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The metabolism‑related lncRNA 
signature predicts the prognosis 
of breast cancer patients
Xin Ge 1,3, Shu Lei 2,3, Panliang Wang 1, Wenkang Wang 1 & Wendong Wang 1*

Long non-coding RNAs (lncRNAs) involved in metabolism are recognized as significant factors in 
breast cancer (BC) progression. We constructed a novel prognostic signature for BC using metabolism-
related lncRNAs and investigated their underlying mechanisms. The training and validation cohorts 
were established from BC patients acquired from two public sources: The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO). The prognostic signature of metabolism-related 
lncRNAs was constructed using the least absolute shrinkage and selection operator (LASSO) cox 
regression analysis. We developed and validated a new prognostic risk model for BC using the 
signature of metabolism-related lncRNAs (SIRLNT, SIAH2-AS1, MIR205HG, USP30-AS1, MIR200CHG, 
TFAP2A-AS1, AP005131.2, AL031316.1, C6orf99). The risk score obtained from this signature was 
proven to be an independent prognostic factor for BC patients, resulting in a poor overall survival (OS) 
for individuals in the high-risk group. The area under the curve (AUC) for OS at three and five years 
were 0.67 and 0.65 in the TCGA cohort, and 0.697 and 0.68 in the GEO validation cohort, respectively. 
The prognostic signature demonstrated a robust association with the immunological state of BC 
patients. Conventional chemotherapeutics, such as docetaxel and paclitaxel, showed greater 
efficacy in BC patients classified as high-risk. A nomogram with a c-index of 0.764 was developed to 
forecast the survival time of BC patients, considering their risk score and age. The silencing of C6orf99 
markedly decreased the proliferation, migration, and invasion capacities in MCF-7 cells. Our study 
identified a signature of metabolism-related lncRNAs that predicts outcomes in BC patients and could 
assist in tailoring personalized prevention and treatment plans.
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Breast cancer (BC), a common malignancy in women, is the most common cancer and the second most common 
cause of cancer-related deaths globally1,2. The molecular mechanisms driving BC pathogenesis have been exten-
sively researched and categorized into three major subtypes (luminal, HER2-enriched, and triple-negative breast 
cancer) based on markers such as expression of estrogen receptor (ER) and progesterone receptor (PR)3. However, 
a robust molecular signature is still needed to accurately predict and stratify disease outcomes4. Dysregulated 
metabolism is a prominent feature of BC5. Significant focus has been directed towards analyzing the metabolic 
alterations that accompany the onset and progression of cancer6. The Warburg effect is a well-known phenom-
enon in which tumor cells transition from oxidative phosphorylation to glycolysis for energy generation7. The 
metabolic changes in cancer cells facilitate the production of ATP as well as the necessary metabolic intermediates 
needed for cellular growth and proliferation, including amino acids, fatty acids, and nucleotides. High-through-
put analytical methods have unveiled the metabolic alterations linked to the mechanisms of BC development8,9. 
Research on metabolism has provided insights into novel therapeutic approaches and drug development10. Vari-
ations in metabolic activity among tumor cells in different patients necessitate the identification of metabolism-
related biomarkers, which can reveal the molecular mechanisms of tumor progression, ultimately enhancing the 
development of effective treatment strategies and improving prognoses for BC patients11. Dai et al. developed a 
prognostic model for BC based on long noncoding RNAs (lncRNAs) associated with amino acid metabolism12. 
Xu et al. found that glucose metabolism-related lncRNAs could impact the progression of BC13. Shi et al. identi-
fied that lipid metabolism lncRNAs held significant prognostic value in predicting the survival of patients with 
BC14. The role of metabolism-related lncRNAs in the progression of BC is still uncertain.

