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Artificial intelligence framework 
for heart disease classification 
from audio signals
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As cardiovascular disorders are prevalent, there is a growing demand for reliable and precise 
diagnostic methods within this domain. Audio signal-based heart disease detection is a promising 
area of research that leverages sound signals generated by the heart to identify and diagnose 
cardiovascular disorders. Machine learning (ML) and deep learning (DL) techniques are pivotal in 
classifying and identifying heart disease from audio signals. This study investigates ML and DL 
techniques to detect heart disease by analyzing noisy sound signals. This study employed two 
subsets of datasets from the PASCAL CHALLENGE having real heart audios. The research process 
and visually depict signals using spectrograms and Mel-Frequency Cepstral Coefficients (MFCCs). We 
employ data augmentation to improve the model’s performance by introducing synthetic noise to the 
heart sound signals. In addition, a feature ensembler is developed to integrate various audio feature 
extraction techniques. Several machine learning and deep learning classifiers are utilized for heart 
disease detection. Among the numerous models studied and previous study findings, the multilayer 
perceptron model performed best, with an accuracy rate of 95.65%. This study demonstrates the 
potential of this methodology in accurately detecting heart disease from sound signals. These findings 
present promising opportunities for enhancing medical diagnosis and patient care.

The heart is the body’s most important organ, pumping blood to all the other tissues and organs. However, it is 
also vulnerable to disease and trauma, negatively impacting human health and leading to heart-related ailments 
collectively known as “Cardiovascular Disease (CVD)”1. When risk factors, including high cholesterol, smoking, 
inactivity, and hypertension, are present, they can lead to trouble breathing, weakness, exhaustion, and more. In 
2016, CVD was responsible for an estimated 17.9 million individuals worldwide, or 31% of all  deaths2. Unfor-
tunately, over 70% of these deaths were attributable to CVD, concentrated in low and middle-income nations. 
However, it should be stressed that many of these diseases can be avoided via precaution, with early detection 
being a key factor.

The heartbeat of a healthy human heart exhibits a predictable rhythm due to the regular opening and closing 
of the heart’s valves. Murmur is an example of an anomaly since it deviates from the usual. Although cardiac 
murmurs are not usually dangerous, they can signify various potentially life-threatening heart  conditions3. Expert 
doctors can hear murmurs from a mile away but may not always be accessible, especially in rural areas where 
primary care physicians are scarce. A cardiac murmur might be an important indicator of cardiovascular disease 
in its early stages. Skilled doctors and physicians can usually discover this irregular sound pattern, which is often 
an indicator of underlying cardiac abnormalities, by a method called Cardiovascular auscultation, in which they 
listen to the heart’s noises with a  stethoscope4.

Early detection and accurate prediction are crucial to treat and lessen cardiovascular disease’s deadly effects 
effectively. Medical experts widely use angiography for diagnosis, but its lengthy and costly nature presents 
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difficulties, especially in countries with low  resources5. Machine learning and artificial intelligence are two 
emerging technologies that potentially improve the health outcomes of those at risk for cardiovascular  illnesses6,7. 
There has been a significant increase in the use of ML and DL in medical diagnostics, which helps with disease 
classification and identification and gives clinicians more information to diagnose better and treat  patients6–9. The 
application of ML to the field of medical diagnostics has been gaining traction recently, and for good  reason10. 
Improvements in disease diagnosis, treatment, and prevention have resulted from the accumulation of data made 
possible by recent advances in disease classification and identification. ML and DL methods have proven crucial 
in determining how often certain diseases occur.

Research gap
There is a rising need for accurate and reliable methods when diagnosing cardiovascular diseases. Early diagnosis 
is crucial for improving patient outcomes due to the prevalence of CVD worldwide. One potentially effective 
approach to identifying cardiac illness is using acoustic waves. Heart sounds are the audible vibrations the heart 
muscle produces when it contracts rhythmically. Heart valve disease, heart failure, and coronary artery disease 
are just a few examples of the many cardiac conditions that can be diagnosed using a variety of acoustic signals. 
The use of ML and DL techniques has been successful in classifying heart sounds. However, there are several gaps 
in this area of  study8,11. The need for broad and diverse datasets is a key subject for future study. The datasets used 
for heart sound classification often have size and fairness issues. Models suffering from poor generalizability to 
real-world datasets may be the outcome of this phenomenon. The need for stronger and more efficient ML and 
DL models is another hotspot for investigation. Current methods for classifying heart sounds are computationally 
expensive and time-consuming to train. This can create difficulties when putting these concepts into practice. 
The proposed research utilizes a large and varied heart sound dataset to close current knowledge gaps. Novel ML 
and DL models with improved robustness and efficiency compared to existing models will also be developed as 
part of this study. The results of the planned study will be very helpful in developing more accurate and reliable 
methods for diagnosing cardiovascular diseases. This measure can potentially improve patient outcomes and 
lessen the impact of cardiovascular disease. The study’s projected findings have the potential to make important 
advancements in the identification of cardiac disease. Researchers can now tap into a large and varied database 
of cardiac recordings. Developments in the Future Novel models with improved robustness and efficiency will 
likely be developed thanks to ML and DL. The accuracy of ML and DL models for classifying heart sounds 
should be improved.

Research Contribution: The main contributions of this research are:

• Propose a novel approach that integrates cutting-edge techniques such as audio data augmentation with 
machine learning (ML) and deep learning (DL) methodologies to enhance and optimize the detection rate 
of heart disease through the synergistic application of these advanced techniques.

• Utilize two subsets of the PASCAL challenge dataset, created a new database of noisy heart sound signals 
and employed the proposed approach to diagnose heart disease from noisy audio signals.

• Develop a feature ensembler by combining multiple audio feature extraction methods to improve the per-
formance of the ML and DL models.

• Utilize multiple ML and DL models, provide comparison with previous studies and obtain significant 
improvement in heart disease detection rate.

Research organization
This research describes a novel approach for detecting heart disease from sound signals using machine learn-
ing and deep learning techniques in this study. Section “Literature Review” describes the literature analysis to 
evaluate existing methodologies, noting their strengths and weaknesses. Our suggested method uses a carefully 
selected dataset and noise induction to replicate real-world circumstances, presented in the Section “Dataset 
Selection”. The complete methodology of this research is described in the Section “Proposed Methodology”. The 
experimental findings and discussions in the section “Experimental Results and Discussion” show that our model 
is effective, encompassing performance parameters like accuracy, precision, recall, and F1-score. We compare our 
findings to those of previous studies to demonstrate the superiority of our technique in predicting heart disease, 
shown in the subsection “Comparison With Existing Studies”. Finally, this research emphasizes the importance 
of ML-based detection and details prospective future work for further development and its potential influence 
on healthcare in the section “Conclusion”.

Literature review
In this section, this research discussed the methods used before to identify CVD from audio signals. Classify-
ing heart sounds typically involves three steps: segmenting the heart sounds, extracting features from the heart 
sounds, and finally, classifying the heart sounds. The first step is to pinpoint the precise position of the heart’s 
fundamental rhythmic sounds. Each Phono Cardiography (PCG) recording extracts multiple heart disease 
sounds. Accurately identifying the heart sounds provides insight into the heart’s systolic and diastolic sounds. 
Since the primary objective of aberrant heart sound detection is abnormality identification rather than detection, 
segmentation is unnecessary. As a result, many approaches have been proposed in the literature for classifying 
heart sounds without resorting to segmentation. Comparable outcomes are possible when combining segmenta-
tion data from different approaches. Table 1 summarizes the results of previous efforts to classify heart diseases.

Several researchers have looked into using Artificial Intelligence (AI) for cardiac disease classification, and 
the results have been  promising12,13. Machine learning models have successfully diagnosed heart problems using 
diverse data modalities such as electrocardiograms and imaging. Recent advances in audio signal analysis have 
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opened up a new research field. While preliminary research indicates that audio-based AI models can reach high 
accuracy in cardiac disease categorization, it is crucial to emphasize that this is a very new and expanding field 
of study. As a result, the accuracy of audio-based AI frameworks should be evaluated with caution, and larger, 
more robust investigations are required to validate their accuracy and therapeutic  value14,15.

Numerous feature extraction techniques have been discussed in the literature, and they can be roughly classi-
fied into one of three broad classes: time domain, frequency domain, or time–frequency complexity  domain16–18. 
The physiological characteristics of PCG signals make the time or frequency domain features intuitive, easy to 
understand, and straightforward to compute. However, independently quantifying essential information in PCG 
signals in the time and frequency domains can be difficult. This has led to the popularity of extracting features 
in the Time–Frequency (TF) domain. TF-based features can provide more in-depth information about the PCG 
signal and better feature extraction performance outcomes, but they are more computationally intensive to 
 generate19. Wavelet transforms, Discrete and Packet Wavelet Transforms (DPWT), Hilbert transforms, Empiri-
cal Wavelet Transforms (EWT), Variational Mode Decomposition (VMD), and Tunable Q-Wavelet Transforms 
(TQWT) are all common ways to extract TF features from PCG data. Using spine CT to create the PCG signal’s 
TF matrix improves both its sensitivity to pathological alterations and its ability to focus on the TF domain. How-
ever, feature extraction is still challenging because PCG signals are non-stationary and have many characteristics.

