(τ − t ′)

=
{

−i� exp[−iEr(t − τ)] exp[−iEeτ − Ŵτ/2] for 0 ≤ τ ≤ t
0 otherwise

,

(44)Aa+ph(e ← Er , t|τ) = 0

(45)Aa+ph(E′r ← Er , t|τ) = exp(−iEr t)δ(Er − E′r)δ(τ ).
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The integrand reduces to [recall that adding �π̂e changes Ee into Ee + � in Eq. (1)]

and performing the Fourier transform with respect to � yields

Using Eqs. (11), (14) and (48) we find

For �t → 0 the limits of integration can be extended to ±∞ . Evaluating the Gaussian integral, and taking 
the absolute square then yields

Replacing ( nmax = ω2t2N ) the sum 
∑nmax

n=0 n−1/2 by an integral 
∫ nmax

0 n−1/2dn = 2
√
nmax = 2t/�t we obtain 

the energy distribution of the photons in the presence of a clock

The “jump time” in Eq. (28)
Let the decay occur into a finite energy range �Er = Emax − Emin around Ee , and assume that ρ(Er)�2(Er) = const 
inside the range, and vanishes outside it. Using Hamiltonian (1), for the Zeno time we have

Recalling that ŴFermi = 2πρ(Ee)|�Er = Ee|Ĥ|Ee�|2 = 2πρ�2 shows that Eq. (28) reduces to
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′]|e�.

(47)exp[−iEr(t − t ′)]δr′r exp[−i(Ee + �)t′],

(48)Aa+ph(Er ← e, t|τ) =
{

−i�(Er) exp[−iEr(t − τ)] exp[−iEeτ ] for 0 ≤ τ ≤ t
0 otherwise

.

(49)A
a+ph+clock
Bose (Er , n ← e, 0) = const ×

∫ t

0
exp[−(τ − τn)

2/�t2 + i(Er − Ee)τ ]dτ .

(50)P(Er , n ← e, 0, t) ≈ π�2(Er)�t2

[2πn]1/2 exp[−(Er − Ee)
2�t2/2].

(51)P(Er ← 0, t) =
nmax
∑

n=0

P(Er , n ← e, 0, t) ≈
√
2π�2(Er)ρ(Er)�t exp[−(Er − Ee)

2�t2/2] × t.

(52)τ 2z ≡
[
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