In this study, we aimed to identify a signature of metabolism-related lncRNAs and assess its prognostic value 
in BC patients. We screened the Cancer Genome Atlas (TCGA) transcriptome data of BC patients to identify 
clinically significant metabolism-related lncRNAs. Using these lncRNAs, we constructed a prognostic model and 
externally validated its accuracy in a GEO dataset. We also investigated immune infiltration, immunotherapy, 
and medication sensitivity in high- and low-risk groups. A unique model of metabolic risk score was developed 
to predict the prognosis and therapeutic responsiveness of BC patients. Furthermore, we validated specific risk 
factors, such as C6orf99, in BC cell lines.

Methods and materials
Data extraction
We obtained the transcriptomic datasets and clinical information from the TCGA databases (https://​portal.​
gdc.​cancer.​gov/) and the Gene Expression Omnibus (GEO dataset GSE58644, based on the GPL6244 platform, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo). After excluding cases with missing clinicopathological information, only 
patients diagnosed with BC and with an overall survival exceeding 30 days were considered for the analysis. The 
study utilized RNA sequencing data from the TCGA database, comprising 1022 BC and 112 adjacent non-tumor 
cases, along with 312 BC from the GSE58644 dataset.

Metabolism‐related lncRNAs detection
The R package was used to identify differentially expressed genes associated with metabolism in BC and normal 
tissues15. A total of 944 genes related to metabolism were identified using the Molecular Signatures Database 
(http://​www.​broad.​mit.​edu/​gsea/​msigdb/) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene 
sets. Subsequently, the expression levels of metabolism-related genes and their corresponding lncRNAs were 
compared using Pearson correlation coefficients. To identify metabolism-related lncRNAs, the correlation coef-
ficient and p values were used (|Cor pearson|> 0.4 and p value < 0.001), we screened 1135 metabolism-related 
lncRNAs that met these criteria.

Construction of a risk signature
Metabolism-related lncRNAs showing differential expression between tumor and normal tissues in the TCGA 
cohort were identified using the limma package, applying fold change (FC) > 2 and a false discovery rate 
(FDR) < 0.05 as cut-off criteria. Univariate Cox proportional hazards regression analysis was used to identify 
metabolism-associated lncRNAs significantly linked to the prognosis of BC. Subsequently, multivariate Cox 
regression analysis was applied to pinpoint metabolism-related lncRNAs for the development of a predictive 
signature. Protective factors exhibit a hazard ratio (HR) of 1 or less, whereas risk factors demonstrate a HR greater 
than 1. The computational formula was constructed for this analysis as follows: Risk score = 

∑n
i=1

(Expi ∗ Coei) . 
The number of prognostic genes was denoted as n, the expression of metabolism-related lncRNAs was denoted as 
Expi, and the regression coefficient of the metabolism-related lncRNA in the model was denoted as Coei. Patients 
in the two cohorts were stratified into low-risk or high-risk groups based on the median value of their risk scores 
in the training cohort. To evaluate the prognostic efficacy of the risk score model, we employed receiver operating 
characteristic (ROC) curve analysis and principal component analysis (PCA) to visualize lncRNA expression 
patterns in the two groups of BC patients.

Prognostic signature evaluation
Cytoscape was used to display and visualize correlations between mRNA and lncRNA co-expression, while 
the corrplot software was employed to construct interactions between identified lncRNAs. The co-expressed 
network components were represented by a sankey diagram in the R package. The biological functions and 
pathways associated with the identified lncRNAs were explored using gene ontology (GO) and KEGG pathway 
analysis. Immune signatures, associated markers, and estimated gene sets for immune scores were utilized to 
infer immune infiltration through single-sample gene set enrichment analysis (ssGSEA)16. The CIBERSORT 
algorithm was utilized to assess the proportion of tumor-infiltrating immune cells in both groups17. The Tumor 
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Immune Dysfunction and Exclusion (TIDE) algorithms (available at http://​tide.​dfci.​harva​rd.​edu/) were employed 
to forecast the clinical responses to immune checkpoint inhibitors18. R package “pRRophetic” was used to assess 
the effectiveness of chemotherapy drugs by half maximal inhibitory concentration (IC50) of each BC patient19.