The last step is to use the recovered features to train a classifier to predict each PCG  signal12,13. Several machine 
learning-based classifiers have been proposed to classify heart sounds based on extracted features. The perfor-
mance of the classifiers was further improved by using an ensemble of classifiers. Tent-pooling decomposition 
and a graph-based feature generator are proposed by the authors of  research20 for feature extraction. DT, linear 
discriminant, and Support Vector Machine (SVM) models were used to classify PCG signals into five groups 
after features were defined using iterative Neighborhood Component Analysis (NCA). The authors of  research21 
chose the most distinguishing features for NCA using a 1D-binary pattern with three kernels. Classification of 
PCG signals was accomplished using KNN and SVM. Six audio variables were collected from PCG signal audio 
samples and categorized using four conventional machine learning-based classifiers (zero crossing rate, energy 
entropy, volume, spectral flux, spectral centroid, and spectral roll-off)22. Categorizing PCGs is still subjective 
and time-consuming, even though ML-based algorithms have made great strides in this area. Several deep learn-
ing models, including Convolutional Neural Networks (CNN) and LSTMs, have recently been used to classify 
heart  sounds23. Their ability to automatically analyze heart sounds and extract high-level representations has 
garnered increasing attention. The practice of identifying PCG signals from whole audio recordings rather than 
from smaller segments is also gaining traction. Authors  in24 used digitally recorded stethoscope audio waves 
to create phonocardiograms (PCGs) for heart disease detection. PCG signals are classified into five categories 
using deep learning models, and spectrograms are processed using a Regularised Convolutional Neural Network. 
The model achieves 94% accuracy in a Python simulation environment. The study develops a decision support 
system for remote heart state assessment in response to the importance of early identification in the fight against 
cardiovascular disease. Open-access Kaggle datasets from the PASCAL heart sound categorization challenge 
are used for training and testing. While the study intends to use ECG and EEG signals in the future to increase 
accuracy, it does not address real-world clinical applicability, data quality, or noise difficulties in audio recordings.

By conducting an extensive investigation using various acoustic feature aggregation and data augmentation 
 strategies25, tackled the difficult task of ambient sound classification (ESC). Various audio feature extraction 
techniques are utilized in the suggested data augmentation methods, emphasizing spectrogram image features 
(SIFs) that are reinforced, aggregated, and combined. The logarithmic scale of the Mel spectrogram is used to 
introduce two new characteristics, L2M and L3M. Two approaches, NA-1 and NA-2, are born from integrating 
these features with Mel and LM. NA-2 requires the vertical aggregation of these images in pairs, whereas NA-1 
improves SIF data by integrating different audio features based on spectrograms. Three popular ESC benchmark 
datasets-ESC-10, ESC-50, and Urbansound8k (Us8k)-train the transfer learning model DenseNet-161, which was 
fine-tuned with individual optimal learning rates using discriminative learning approaches. As a pre-processing 
technique, quiet cutting is used since many audio clips contain silent parts. This approach provides state-of-
the-art results on all ESC datasets, with Us8k achieving 97.98% accuracy, ESC-50 98.52%, and ESC-10 99.22%. 
We further evaluate these approaches on real-time audio data and show they perform competitively. Among 

Table 1.  Analysis of prior work’s efficacy in classifying heart diseases.

Ref. Features Dataset Models Metrics
16 Spectrogram + CWT PRV RNN-LSTM ACC URA CY IS: 93%
17 Frequency based features Physio-Net dataset KNN-RF ACC URA CY IS: 95%

18 heart sounds segmentation features Publically available Heart sound dataset Euclidean distance (ED) and the its 
principles ACC URA CY IS: 96%

19 MFCC and DWT features Pascal Challenge dataset XGB, MFO and RF ACC URA CY IS: 89%
12 Multi-dimensional Scattering-transform PRV PCA-SVM ACC URA CY IS: 98%
29 MFCC Physio-Net ANN and LSTM ROC_AUC IS: 91%
30 PCA feature selection - NN with PSO ROC_AUC IS: 98%
31 EMD-PWPT features PRV RF ACC URA CY IS: 99%
13 Power Spectrum features Phyio-Net CNN ACC URA CY IS: 98.89%
22 Spectral-Statistical Features NIH NB, RF, SVM and kNN ACC URA CY IS: 97%
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the most notable additions are the revolutionary NA-1 and NA-2 procedures, surpassing previous methods and 
including L2M and L3M features.

Authors  in26 included the difficulties encountered in ambient sound classification (ESC), sometimes called 
Sound Event Recognition (SER), as a result of variables such as different frameworks, overlapping sound events, 
numerous sound sources, and non-uniform distances between microphones and acoustic sources. The fast inte-
gration of ESC tasks into many everyday contexts encourages the search for efficient approaches. To improve the 
performance of ESC tasks, the study uses deep convolutional neural networks (DCNN) that have been trained 
using regularisation and data improvement using fundamental audio properties. The performance of two deep 
convolutional neural network (DCNN) models is compared: Model-2 without max-pooling and Model-1 with 
max-pooling. We take a look at three benchmark datasets-ESC-10, ESC-50, and Urban sound (US8K)-and three 
methods for extracting audio features: Mel spectrogram (Mel), Mel frequency cepstral coefficient (MFCC), and 
Log-Mel. Combining L2 regularisation with the original datasets, the paper presents offline data augmentation 
approaches to decrease the risk of overfitting caused by restricted data. On supplemented datasets, the DCNN 
(Model-2) achieves the best accuracy, which does not use max-pooling and uses Log-Mel for audio feature 
extraction. The achieved accuracies are 94.94% for ESC-10, 89.28% for ESC-50, and 95.37% for US8K. Envi-
ronmental sound categorization difficulties are where the suggested method shines, according to the results of 
the experiments. The experimental study aims to investigate the use of convolutional neural networks (CNNs) 
for ESC tasks, specifically looking at two stacked DCNN models. Although Model-2 does not use max-pooling, 
Model-1 does. Both models are evaluated on real audio datasets using three different feature extraction methods 
(Mel, MFCC, and Log-Mel). Datasets that are supplemented offline follow the identical experimental protocol. 
The study demonstrates that DCNN models are useful; however, Model-2 and Log-Mel extraction stand out for 
their exceptional accuracy rates on various ESC datasets.

An important bioelectrical indication during muscle contraction, surface electromyography (sEMG) signals 
are the subject of research’s classification efforts, with a focus on their potential usefulness in controlling pros-
thetic limbs for the upper  limbs27. They used an E2CNN, an efficient concatenated convolutional neural network 
optimized for fast response and real-time performance, to achieve these goals. This work tests the model on two 
datasets: the publicly accessible NinaPro DB1 dataset and a longitudinal dataset with ten non-disabled and six 
trans-radial amputee individuals across seven days of data collection. Preprocessing converts the raw sEMG 
signals into LMSs or Log-Mel spectrograms. Concatenation layers, unique to the E2CNN design, merge input 
layers with the output of every convolutional block. On the longitudinal dataset, the suggested E2CNN achieves 
accuracy rates of 98.31% ± 0.5% for non-disabled participants and 97.97% ± 1.41% for amputee subjects when 
applied to LMS-based images. The E2CNN outperforms the baseline CNN model by a significant margin of 
24.67% on the NinaPro DB1 dataset, with an average accuracy of 91.27%. Compared to other CNN models and 
existing methods like stacked sparse autoencoders (SSAEs), the results show that the E2CNN approach is com-
petitive. Because of its short training and prediction times, the E2CNN shows much promise for real-time sEMG 
classification using Log-Mel spectrogram pictures. To meet the needs of upper limb prosthesis applications in 
real time, the study provides an efficient and reliable neural network architecture for sEMG signal categorization.

The researchers combined feature vectors based on time, frequency, time–frequency (TF) characteristics, 
energy, and  entropy28. CNN’s deep learning features from MFCC images were integrated with these for PCG 
classification. The authors claim that the changes in PCG signals caused by HVDs from specific angles can only be 
reflected in real-world applications by using features that have been carefully developed. More complete disease 
data may be collected when deep learning features with strong representation capabilities are merged. Intending 
to extract more discriminative features with fewer parameters, the authors  of28 created a novel 2D CNN archi-
tecture for heart sound classification. The building in question utilized both channel-based and spatial forms of 
attention. PCG signals, spectrograms, and deep learning methods have all been used in recent research as  well14,15.

Proposed approach
This study presents a novel approach for detecting heart disease using audio signals to optimize the detection 
technique. The schematic in Fig. 1 illustrates the proposed technique in a block diagram format. The proposed 
methodology encompasses a series of sequential stages: data acquisition, data augmentation, data pre-processing, 
feature extraction, feature normalization, model selection, model implementation, and result prediction. This 
study aims to enhance the reliability of the comparative analyses conducted in previous  studies8,9. Consistency 
in the experimental setup and data collection methods is maintained throughout this investigation. The feature 
extraction process involves MFCCs, and eight other main feature extraction methods are employed to extract the 
most significant attributes from the dataset. Our methodology utilized a combination of ML and DL models to 
tackle the multi-classification problem in detecting heart disease. This investigation initially utilized the PASCAL 
classifying heart sound challenge Dataset and the 2016 PhysioNet/Computing in Cardiology (CinC) Challenge 
datasets. Ventricular Septal Defect (VSD), Atrial Septal Defect (ASD), Patent Ductus Arteriosus (PDA), murmur, 
and extrasystole are just a few of the disorders covered by the databases. The proposed methodology exhibits a 
heightened capacity for expedited disease detection and precision compared to previous research. The proposed 
methodology incorporates a total of five machine learning models, namely Random Forest (RF), K-Nearest 
Neighbour (KNN), Decision Tree (DT), Extreme Gradient Boosting (XGB), Multilayer Perceptron (MLP), and 
two deep learning models, Deep Neural Network (DNN), and 1D-Convolutional Neural Network (CNN1D). 
The evaluation of the model involved the consideration of various metrics, including accuracy, precision, recall, 
and the F1-score. Additionally, a confusion matrix was generated to comprehensively analyze the model’s per-
formance concerning established benchmarks within the industry.
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Dataset selection and noise induction
The design project selected for this endeavor is the Classifying Heart Sounds Pascal Challenge (CHSPC). The 
dataset comprises a collection of heart sound recordings obtained from a sample size of 400 individuals. The 
participants were categorized into two groups: a group of 200 individuals with typical cardiac function and 
another group of 200 individuals with atypical cardiac function. The patients in the dataset were collected from 
four different clinical sites, each contributing an almost equal number of subjects. According  to32, the dataset 
encompasses a maximum of three recordings, each lasting approximately 10 seconds, for every subject. These 
recordings are obtained from distinct chest positions. The WAV files contain audio recordings that were made 
with an electronic stethoscope. In addition to the recordings, the dataset also includes a set of annotations for 
each one, pinpointing where the heart sounds can be heard in the recording and classifying them as normal or 
abnormal. Professional cardiologists with years of experience annotated the data. Machine learning competitions 
used the CHSPC dataset to classify heart sounds as normal or pathological. This work aimed to create algorithms 
with the intelligence to analyze and classify heart sound recordings independently. The CHSPC dataset is a great 
resource for researchers and machine learning practitioners when building algorithms for identifying cardiac 
diseases using heart sound recordings.

The contest consisted of two rounds. The proficiency of the participants’ segmentation algorithm abilities 
was assessed during the initial round. In contrast, the subsequent round focused on evaluating the algorithm’s 
effectiveness in accurately categorizing heart sounds as “normal,” “murmur,” “extra heart sound,” or “artifact” 
within a laboratory setting. To assess the efficacy of the novel methodology, only the outcomes derived from the 
initial segment of the experiment, encompassing both datasets, were considered for analysis. The algorithm’s 
robustness was tested using two datasets, including clean and noisy cardiac sounds. There are more audible heart 
sounds in the Digiscope data collection. The initial dataset consists of 175 audio signals, each belonging to one of 
four categories: “normal,” “murmur,” “extra heart sound,” or “artifact.” The distribution of classes in Dataset A is 
depicted in Fig. 2a. Dataset B comprises a total of 655 audio signals on heart disease. Dataset B consists of three 
distinct categories of audio signals, namely “normal,” “murmur,” and “extra stole.” The distribution of classes in 
Dataset B is depicted in Fig. 2b.

The integration of both datasets was undertaken to enhance the complexity of this approach. The ultimate 
dataset comprises a total of 832 audio signals. Figure 3 illustrates the visual representation of the audio signals. 
The description of diseases presented in the dataset is shown in Table 2.

The utilization of Dataset A and Dataset B allows for establishing a uniform benchmark, facilitating the 
comparison of various algorithms and enabling researchers to replicate and further develop prior research 

Figure 1.  Proposed approach for AEDDB creation and abnormal event detection.
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endeavors. Moreover, including diverse pathological heart sounds within these datasets renders them highly 
valuable in developing diagnostic tools for cardiovascular conditions. The primary objective of this study was 
to investigate the detection of heart disease through the analysis of sound signals contaminated with noise. The 
study employed an existing publicly accessible dataset and generated a novel dataset by merging original and 
noisy heart disease sound signals. This new dataset facilitates further investigation and allows researchers to 
derive more significant findings from the data.

Noise induction and audio data augmentation
This research employed a data augmentation technique to enhance the generality and complexity of the dataset. 
Audio data augmentation refers to transforming current audio data into different variations. This technique 
enhances the generalization capabilities of machine learning models by exposing them to a diverse range of 
input data, thereby expanding the size of the training dataset. Many different modifications can be applied to 
audio data through audio augmentation techniques, such as changing the pitch or tempo, adding noise or other 
sound effects, adjusting the volume or balance, and performing time-stretching or time-shifting procedures. 
These techniques are flexible enough for audio information, such as music, sound effects, and speech. Audio 
data augmentation might be especially useful in applications where machine learning models’ high accuracy and 
robustness require extensive and diverse training datasets. Such uses can be seen in voice recognition, speaker 
verification, and music classification systems.

There were 832 different audio samples in the original dataset. Audio pitch and tempo changes and the addi-
tion of noise were among the methods used to supplement the data. The updated dataset now includes a total of 
2882 audio sound signals, comprising 1538 “normal” signals, 746 “murmur” signals, 320 “artifact” signals, 176 
“extrasystole” signals, and 102 “extra heart sounds.” Figure 4 shows the distribution of the final dataset used in 
the analysis.

Data pre-processing
Pre-processing is a crucial step in ensuring optimal machine learning model performance. The audio data under-
went several preprocessing stages before integrating into the training phase. The initial stage in editing audio 
data involves converting it into a format that can be understood by a computer, thereby enabling the extraction 
of essential values in subsequent steps.

Sampling rate
A sample refers to a discrete subset of data, exemplified by a fragment of audio lasting briefly, typically measured 
in seconds. The sample rate describes the frequency at which samples are collected. The sample rate (frame rate) 
utilized in our study was 44100. The equation 1 allows the total number of frames in an audio file to be calculated 
by multiplying the sampling (frame) rate by the file’s duration in  seconds9.

(a) Classes distribution of Dataset A (b) Classes distribution of Dataset B plot

Figure 2.  Classes distribution of datasets.
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If the signal labeled as “file1” is an analog signal that spans 9 seconds, we can utilize Equation 2 to calculate its 
overall frame rate.

Data framing
Data framing is a technique that can be employed to ensure uniformity in the sampling (frame) rate of all audio 
files. The initial stage in sound processing often involves extracting pertinent acoustical features, followed by 
decision-making processes encompassing information acquisition, categorization, and integration. Subsequently, 
the data derived from the audio signal is converted into a format appropriate for depiction in an alternative 
domain, namely the frequency domain. It was determined that a greater sampling rate and a significantly larger 
number of data points were required to depict audio data effectively. Samples indicate the magnitude of an audio 
waveform at a particular moment in time. Figure 5 displays a mel-spectrogram of a synthetic audio file, showing 
how the “loudness” of the signal changes over time at various frequencies. The horizontal axis of the audio clip 
represents time, specifically 9 seconds. On the other hand, the vertical axis displays frequencies ranging from 0 
to 8 kHz. The mel-spectrogram visually represents a sound wave’s amplitude by using purple hues.

Data normalization and encoding
Data normalization refers to scaling numerical data to a standardized scale or range. This practice is to mitigate 
the influence of variations in scale on the analysis and processing methods employed for data. Normalization 
techniques are utilized in machine learning, statistics, and data mining. The data normalization in this study was 
conducted using the standard scalar method. The utilization of the standard scalar normalization technique is 

(1)total frame = samplingrate × time

(2)file1 = 44100× 9

Figure 3.  Waveforms of dataset audios.
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Table 2.  Description of diseases present in dataset.

Heart Disease Description

Normal audio signal

According to Liu et al.32, sounds produced by a healthy heart are classified as “Normal” under typical conditions. 
Upon removal of the recording device from the body, transient background noise may occur in the resulting audio 
recordings. There is potential for the presence of a diverse array of ambient sounds. In addition, it is possible for 
various incidental sounds, such as breathing or the inadvertent contact of clothing or body with the microphone, 
to be detected. A regular heartbeat exhibits a discernible rhythmic pattern characterized by the alternating sounds 
of “lub” and “dub”. Notably, the duration between successive “lub” sounds is comparatively shorter than between 
successive “dub” sounds, provided an individual’s heart rate remains below 140 beats per minute.

Murmur audio signal

heart murmur can be auscultated during either the systole or diastole phases of the cardiac cycle and are frequently 
described as resembling auditory sensations such as “whooshing, screaming, thundering, or turbulent fluid.” 
Several significant cardiac conditions exhibit this particular symptom during the interval between the first and 
second heart sounds, commonly called “lub” and “dub”. This symptom persists if left untreated. Individuals lacking 
medical training may experience confusion because murmurs manifest not during the occurrence of the first or 
second heart sound but rather in the temporal interval separating them.

Extrasystole

The auditory manifestation of extrasystole, wherein an additional or skipped cardiac contraction occurs, can 
sporadically be perceived and distinguished as a “lub-lub dub” or a “lub dub-dub” sound. (This phenomenon is dis-
tinct from an intermittent extra heartbeat.) Although extrasystoles can sometimes occur without indicating illness 
in adults and young children, they can also be associated with heart conditions and pose potential risks for adults. 
Therefore, it is important to investigate extrasystoles to thoroughly facilitate early diagnosis and treatment.