Nomogram construction
The rms package was utilized to conduct multivariate Cox regression analyses with a risk score model in the 
training cohort, which were then integrated with clinicopathological features to construct a nomogram. The 
integration of these prognostic indicators, along with the computation of the concordance index (C-index) and 
calibration curves, was utilized in the development of a nomogram for predicting one-, three-, and five-year 
OS probabilities.

Cell culture
The human normal breast cell line (MCF-10A) and BC cell lines (MCF-7, T47D, MDA-MB-231, and HCC1937) 
were sourced from the National Infrastructure of Cell Line Resource in Beijing, China. They were maintained 
in RPMI‐1640 medium (HyClone) supplemented with 10% fetal bovine serum (Gibco) at 37 °C in a 5% CO2 
incubator.

qRT‑PCR and transfection
TRIzol (Invitrogen) was used to extract total RNA from the cell line. The FastKing RT Kit (TIANGEN Biotech, 
Beijing, China) was employed to synthesize cDNA following the manufacturer’s protocol. The FastKing One Step 
Kit (TIANGEN Biotech, Beijing, China) was utilized to perform qRT-PCR following the manufacturer’s protocol. 
Relative expression level of C6orf99 was calculated by the 2−∆∆Ct method. C6orf99 specific targeting siRNA (si-
C6orf99 #1 and si-C6orf99 #2) and negative control siRNA (siNC) were purchased from Sangon Biotech. The 
siRNA was transfected using Lipo2000 (Invitrogen) according to the manufacturer’s protocol. The primers and 
siRNA were described in Supplementary Table 1.

CCK‑8, and Transwell assay
The cell counting kit 8 (CCK-8, KeyGEN BioTECH) was utilized to quantify cell proliferation. 2000 cells were 
plated in each well using 96-well plate and CCK-8 reagent was added to each well. Then, the plates were incu-
bated at 37 °C for 1–2 h. Absorbance value at a wavelength of 450 nm were utilized to quantify the cell number. 
Cell migration and invasion were measured by Transwell insert (NEST). The Transwell insert was coated with 
Matrigel for detecting cell invasion ability or without Matrigel for detecting cell migration ability. 60,000 cells in 
serum‐free medium were added into the upper of a Transwell insert and the lower chamber filled with medium 
with 20% FBS for 1–2 days.

Statistical analyses
Statistical analyses were performed using R (version 4.0.2). A Pearson correlation coefficient was calculated 
for further analysis. The Kruskal–Wallis and Wilcoxon tests were employed to assess the expression of DEGs 
in normal and malignant tissues, respectively. The univariate Cox regression model was utilized to calculate 
the HR and corresponding 95% confidence intervals (CIs). The coefficients of the prognostic signatures were 
determined using the absolute shrinkage and selection operator (LASSO) regression. Survival curves were gen-
erated using the Kaplan–Meier method. We utilized the log-rank test to compare OS and RFS between groups. 
Cox proportional hazard models, both univariate and multivariate, were utilized to examine independent risk 
variables for the prognosis of BC patients. P-value < 0.05 was regarded as indicative of a significant difference 
in the statistical analyses.

Results
Metabolism‐related lncRNA identification in the TCGA cohort
The flowchart of the study was exhibited in Fig. 1. To identify metabolism-related lncRNAs in the TCGA cohort, 
we analyzed a dataset consisting of 14,142 lncRNAs and 19,658 mRNAs. Among these, 2100 lncRNAs exhibited 
differential expression between patient tumors and normal tissues (Fig. 2A). We retrieved 944 genes associated 
with metabolism from the KEGG pathway database and screened for significant metabolism-related lncRNAs 
through significant univariate Cox regression analysis. This analysis identified 151 lncRNAs significantly cor-
related with BC survival and further investigations considered 28 metabolism-related lncRNAs as candidates 
based on their differential expression and prognostic significance (Fig. 2B,C).