Artifact

According to Kumar and  Saha33, a diverse range of sounds can be produced by artifacts, encompassing return 
squeals, echoes, speech, music, and noise. At frequencies lower than 195 hertz, the heart does not produce sounds 
that can be perceived by the human ear, resulting in minimal temporal regularity. In contrast to the other groups, 
artifacts exhibit the highest level of distinctiveness. The ability to differentiate this particular group from the pre-
ceding three is of utmost importance to facilitate potential re-evaluation or replication of the process.

Extra Heart Sounds

Additional cardiac sounds may manifest due to various cardiac pathologies, encompassing abnormalities affecting 
the heart’s valves, septum, or chambers. Upon observation, various interventions such as medications, lifestyle 
modifications, or surgical procedures may address additional heart sounds; however, the most appropriate course 
of action will be contingent upon the underlying cause. The effective management of this illness may necessitate 
heart monitoring and ongoing medical attention.

Figure 4.  Final dataset classes distribution.

Figure 5.  Conversion of the time domain to frequency.
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prevalent in the field of machine learning. The pre-processing stage involves standardizing the characteristics by 
subtracting the mean and dividing by the standard deviation. The resulting data collection is transformed such 
that each characteristic has been adjusted to have a mean of zero and a standard deviation of one. The utilization 
of Standard Scalar is particularly advantageous in cases where the dimensions of the features within the dataset 
exhibit variations, as this discrepancy can potentially impair the efficacy of numerous machine learning meth-
odologies. When utilizing the Standard Scalar, the features will possess a uniform scale, facilitating their com-
parability and evaluability. The present study employs an Equation 3 to standardize the feature set of the dataset.

Let X represent the original feature, X_mean denote its mean, X_std represent its standard deviation, and X ′ 
denote its standardized version. In addition, the process of converting categorical variables into numerical rep-
resentations is accomplished by utilizing the One-Hot-Encoder feature transformation technique.

Feature extraction
Multiple characteristics can be discerned within each sound wave. However, we must emphasize the specific 
aspects of the forthcoming event we intend to unveil. The initial stage of this analysis involved the utilization of 
Mel Frequency Cepstral Coefficients (MFCC). The process of extracting MFCC features is depicted in Fig. 6, 
with each step being elucidated subsequently. The process of extracting Mel-frequency MFCC features is suc-
cinctly outlined in this section.

Audio Preparation step involves applying preprocessing techniques to the audio stream to eliminate back-
ground noise and non-speech or silent intervals.

Framing is a step that occurs after preprocessing, where the signal is divided into shorter frames that typically 
last between 20 to 30 milliseconds. There is usually some overlap between consecutive frames. The temporal 
variations of the signal can be captured, leading to an enhancement in temporal resolution.

Windowing is a technique to mitigate spectral leakage and emphasize essential information within each 
frame. This is achieved by applying a window function, such as the Hamming window, to the frame. The choice 
of window size is 25 milliseconds to make short segments of the audio signal before computing the MFCCs. A 
common choice is 25 milliseconds, equivalent to 400 samples.

Fourier transform, specifically the short-time Fourier transform (STFT), is utilized to convert the windowed 
frames into the frequency domain. This transformation results in a set of spectra with complex values. For a 
window length of 25 milliseconds, corresponding to 400 samples, we use 512 1024 FFT points.

Mel-frequency wrapping is a technique developed to approximate the non-linear frequency response of the 
human ear. This technique utilizes a perceptual frequency scale known as the Mel scale. A filter bank consisting 
of triangle filters is employed to map the amplitude of each spectrum onto the Mel scale. These filters are designed 
with narrower spacing at lower frequencies and wider spacing at higher frequencies.

Logarithmic compression is employed to compress the dynamic range and accentuate the distinctions among 
the filter-bank coefficients by taking the logarithm of the magnitude values in each Mel filter-bank.

The Discrete Cosine Transform (DCT) is employed to convert the coefficients of the resulting log-Mel filter 
bank to the cepstral domain, enabling their utilization. Typically, only the coefficients with the lowest order are 
preserved as they effectively capture the fundamental characteristics of the signal.

(3)X
′

=
(X − X_mean)

X_std

Figure 6.  MFCC feature extraction process.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3123  | https://doi.org/10.1038/s41598-024-53778-7

www.nature.com/scientificreports/

The delta and delta-delta features can be obtained by computing the first and second derivatives of the MFCCs. 
The aforementioned characteristics capture the temporal progression of the MFCCs and have the potential to 
provide further insights into the dynamics of the signal.

In addition to employing the MFCC feature extraction method, this study incorporated nine additional 
feature extraction methods and developed a feature ensembler. This study applies various feature extraction 
techniques: spectral centroid, spectrum, zero-cross examination rate, spectral bandwidth and spectrum roll-off. 
These methods are presented in Table 3.

Zero Crossing Rate: The pace at which the sign of a signal change can be used as an indicator of how noisy or 
clean the sound is; this rate is known as the zero crossing rate. More high-frequency content or noise is associ-
ated with a higher zero crossing rate, while a smoother and less noisy signal is associated with a lower  rate34.

Spectral Roll-off: It is the frequency at which a given fraction of the total spectral energy is located. It aids in 
defining the spectral profile of a sound. Most of the energy is concentrated at low frequencies if the spectral roll-
off is small, while a larger number implies a more even distribution over the audible  spectrum35.

Spectral Centroid: The “brightness” of an audio signal can be determined by calculating the spectral centroid, 
which is the spectrum’s mathematical center of mass. A high spectral centroid value indicates that the audio is 
treble- or high-heavy, whereas a low value indicates that the music is bass- or low-heavy36.

Spectral Contrast: The difference in amplitude between peaks and valleys in the spectrum is measured by 
spectral contrast. It is used to determine the prominence of various spectral peaks. A higher contrast value sug-
gests sharper spectral peaks, implying different sound  components36.

Spectral Bandwidth: The spectral bandwidth measures the spectral content’s width and the audio signal’s 
frequency spread. While a low value indicates a lower concentration of frequencies, a high value denotes a wide 
distribution of  frequencies37.

Chroma STFT: The harmonic content of the audio is represented by the chroma Short-Time Fourier Trans-
form (STFT). The study of tonal qualities and musical notes is made possible by the extraction of information 
about the pitch class of audio  frames37.

 Root Mean Square (RMS): measures an audio signal’s root mean square amplitude. It divulges details about 
the signal’s overall energy level. A louder audio is indicated by a greater RMS  value38.

Mel-Spectrogram: is a representation of the audio signal in the mel-frequency domain is a mel-spectrogram. 
It facilitates human-like audio analysis by converting the linear frequency scale into a perceptually appropriate 
mel-frequency  scale34.

To determine the value of each element, a computation is performed by taking the average of all the numbers 
obtained within each frame, followed by the subtraction of their respective standard deviations. A spectrum 
energy map was generated for the Mel scale by applying the Fourier transform (using the window abbreviation) to 
the signal. This was done using the MFCC series of infant audio recordings. Subsequently, by employing an inde-
pendent cosine transformation on the Mel log energy array, extract the logarithms of the power values. MFCCs 
represent the intensities of the emerging spectrum. The present study introduces a novel feature ensembler. The 
ensembler in question incorporates a collection of features derived from various feature extraction methods. 
The data frame contains 288 elements extracted from each audio file. In our approach, we first used the Standard 
Scaler, a standard normalization technique, to normalize the features in our dataset. Normalization is essential 
for ensuring that the various features are on a similar scale and that one does not dominate the others during 
the modeling process. This step enhances the model’s stability and performance. Following normalization, we 
transformed the features into a numpy array, a data structure ideal for numerical computations and analysis. 
When working with data, Numpy arrays provide efficiency and flexibility. Following that, we reshaped the data 
to meet the needs of our chosen machine-learning models. Data shaping ensures compatibility and consistency 
when sending data to models.

Finally, we separated our data into training and testing sets. The training set is used to train our classification 
models so that they can learn and predict. The test set, which the models did not see during training, assesses their 
performance and generalization to new, previously unseen data. This methodical approach, from normalization 
to data conversion, reshaping, and splitting, lays the groundwork for successful classification model application 
to our dataset. It ensures that the models are appropriately trained and rigorously evaluated for their classifica-
tion tasks, contributing to our results’ overall quality and reliability.

Table 3.  Feature Matrix using various methods.

Feature Matrix Methods Mean (trunc) Std (trunc) Median (trunc) Skew (trunc)

F_0 MFCC 0 - 39 � � � �

F_1 zero_crossing_rate � � � �

F_2 spectral_rolloff � � � �

F_3 spectral_centroid � � � �

F_4 spectral_contrast � � � �

F_5 spectral_bandwidth � � � �

F_6 chroma_stft � � � �

F_7 RMS � � � �

F_8 mel-spectrogram � � � �
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Classification models and parameters settings
The study employed five machine learning models, specifically Random Forest (RF), K-Nearest Neighbour 
(KNN), Decision Tree (DT), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP). Two deep 
learning models, Deep Neural Network (DNN) and 1D-Convolutional Neural Network (CONV-1D), were also 
utilized. Each model is described individually, providing detailed information about its fine-tuned parametrized 
settings.

Machine learning models
This section provides the machine learning models used for experiments.