Construction of a risk signature for prognostic
After identifying metabolic lncRNAs associated with candidate prognosis, we used LASSO regression mod-
els to construct the prognostic signature, incorporating the expression of 9 lncRNAs (SIRLNT, SIAH2-AS1, 
MIR205HG, USP30-AS1, MIR200CHG, TFAP2A-AS1, AP005131.2, AL031316.1, and C6orf99). Each coefficient 
in the signature represents the expression weight of the corresponding lncRNA. By combining the expression 
levels of these 9 metabolism-related long noncoding RNAs with their associated Cox regression coefficients, we 
generated a risk score for each BC patient (P < 0.05, Table 1).

Establishing and validating a robust metabolism‑related lncRNAs prognostic signature
To establish the robustness of our metabolism-related lncRNAs prognostic signature, we calculated the risk 
score in the TCGA cohort for internal validation and in the GEO cohort for external confirmation. Based on 

http://tide.dfci.harvard.edu/
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Figure 1.   The flowchart of our research.

Figure 2.   Exploration of metabolism‐related lncRNAs in BC. (A) lncRNA expressed differently in tumor and 
normal tissues. Up-regulated lncRNAs were shown in red, while down-regulated lncRNAs were shown in blue. 
(B) Venn diagram showing lncRNAs met two criteria. 9 lncRNAs were tagged in (A). (C) After further filtering, 
the metabolism‐related lncRNAs that were substantially linked with prognosis.
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their median risk scores, the 1022 BC patients from TCGA and the 312 BC patients from GEO were classified 
into high- and low-risk categories. The high-risk groups in both the training cohort (91/511 vs. 49/511) and the 
validation cohort (41/156 vs. 28/156) exhibited higher mortality rates compared to the low-risk groups (Figs. 3A, 
4A). Kaplan–Meier curve analysis demonstrated a significantly lower overall survival rate for high-risk patients 
than for low-risk patients in both cohorts (Figs. 3B, 4B). The prognostic model showed high predictive power, 
as indicated by the area under the receiver operating characteristic curve values for predicting 3-year survival 
in the training (0.67) and validation (0.697) groups (Figs. 3C, 4C). Additionally, we used PCA to examine the 
distinct distribution patterns of the high- and low-risk groups. The risk model successfully separated breast 
cancer patients into two groups with different risk levels (Figs. 3D, 4D).

Table 1.   Prediction signature for survival.

lncRNA Coefficient

SIRLNT 0.097448759

SIAH2-AS1 − 0.332363482

MIR205HG − 0.098220261

USP30-AS1 − 0.416509153

MIR200CHG − 0.13935231

TFAP2A-AS1 − 0.666605613

AP005131.2 − 0.478339835

AL031316.1 − 0.221521122

C6orf99 0.222236591

Figure 3.   Signature test in the training cohort. (A) Risk score and survival status distribution of BC patients in 
low-risk and high-risk groups. (B) OS survival curves for low-risk and high-risk patients. (C) Risk score ROC 
Curve for one, three, and five years. (D) PCA visualization of risk categorization.
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Constructing the co‐expression network in prognostic model
As illustrated in Fig. 5A, the metabolism-related lncRNAs in the prognostic model were highly correlated, which 
demonstrated the potential consistency of lncRNAs function in the model. In the regulatory mechanisms of 
metabolism‐related lncRNAs, it is considered that lncRNAs regulate mRNAs in breast cancer onset and devel-
opment. Cytoscape was used to create a network of co-expressions. In our prognostic signature, there were 111 
lncRNA-mRNA couples in the lncRNA-mRNA co-expression network, and 108 mRNAs were substantially linked 
to metabolism-related lncRNAs (Fig. 5B). AL031316.1, MIR200CHG, and USP30-AS1 were likely to be the most 
important components. The Sankey diagram established a link between lncRNAs and mRNAs and revealed a 
link between metabolism-related lncRNAs and overall survival in BC patients (Fig. 5C). Notably, C6orf99 and 
SIRLNT were the risky factors among the included lncRNAs.