Random Forest Model: is an ensemble learning model commonly employed for various tasks, including 
classification and regression. The ensemble model consists of a collection of decision trees constructed using 
a randomly selected set of features and training data. The mentioned characteristics of the subject are widely 
recognized in academic circles, including its exceptional precision, robustness against distortions and anoma-
lies, and ability to handle data with a high number of dimensions effectively. This method has been successfully 
implemented in various industries, such as banking, medicine, and bioinformatics. The methodology employed 
involves the generation of multiple decision trees during the training process, followed by determining the class 
that represents the average of all the predicted classes, specifically in the context of regression. The estimation 
of the significance of features is also possible. The experimental settings for the RF model include the following 
parameters: maximum depth of 8, the maximum number of features considered for splitting at each node set 
to 5, the minimum number of samples required to split an internal node set to 5, and the number of estimators 
(i.e., decision trees) in the random forest ensemble set to 500.

Decision Tree Model: is a supervised learning algorithm commonly employed in machine learning to classify 
problems. The system’s functioning involves dividing the dataset into smaller subsets, utilizing a predetermined 
set of features. This partitioning is performed recursively, further dividing the subsets into even smaller subsets 
until the data can be readily classified. The construction of the tree structure involves the iterative partitioning 
of the dataset into increasingly smaller subsets, guided by the optimal feature values that effectively distinguish 
between different classes. The outcome is a tree structure consisting of decision nodes and leaf nodes. The 
decision nodes hold the split conditions, while the leaf nodes store the class labels. Decision trees have gained 
popularity due to their ease of comprehension, interpretability, and ability to accommodate both categorical 
and numerical data. Nevertheless, it is worth noting that these models tend to fit the training data excessively, 
thereby compromising their generalization capabilities. Consequently, ensemble methods such as random for-
ests are frequently employed to enhance their overall performance. The parameters of the DT model were set as 
criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, and min_weight_
fraction_leaf=0.0 throughout the experiments.

Extreme Gradient Boosting Model: XGBoost, a widely adopted gradient boosting technique, holds prominence 
in machine learning for its application in classification and regression tasks. The XGBoost algorithm is based on 
the gradient boosting framework, which involves iteratively adding models to an ensemble. Each added model 
aims to improve the overall performance of the ensemble by reducing the errors made by the previous models. 
XGBoost differs from previous gradient boosting techniques by incorporating the ability to handle missing values 
in the input data and employing a more regularized model formulation to mitigate the issue of overfitting. The 
acceleration of model training is achieved by using parallel processing techniques and implementing a more 
efficient optimization approach. Due to its inherent attributes, XGBoost has gained significant popularity and 
proven to be a highly efficient machine learning technique, particularly suitable for tasks involving the analysis 
of extensive datasets and complex feature spaces. The default parameters of the XGB model were maintained 
throughout the experiments.

Multilayer Perceptron Model:  consists of several layers of interconnected nodes or neurons. These layers 
include an input layer, several hidden layers, and an output layer. Neurons in the layer above them feed the 
neurons in network information. After processing them, a non-linear activation function is applied to these 
signals by producing a weighted total. Finally, the processed signals are transmitted to the next network layer. 
To accomplish this, the inter-neuron connection weights are frequently acquired through a backpropagation 
technique. Supervised learning encompasses various problem domains, two of which are classification and 
regression. MLPs have demonstrated exceptional performance in these specific domains. The parameters of the 
MLP model utilized in the experiments were maintained at their default values.

K-Nearest Neighbours Model: is a fundamental machine learning algorithm employed in classification and 
regression tasks. The algorithm identifies the K nearest labeled data points to a novel, unlabeled data point and 
leverages their class or average value to generate predictions. The algorithm operates under the assumption that 
data points that exhibit similarity are likely to possess similar labels or values. The selection of the parameter 
K influences the adaptability of the decision boundary. The K-NN algorithm is characterized by its simplicity 
in comprehension and implementation. However, it is important to note that its computational demands can 
increase significantly when applied to large datasets. Additionally, the performance of K-NN is susceptible to the 
scaling of features. The algorithm generally exhibits versatility by effectively capturing local patterns within the 
dataset. The parameters of the KNN were set as n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, 
p=2, metric=’minkowski’, metric_params=None and n_jobs=None.

Deep learning models
In recent years, the widespread integration of deep learning and machine learning models has transformed many 
fields, providing unprecedented answers to complex challenges. Convolutional Neural Networks (CNNs) and 
other deep learning architectures are used in fields ranging from computer vision and natural language processing 
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to medical diagnostics and financial predictions. Researchers have used the power of these sophisticated models 
to extract subtle patterns and representations from big information, allowing breakthroughs in a wide range of 
 applications39,40. As the demand for intelligent systems grows, the exploration and implementation of these mod-
els remain at the leading edge of cutting-edge research and innovation. This research dives into using advanced 
deep learning techniques, focusing on CNNs, to address a paradigm that highlights the versatility and efficacy 
of modern neural network architectures.

The two significant deep learning models utilized in this study are the DNN and the CONV-1D. Each model 
is described separately, providing detailed information about their fine-tuned parametrized settings.

One-dimensional Convolutional Neural Network: The present study utilized 1D-CNN. The Conv1d architecture 
is widely utilized in deep learning for processing sequence data with a singular dimension. This encompasses 
various data types, such as time series, audio signals, and textual information. In a Conv1d network, individual 
convolutional layers acquire distinct filters that are subsequently closely integrated with the input signal to dis-
cern patterns or features. Rectified Linear Unit (ReLU) is one example of a non-linear activation function used 
at the end of each convolutional layer to give the model its non-linearity. The convolutional layers are typically 
followed by one or more fully connected layers responsible for performing the classification or regression task. 
The Conv1d network employs the backpropagation optimization process to train its parameters. This process 
involves adjusting the network’s weights and biases to minimize a loss function, quantifying the discrepancy 
between the anticipated and observed output.

The CNN model under examination comprises three convolutional layers, three max-pooling layers, two 
dropout levels, and two fully connected layers. Dropout is a regularization technique used in deep learning to 
address the problem of overfitting. Overfitting occurs when a model becomes excessively complex during training 
on a limited dataset, fitting the noise rather than the underlying pattern. As a result, extrapolating to unfamiliar 
data becomes challenging. The model underwent training using 571,525 parameters. In the context of training 
neural networks, deep learning commonly utilizes optimizers and employs the categorical cross-entropy loss 
function. Optimizers iteratively adjust the parameters by changing the weights and biases of a neural network 
during training. Optimization aims to find the values of the weights and biases that provide the least deviation 
between the predicted and actual output (the loss function). Among the many optimization methods available 
are stochastic gradient descent, Adam, RMSProp, and many more. In multiclass classification applications, 
categorical cross-entropy is a popular loss function. The statistical metric quantifies the discrepancy between 
the actual probability distribution for a particular class and the estimated distribution. The primary goal is to 
optimize the probability of correctly classifying an instance while minimizing the categorical cross-entropy loss. 
During the training process, the weights and biases of a neural network are iteratively updated by an optimizer in 
conjunction with a loss function, such as categorical cross-entropy. This iterative update process aims to enhance 
the network’s predictive capabilities. The present study employed the Adam optimizer and utilized categorical 
cross-entropy as the loss function during the model’s training. The experimental configuration involved setting 
the batch size to 64 and the number of epochs to 90.

Deep Neural Network: Artificial neural networks, specifically Deep Neural Networks (DNNs), are widely 
utilized due to their extensive layers of computational capacity. Each layer within the network is designed to 
acquire a progressively intricate representation of the data by building upon the preceding layers. The term “input 
layer” denotes the layer in a neural network closest to the input data, while the term “output layer” denotes the 
layer closest to the output. The term “hidden layers” pertains to the intermediate layers between the observable 
layers. DNNs have demonstrated their ability to effectively address complex problems such as image classifica-
tion, natural language processing (NLP), and speech recognition. The individuals undergo training using large 
datasets, employing algorithms that modify the weights and biases of the model and are subsequently assessed 
using a loss function. The architecture incorporated seven dense layers. No dropout layers were employed to 
compare a generalized model with a complex one. All other experimental conditions remain consistent with 
those of the CNN model.

The DNN model is structured sequentially, showing a typical classification task architecture with tightly 
connected layers. Following an initial layer with input data-aligned dimensionality, successive layers gradually 
decrease the number of neurons. To add non-linearity, the ReLU activation function is used by 1000 neurons in 
the first dense layer. This layer inputs weights and biases totaling 289,000. In the same way, the following dense 
layers consist of 750, 500, 250, 100, 50, and 5 neurons, respectively. The output layer for multiclass classification 
is the last dense layer with 5 neurons.

There are a total of 1,570,905 trainable parameters in the architecture. These parameters are fine-tuned 
throughout training to maximize the model’s capacity to identify links and patterns in the input data. The model 
can capture complex patterns in the dataset since the number of neurons in each layer decreases, making it easier 
to extract hierarchical features. Although the output layer’s activation function is not specified, multiclass clas-
sification tasks frequently employ softmax to generate probability distributions for each class. This DNN model 
is well-suited for classification tasks since it strikes a good mix between being overly complicated and being able 
to detect complex patterns in the input data.