Discovery of functional enrichment analysis
In order to investigate the variations in gene functions and gene enrichment between high-risk and low-risk 
groups based on the risk model, a total of 111 co-expressed mRNAs were identified. We performed GO analysis of 
these mRNAs and discovered that the top three biological processes represented by GO terms were the nucleoside 
phosphate biosynthetic process, nucleotide biosynthetic process, and small molecule catabolic process (Fig. 6A). 
As expected, KEGG pathway analysis confirmed that these genes were associated with metabolic functions, and 
the most significantly enriched pathways were those for fatty acid degradation, purine metabolism, and carbon 
metabolism (Fig. 6B).

Comparing tumor‑infiltrating immune cells in two groups
Immunotherapy is a novel therapeutic option for BC that may enhance antitumor capacity by stimulating 
patients’ immune systems. Nonetheless, not all BC patients are candidates for immunotherapy, implying that 
identifying these individuals is critical. The immune infiltration of the two risk groups was compared using the 
TIMER method. The higher the score, the more robust the immunological activity. The immunological activity 
of innate immunity cells (aDCs, DCs, iDCs, mast cells, and pDCs) and adaptive immune cells (B cells, CD8+ 
T, T helper, Tfh, and until cells) was greater in the low-risk subgroup as compared to the high-risk subgroup 

Figure 4.   Signature test in the validation cohort. (A) Risk score and survival status distribution of BC patients 
in low-risk and high-risk groups. (B) OS survival curves for low-risk and high-risk patients. (C) Risk score ROC 
Curve for one, three, and five years. (D) PCA visualization of risk categorization.
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(Fig. 7A). Similar results for immune activities such as checkpoint, cytolytic activity, type I IFN response, and 
type II IFN response were verified using the ssGSEA method (Fig. 7B). Following that, we examined the asso-
ciation between risk scores and important immunological checkpoints. In comparison to the low-risk group, 
the high-risk group had considerably lower levels of expression of many immunological checkpoints (CTLA4, 
CD274, and PDCD1) (Fig. 7C). The study revealed that a risk score could be used to help find people who might 
benefit from immunotherapy.

Investigation of clinical treatment in risk groups
Recently, there has been a surge in the development of new molecular target drugs and regimens that are tailored 
to the predicted sensitivity of specific histological types of BC. Unique biological markers in individual patients 
can provide tailored therapy, leading to optimal treatment efficacy. The expression of CDK4, BRCA1, PIK3CA, 
and CDK6 was higher in the high-risk group (Fig. 8A). This allowed us to choose relevant drugs for BC patients 
based on their risk mode. Additionally, we discovered that docetaxel and paclitaxel, which are used in the treat-
ment of BC, had a greater IC50 in the high-risk group (Fig. 8B). As expected, the high-risk group showed a lower 
IC50 for AKT inhibitor VIII (Fig. 8B). Based on these findings, individuals in high- and low-risk groups were 
able to develop tailored treatment plans.

Evaluation of prognostic value and construction of nomogram
The metabolic-related lncRNA prognostic signature was tested using Cox regression analysis to see if it was 
an independent prognostic factor for BC patients in the TCGA. A univariate Cox regression study found that 
age, stage, T stage, M stage, and N stage, as well as risk scores, were all significantly linked with overall survival 
in BC patients, and a multivariate analysis suggested that age and risk scores may be independent predictors 
of BC survival (P < 0.05, Fig. 9A). Furthermore, the prognostic accuracy of the metabolism-related lncRNAs 

Figure 5.   Co-expressed lncrna mRNA of the prognostic signature. (A) Annotated coefficients for 9 lncRNAs. 
(B) A metabolic-related lncRNA-mRNA co-expression regulation network. (C) Sankey diagram depicting the 
relationships between mRNAs, lncRNAs, and risk types.
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was assessed using a time-dependent receiver operating characteristic (ROC) analysis, with an AUC value of 
0.667 (Fig. 9B). The nomogram’s C-index value was 0.764. Nomograms are extensively used to calculate a score 
based on the values of numerous prognostic indicators to estimate patient survival20. In patients with BC, this 
nomogram was used to predict survival rates at 1, 3, and 5 years (Fig. 9C). The calibration curves showed good 
agreement between expected and actual OS rates after one, three, and five years of follow-up (Fig. 9D). We may 
conclude from these data that our prognostic nomogram is both accurate and robust.