Experimental results and discussion
This section presents a comprehensive account of the research findings and outlines the experimental setup 
employed in the study. This proposed method aims to assess the presence of four distinct types of heart disease, 
namely “normal,” “murmur,” “extrasystole,” “extra heart sound,” or “artifact” within an audio dataset. This study 
proposes implementing a standardized methodology for identifying and isolating heart disease indicators within 
audio signals while effectively mitigating the influence of background noise. In our testing, we evaluated the 
performance of various machine and deep learning models. Five often used metrics are the confusion matrix, 
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accuracy, precision, recall, and F1-score, all used to evaluate performance in testing situations. These stated 
performance criteria can be used to evaluate the machine learning model. The outcomes of the experiments are 
compared to those found using other approaches and in earlier studies.

Experimental settings and evaluation metrics
The experimental parameters employed in this study are delineated herein. The work utilizes the Kaggle cloud-
based platform, which offers complimentary access to GPU resources. Python is employed to conduct experi-
ments. In our study, we have employed the Windows 10 operating system, which is equipped with a 2.30GHz 
Intel(R) Xeon(R) CPU. Kaggle is equipped with NVIDIA TESLA P100 Graphics Processing Units (GPUs), which 
exhibit notably superior processing speed compared to a typical personal computer’s Central Processing Unit 
(CPU). The experiments were conducted utilizing Python 3.8.8.

To assess the model’s performance on the test data, this research utilizes commonly accepted criteria for 
evaluating machine learning models. These indicators function as measurable metrics of the model’s effective-
ness, facilitating the identification of problematic areas with greater ease. Evaluation metrics are utilized to assess 
and compare different models and optimize the hyper-parameters of a model to achieve the best possible per-
formance. They assist in evaluating the strengths and weaknesses of the model, which can subsequently inform 
efforts to enhance it. By employing evaluation metrics, insights can be gained regarding the model’s capabilities 
and limitations, facilitating the implementation of refinements to enhance its efficacy in real-world scenarios. 
Accuracy, precision, recall, f1-score, and the confusion matrix are only a few of the metrics used in machine 
learning to assess the performance of a classification model. This study employed multiple evaluation metrics, 
as delineated in the following section.

Accuracy is a quantitative measure used to evaluate the overall performance of classifiers. It is calculated by 
determining the percentage of correct predictions concerning the number of instances. The following is the 
formula for determining accuracy in equation 4:

In a multi-classification context, True Positive (TP) refers to a situation where a positive outcome is correctly 
identified, while True Negative (TN) denotes the correct identification of a negative outcome. Conversely, False 
Positive (FP) signifies an incorrect identification of a positive outcome, and False Negative (FN) represents an 
erroneous identification of a negative outcome. In the present context, the variables TP, TN, FP, and FN are 
employed to denote the quantities of accurate positive predictions, accurate negative predictions, inaccurate 
positive predictions, and inaccurate negative predictions made by the model.

Precision of a classifier is determined by the ratio of correct predictions to the total number of positive pre-
dictions made by the classifier. The precision rating can be determined using the equation 5 provided below:

Recall, alternatively referred to as sensitivity, quantifies the ratio of correctly identified positive predictions to 
the total number of positive instances. It can be computed using the subsequent mathematical expression shown 
in equation 6:

F1-score represents the optimal balance between accuracy and memory utilization. The optimal F1-score is 1, 
while the lowest attainable score is 0. The metric is computed using a weighted average of the precision and recall 
scores. Presented below in equation 7 is a mathematical expression that can be utilized to compute the F1-score.

Confusion matrix: is a tabular representation that provides a concise overview of the classification model’s perfor-
mance, achieved by juxtaposing the observed and predicted values. The set of values consists of four components, 
namely true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The matrix rows 
correspond to the true class labels, whereas the columns correspond to the predicted class labels. The primary 
diagonal of the matrix corresponds to the instances that have been accurately classified, whereas the elements 
outside the diagonal represent instances that have been classified incorrectly. These metrics serve the purpose 
of identifying the strengths and weaknesses of the model, thereby facilitating its improvement to attain superior 
outcomes.

Data splitting criteria
When evaluating data mining techniques, it is imperative to establish distinct training and testing sets for the 
machine learning models. Verifying the model’s predictions becomes easier when the testing set contains data 
about the relevant attribute. The dataset will undergo an initial pre-processing phase before being divided into 
training and test sets. The data is subjected to analysis, and subsequently, the model undergoes a training process 
to enable it to generate predictions. The utilization of test data enables the evaluation of the performance of the 
training data. The complete dataset was divided into two distinct groups. The initial step involves partitioning 

(4)Accuracy =
TP + TN

TP + FP + TN + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1-score = 2 ∗
Precision ∗ Recall

Precision+ Recall
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the original training dataset into two equal parts. In the training phase, approximately 80% of the entire dataset 
was utilized. The second partition allocated a proportion of 20% from the entire dataset for testing.

Experimental results with original dataset
Table 4 shows the experimental findings with the original dataset, as well as the performance metrics for various 
ML models. Among the models tested, RF had an accuracy of 88.58%, with precision, recall, and F1-score all 
at 89.58%. The equivalent P-value for RF is 1.0 decimals, showing no significant departure from baseline per-
formance. Moving on to the MLP model, it achieved a superior accuracy of 94.53%, with consistent precision, 
recall, and F1-score metrics and a P-value of 1.0 decimals, indicating no significant divergence from the baseline.

XGBoost demonstrated outstanding performance with an accuracy of 94.11%, similar to the high precision, 
recall, and F1-score values, alongside a P-value of 1.0 decimals. K-Nearest Neighbors demonstrated balanced 
performance with an accuracy of 83.39% and a P-value of 0.71 decimals, indicating a statistically significant dif-
ference from the baseline. The DT model produced a great accuracy of 94.84%, which was supported by strong 
precision, recall, and F1-score metrics, as well as a statistically significant P-value of 0.99 decimals.

In the field of deep learning methodologies, the Conv1D model demonstrated excellent performance, obtain-
ing an accuracy of 95.20%, as well as precision, recall, and F1-scores of 95.20%. Unfortunately, the P-value for 
Conv1D was not published. Finally, the DNN achieved an accuracy of 84.08% while adjusting the precision 
(89.10%), recall (84.08%), and F1-score (85.10%) measures.

Experimental results with augmented dataset
Machine learning approach results
This section explains the numerical outcomes of each machine learning model as presented in Table 5. The 
confusion matrix of machine learning models is depicted in Fig. 7.

Table 5 shows the results of the machine learning models. The RF model demonstrated an accuracy rate of 
80.92%, precision rate of 81.90%, recall rate of 81.90%, and an F1-score of 81.89%. The P-value for the RF model 
is 0.67 decimals. The performance of the MLP model was notably superior, achieving an accuracy rate of 95.65%, 
P-value of 1.0 decimals, precision rate of 96.60%, recall rate of 97.60%, and an F1-score of 96.60%. Similarly, 
the XGB model exhibited robust performance, achieving an accuracy rate of 95.31%, a P-value of 1.0 decimals a 
precision rate of 96.30%, a recall rate of 97.31%, and an F1-score of 96.30%. The KNN model attained an accuracy 
rate of 91.16%, a precision rate of 91.15%, a recall rate of 91.15%, and an F1-score of 91.14%. The P-value for the 
KNN model is 0.85 decimals. The DT model achieved an accuracy rate of 88.38%, a precision rate of 88.37%, a 
recall rate of 88.37%, and an F1-score of 88.36%. Finally, the P-value for the DT model is 0.97 decimals.

The confusion matrix of the RF model in Fig. 7a presents a concise overview of its classification efficacy 
across various categories of heart disease. The confusion matrix offers a comprehensive analysis of the model’s 
predictions for each class, presenting the quantities of true positives, true negatives, false positives, and false 
negatives. Assessing the model’s performance involves evaluating its ability to accurately classify each class, 
identifying instances of misclassification, and gaining insights into the RF model’s capabilities and limitations in 
classifying various forms of heart disease. The diagonal elements of the confusion matrix represent the correctly 
classified instances, while all other elements indicate instances misclassified by the RF model. The XGB and 

Table 4.  Experimental Results with Original Dataset.

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) P-value (decimals)

RF 88.58 89.58 89.58 89.58 1.0

MLP 94.53 94.53 94.53 94.53 1.0

XGB 94.11 94.11 94.11 94.11 1.0

KNN 83.39 83.39 83.39 83.39 0.71

DT 94.84 94.84 94.84 94.84 0.99

Deep Learning Approaches

Conv1D 95.20 95.20 95.20 95.20 -

DNN 84.08 89.10 84.08 85.10 -

Table 5.  Machine learning numerical results with augmented dataset.

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) P-value (decimals)

RF 80.92 81.90 81.90 81.89 0.67

MLP 95.65 96.60 97.60 96.60 1.0

XGB 95.31 96.30 97.31 96.30 1.0

KNN 91.16 91.15 91.15 91.14 0.85

DT 88.38 88.37 88.37 88.36 0.97
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MLP confusion matrix is depicted in Fig. 7b,c. The MLP and XGB models demonstrated superior performance 
across all performance metrics within the model set. The exhibited superior classification performance suggests 
their effectiveness in accurately identifying and differentiating the different forms of heart disease based on the 
audio signals. In contrast, the RF, KNN, and DT models exhibited comparatively diminished accuracy, precision, 
recall, and F1-score performance. Analyzing the confusion matrix of the KNN model in Fig. 7d aids in gaining 
insights into the strengths and weaknesses of the KNN model in accurately predicting heart disease based on the 
provided audio data. The confusion matrix comprehensively evaluates the model’s classification performance for 
each class. Although the KNN model demonstrated commendable accuracy in certain categories such as “nor-
mal” and “murmur,” it faced difficulties in accurately discerning between specific classes such as “extrasystole,” 
“artifact,” and “exheart.” The observed misclassifications suggest that there is room for improvement in the model’s 
performance in accurately categorizing various types of heart disease. This could be achieved through additional 
optimization or feature engineering techniques. The confusion matrix of the DT model in Fig. 7e offers valuable 
insights into its classification performance across various heart disease categories. The DT model demonstrated 
a satisfactory level of accuracy in the classification of instances labeled as “artifact” and “exheart”. Nevertheless, 

(a) Confusion matrix of RF model (b) Confusion matrix of MLP model

(c) Confusion matrix of XGB model (d) Confusion matrix of KNN model

(e) Confusion matrix of DT model

Figure 7.  Confusion matrix of machine learning models.
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the system faced difficulties in accurately differentiating between the “normal,” “murmur,” and “extrasystole” 
categories, as evidenced by the misclassifications observed in the confusion matrix.

The notable efficacy of the MLP and XGB models can be ascribed to their aptitude for capturing intricate 
patterns and interconnections within the dataset. The MLP model utilizes a multilayer architecture to acquire 
complex representations, whereas the XGB model employs gradient-boosting techniques to improve its predic-
tive abilities. The flexibility and adaptability exhibited by these models render them highly suitable for heart 
disease detection.

It is crucial to acknowledge that selecting the most appropriate model is contingent upon particular factors, 
including computational complexity, interpretability, and the specific context of the heart disease detection 
application. The process of assessing trade-offs and ensuring that the model’s characteristics align with the task’s 
requirements is crucial when choosing the most suitable model.

Deep learning approach results
This section explains the numerical outcomes corresponding to each deep learning model. The provided Table 6 
displays the quantitative outcomes of two deep learning models, Conv1D and DNN. The metrics evaluated 
include precision, recall, F1-score, testing, and training accuracy. The performance metrics of each model will 
be individually elucidated, subsequently followed by a comparative analysis of the outcomes. The visual repre-
sentation of deep learning model results is depicted in Fig. 8. The Conv1D model demonstrated a precision rate 
of 94.10%, a recall rate of 94.10%, and an F1-score of 94.06%. The aforementioned metrics indicate the model’s 
capacity to effectively classify various forms of heart disease. The Conv1D model exhibited a testing accuracy of 
94.11%, indicating a commendable classification performance level across all categories. The observed discrep-
ancy between the training accuracy, which recorded a higher value of 96.65%, and the testing accuracy implies 
a potential occurrence of overfitting, where the model may have excessively adapted to the training data.

The confusion matrix of the Conv1D model is depicted in Fig. 8a. The multiclass classification issue was 
modeled using a Conv1d model. 73 “artefact” samples were accurately identified as belonging to the “artefact” 

Table 6.  Deep Learning Numerical Results with Augmented Dataset.

Model Training Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-score (%)

Conv1D 96.65 94.11 94.10 94.10 94.06

DNN 85.54 78.20 82.09 78.50 79.10

(a) Confusion matrix of Conv1D model (b) Training and validation accuracy of

Conv1D model

(c) Training and validation loss of Conv1D

model

(d) Confusion matrix of DNN model (e) Training and validation accuracy of
DNN model

(f) Training and validation loss of DNN

model

Figure 8.  Visual representation of deep learning results.
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class. No instances of “artefact” being incorrectly categorized as another category (false positives) were found. 
Furthermore, no samples from other classes were incorrectly labeled as “artefact’ (false negatives). Twenty “exs-
tole” samples were authentic (true positives), meaning the class was correctly identified. One “exstole” sample was 
incorrectly labeled as “normal” (a false positive). There were no “exstole” (false negative) samples found among 
the other categories. 21 of the “extrastole” samples were accurate predictions (true positives). Two “extrastole” 
samples were incorrectly labeled as “normal” (false positives). False negatives (samples incorrectly labeled “extras-
tole”) did not occur in other categories. 132 “murmur” samples could be confidently labeled as “murmur” (true 
positives). False-positive results (misclassification of “murmur” samples as “normal”) occurred 10 times. Also, 
two “murmur” samples were incorrectly labeled as “extrastole” (false positives). No samples from other categories 
were incorrectly labeled as “murmur” (false negatives). 297 “normal” samples could be confidently identified as 
“normal” (true positives). At least two “normal” samples were incorrectly labeled as “artefact” (false positives). 
False positives (classification of a “normal” sample as an “exstole” sample) occurred twice, as well. There were 7 
false positives (samples incorrectly labeled as “extrastole”) among the “normal” group. Two “normal” samples 
were incorrectly labeled as “murmur” (false positives). Figure 8b,c show that the CNN model performed best 
in training and validation and had fewer losses, making it a more reliable tool for predicting heart disease on 
new data. These graphs depict the changes in training accuracy, validation accuracy, training, and validation 
loss during the training period. The training accuracy is depicted by the blue line in Fig. 8b, exhibiting a steady 
and continuous increase across the epochs. The initial value is roughly 51.93%, and it progressively rises, reach-
ing around 96.66% after the 90 epochs. This indicates that the model efficiently acquires knowledge from the 
training data. The yellow line represents the validation accuracy, exhibiting a comparable pattern. The initial 
value is 62.56%, and it consistently rises, eventually reaching approximately 94.11%. The training and validation 
accuracy convergence suggests that the model effectively generalizes to unfamiliar input. The blue line in Fig. 8c 
represents the training loss, which constantly reduces from an initial value of 1.3187% to around 0.0860%. This 
shows that the model successfully minimizes its error on the training data. The yellow line depicts the validation 
loss, which begins at 1.0540% and reduces across epochs to approximately 0.2384%. The convergence of training 
and validation losses indicates that the model is not overfitting and works well on fresh, previously unseen data.

DNN model demonstrated a precision rate of 82.09%, a recall rate of 78.50%, and an F1-score of 79.10%. The 
metrics demonstrate a comparatively diminished precision, recall, and F1-score concerning the Conv1D model. 
The DNN model achieved a testing accuracy of 78.20%, suggesting a moderate level of classification performance 
across all categories. The training accuracy exhibited a value of 85.54%, indicating a certain overfitting level. The 
confusion matrix of the DNN model is depicted in Fig. 8d. 71 “artefact” samples were accurately identified as 
belonging to the “artefact” class. Two “artefact” samples were incorrectly identified as “normal” (false positives). 
False negatives (samples of other classes incorrectly labeled as “artefact”) did not occur. 20 “exstole” samples were 
authentic (true positives), meaning the class was correctly identified. Only one “exstole” sample was incorrectly 
labeled as “normal” (false positive). No “exstole” (false negative) samples were found among the other categories. 
13 “extrastole” samples could be confidently identified as “extrastole” (true positives). Ten “extrastole” samples 
were incorrectly labeled as “normal” (10 false positives). False negatives (samples incorrectly labeled “extrastole”) 
did not occur in other categories. Correctly identified “murmur” samples (i.e., “true positives”) numbered 108. 
One “murmur” sample was incorrectly labeled as “exstole” (a false positive). False positives (misclassifications 
of “murmur” samples as “extrastole”) occurred in 11 cases. False positives (classifying “murmur” samples as 
“normal”) occurred 22 times. In the “normal” category, 237 samples were correctly identified as such (true posi-
tives). There were four false positives (samples incorrectly labeled as “artefact”) that originated from “normal” 
conditions. A further 12 “normal” samples were incorrectly labeled as “exstole” (false positives). There were 35 
false positives (samples incorrectly labeled as “extrastole”) among the “normal” group. In total, 32 “normal” 
samples were incorrectly labeled as “murmur” (false positives). Elements of the confusion matrix that fall on 
the diagonal reflect correctly categorized samples (true positives) for each class. In contrast, those that fall off 
the diagonal represent incorrectly classed samples (false positives).

Figure 8e,f show that the DNN model achieved a normal accuracy score during training and validation. 
Still, it also displayed considerable loss, making it a significant challenge for the DNN model to predict heart 
disease on new data. The blue line in Fig. 8e represents the training accuracy, which increases throughout the 
training procedure. Initially at 40.65% in Epoch 1, the accuracy gradually increases over the following epochs, 
reaching around 85.55% by the end of Epoch 90. In contrast, the validation accuracy, represented by the yellow 
line, starts at 38.99% in the first epoch and gradually increases. However, about Epoch 30, it appears to plateau 
with occasional variations. Finally, by Epoch 90, the validation accuracy has stabilized at roughly 77.82%. The 
obvious difference between training and validation accuracies in the latter epochs indicates the onset of probable 
overfitting, needing more analysis and model changes. The training loss, represented by the blue line in Fig. 8f, 
has decreased significantly from the high value of 71.3196 in the first epoch. This falling pattern continues into 
successive epochs, albeit at a slower reduction rate. By the end of Epoch 90, the training loss is a reasonably low 
value of 0.3651. The validation loss, illustrated by the yellow line, follows a similar course, beginning at 8.9633 
and rapidly dropping initially. However, around Epoch 40, a substantial increase indicates a possible overfit-
ting problem. The validation loss reaches 0.6353 by the end of the training period. The discernible discrepancy 
between training and validation losses emphasizes the importance of carefully considering regularization strate-
gies or early stopping to optimize the model’s generalization to new inputs.

When comparing the outcomes of the models, it was observed that the Conv1D model consistently exhibited 
superior performance compared to the DNN model across all evaluation metrics. The Conv1D model exhibited 
superior precision, recall, F1-score, testing, and training accuracy. The Conv1D model’s superior performance 
can be attributed to its capacity to effectively capture temporal patterns and dependencies in audio signals. 
This characteristic proves advantageous when analyzing sequential data, such as heart sounds. The disparity 
between training accuracy and testing accuracy can be ascribed to the phenomenon of overfitting. Overfitting 
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is a phenomenon that arises when a model becomes excessively tailored to the specific characteristics of the 
training data, resulting in a diminished ability to generalize its predictions to new, unseen data effectively. In this 
scenario, the elevated training accuracy implies that the models have likely achieved high proficiency in fitting 
the training data. However, their performance on novel, unseen data may be less effective, leading to a slightly 
diminished testing accuracy. To mitigate the issue of overfitting and enhance the efficacy of the models, it is 
advisable to explore techniques such as regularization, adjusting the complexity of the model, or augmenting 
the volume of training data.

Experimental results comparison of original and augmented dataset
When the findings of the original dataset from Table 4 are compared to those of the augmented dataset as shown 
in Tables 5 and Table 6, significant variations in model performance are shown. DT is the top performing machine 
learning model using the original dataset, with accuracy, precision, recall, and F1-scores of roughly 77.77%, 
78.10%, 78.10%, and 78.10%, respectively. K-Nearest Neighbours (KNN) fared well as well, with an accuracy 
of 68.88% and precision, recall, and F1-score values of 69.10%. Conv1D and DNN deep learning models, on 
the other hand, achieved lower accuracy and F1-score values, with Conv1D at 53.64% and 38.60% and DNN at 
54.10% and 38.10%, respectively. However, when the augmented dataset is used, there is a significant improve-
ment in model performance across the board. RF, MLP, and XGB models have significantly improved accuracy, 
precision, recall, and F1-score. MLP and XGB achieved astounding accuracy levels of 95.65% and 95.31%, 
respectively, with precision, recall, and F1-score values over 96%. Random Forest achieved an accuracy of 80.92% 
with precision, recall, and F1-score values that were balanced at around 81.89%. KNN and DT also improved 
performance. With the augmented dataset, both Conv1D and DNN deep learning models showed significant 
improvements in all measures. Conv1D achieved 94.10% precision, recall, and F1-score, while DNN achieved 
82.09% precision, recall, and F1-score, respectively.

Overall, the augmented dataset significantly increased the performance of all models, with Random Forest, 
Multilayer Perceptron, and XGBoost emerging as the machine learning category’s best performers. Conv1D 
significantly improved its performance in the deep learning area, although it still lags behind machine learning 
models in other criteria. The original dataset results were significantly poorer overall performance, except for 
Decision Tree and K-Nearest Neighbours in the machine learning category.

Comparison with existing studies
Table 7 presents a comprehensive comparison of various methodologies currently employed in the classification 
of heart sound signals to detect distinct cardiac diseases, namely “normal,” “murmur,” “extra heart sound,” “arte-
fact,” and “extrastole.” Every row in the table corresponds to a distinct reference or study employing diverse clas-
sification models and features. Let us proceed with a detailed analysis of the provided information. The study 41 
employed a CNN that incorporated Wavelet-based Features to classify heart sound signals. An accuracy rate of 
82.22% was achieved during the testing process. The present  study11 utilized SVM in conjunction with MFCC 
features for classification. The testing accuracy achieved was 85.36%. The  study42 employed the KNN algorithm 
in conjunction with MFCC as features for classification. The resulting testing accuracy was determined to be 
84.53%. Heart sound signal classification was performed in a  study43 using a CNN in conjunction with MFSC 
features. The testing accuracy achieved was 88.18%. In the  study8, a different CNN architecture was employed, 
utilizing MFSC as input features. This alternative model demonstrated improved performance, achieving a test-
ing accuracy of 93.88%. The aforementioned approach signifies the novel methodology under consideration in 
the present investigation. The classification model employed in this study is an MLP that utilizes a Feature Vec-
tor consisting of MFCC features. The model under consideration attained the highest level of testing accuracy 
compared to all the presented techniques, achieving a score of 95.65%. The proposed model’s precision, defined 
as the ratio of real positive predictions to total predicted positives, is claimed to be 96.60%. This implies that 
when the model predicts a favorable outcome, it is 96.60% accurate. Furthermore, the proposed model has a 
recall of 97.60%. The model’s ability to capture all relevant class occurrences is reflected in recall, also known as 
sensitivity or true positive rate. With a recall of 97.60%, the model correctly detects many real positive events. 
The proposed model has an F1-score of 96.60%. The F1-score compromises precision and recall, thoroughly 
evaluating the model’s overall efficacy. The previous research only focused on testing accuracy, while this research 
utilized multiple evaluation metrics to evaluate the model better.

The findings indicate that an MLP model utilizing the MFCC as feature performs better than current meth-
odologies in testing accuracy. This outcome positions the proposed approach as promising for classifying heart 

Table 7.  Comparison with existing techniques.

Ref. Model/Features Testing Accuracy Precision Recall F1-score
41 CNN with Wavelet-based Features 82.22% – – –
11 SVM with MFCC Features 85.36% – – –
42 KNN with MFCC Features 84.53% – – –
43 CNN with MFSC Features 88.18% – – –
8 CNN with MFSC Features 93.88% – – –

Proposed MLP with MFCC Features Vector 95.65% 96.60% 97.60% 96.60%
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sound signals and detecting various heart diseases. It is imperative to acknowledge that the selection of features, 
algorithms, and architectures can substantially influence the performance of the classification model. The method 
proposed in this study has demonstrated the highest level of accuracy, suggesting its potential for effectively 
and dependably classifying heart disease. However, additional validation and comparison using larger datasets, 
and potentially across diverse datasets, would be required to ascertain the generalizability and robustness of the 
proposed methodology.

Conclusion
The need for reliable and accurate methods of diagnosing cardiovascular disorders is growing. Early diagnosis is 
crucial for improving patient outcomes due to the prevalence of CVD worldwide. The application of ML and DL 
techniques has been successful in classifying heart sounds. The signals were processed, sampled, and graphically 
represented using spectrograms and MFCCs in this work, which used the PASCAL CHALLENGE database. 
This research presents an efficient approach based on machine learning and deep learning techniques to detect 
heart disease from noisy sound signals. First, data augmentation has added synthetic noise to the heart sound 
signals. Secondly, the feature ensembler has been developed by combining the features of multiple audio feature 
extraction techniques. In the end, several machine learning and deep learning models were employed to detect 
heart disease. Deep learning models include Conv1D and DNN, whereas machine learning models include RF, 
MLP, XGB, KNN, and DT. When the outcomes of the models employed in this study were compared, the MLP 
model produced the best results, with an accuracy of 95.65% and a P-value of 1.0 decimals.

Future Work: Several areas for future research can be explored to improve heart disease detection using 
noisy sound sources. More advanced noise augmentation approaches could be developed to imitate real-world 
scenarios better and boost the model’s robustness. Furthermore, investigating advanced feature ensembling 
approaches such as deep feature fusion or attention mechanisms may improve the model’s ability to acquire 
meaningful information from varied feature sets. Furthermore, research into transfer learning methodolo-
gies that use pre-trained models on big audio datasets to improve performance on heart sound signals could 
be advantageous. Incorporating domain knowledge and expert annotations into the model may also increase 
interpretability and therapeutic relevance. This research aims to identify heart disease from noisy audio signals; 
although computational cost is one of the main parameters, it was not considered in this instance. This research 
recognizes its significance for future work.

Furthermore, experimenting with alternate architectures and hyperparameter tuning for deep learning mod-
els may result in additional performance gains. Finally, larger and more diverse datasets might be used to test 
the model’s generalizability and possible applicability in real-world clinical settings. These future initiatives are 
intended to improve the accuracy and reliability of cardiac disease detection, resulting in more effective and 
prompt medical interventions. We made a deliberate decision not to address data imbalance in the current 
phase of our research. This decision was made because resolving data imbalance in the context of audio data is 
a critical and difficult undertaking. It necessitates considerable consideration and sophisticated approaches that 
require undivided attention. However, we understand the importance of fixing data imbalance and that it is our 
top priority. In the future, we want to address this issue thoroughly. We will employ strategies and ways to deal 
with data imbalance while maintaining the integrity and quality of our study results. This approach ensures that 
our study remains thorough and accurate while addressing audio data imbalance.

Data availability
The datasets analyzed during the current study are available in the Kaggle repository, [https:// k4all. org/ 2011/ 11/ 
annou ncing- the- pascal- heart- sounds- chall enge/].
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