Figure 6.   Functional analysis of lncrnas mRNAs co-expression. (A) GO enrichment analysis. (B) KEGG 
pathway analysis52.
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Knockdown C6orf99 inhibited MCF‑7 cell proliferation, migration, and invasion
In order to investigate the biological function of these lncRNAs, we conducted cytology and molecular biol-
ogy experiments. Given the number of lncRNAs in the signature, C6orf99 was a risky factor, a new lncRNA 
which has never been researched. The expression of C6orf99 was significantly higher expressed in BC cell lines 
(Fig. 10A). Thus, we chose the MCF-7 cell line for molecular validation. We used siRNA to knockdown C6orf99 
in MCF-7 and found that si-C6orf99 #1 significantly decreased the expression of C6orf99 (Fig. 10B). The CCK-8 
results showed that knockdown of C6orf99 inhibits cell proliferation ability (Fig. 10C). Moreover, knockdown 
of C6orf99 suppressed migration and invasion in MCF-7 (Fig. 10D). Collectively, these findings indicated that 
C6orf99 promoted cell proliferation and metastasis in BC cells.

Discussion
Existing evaluation models for predicting BC prognosis heavily rely on clinical factors, simplifying the process 
of collection and assessment of patient data21,22. However, the AJCC TNM staging primarily employs anatomical 
data, and it often fails to precisely forecast cancer recurrence23. The enhancement of gene detection technologies 
proposes an alternative approach, enabling hospitals and specialized labs to sequence a set of vital genes from 
patients. Consequently, certain lncRNAs have been identified in diverse malignant tumors, serving as reliable 
indicators of prognosis as well as treatment responsiveness24,25.

Several studies have highlighted the significance of lncRNAs in BC26,27, revealing their vital role in 
metabolism28. They are identified to be closely involved with metabolic processes in cancer29, potentially influ-
encing glycolysis activity and cell proliferation by altering metabolism-related signaling pathways30. Thus, it 
becomes essential to identify a metabolism-related lncRNA prognostic signature in BC patients.

The novelty and technicality of this research were evident in the prognostic signature, which comprises nine 
metabolism-related lncRNAs (SIRLNT, SIAH2-AS1, MIR205HG, USP30-AS1, MIR200CHG, TFAP2A-AS1, 
AP005131.2, AL031316.1, C6orf99). This signature distinguished patients at different risk levels and had been 
identified as a significant independent factor for patients with BC. The ROC curve suggested that the newly 
discovered metabolism-related lncRNA signature exhibited a moderate predictive performance for OS. A newly 
proposed nomogram was expected to guide doctors in making informed treatment decisions. Our investigation 
revealed that immunotherapy and targeted therapy demonstrated potential effectiveness for BC patients across 
diverse risk groups. Advancements in the understanding of metabolism-related lncRNAs could facilitate the 
development of a more comprehensive mechanistic insight into BC, thus catalyzing transformative progress in 
clinical practice.

Figure 7.   Immune infiltration signature in two groups. (A) 16 immune cells in low and high-risk groups. (B) 13 
immune functions in two groups. (C) Known immune checkpoints. *P < 0.05, **P < 0.01, ***P < 0.001.
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Among the identified lncRNAs, MIR205HG, USP30-AS1, MIR200CHG, and TFAP2A-AS1 were associ-
ated with tumor progression, each mediating different processes of tumor development. LncRNA miR205HG 
interacts with HNRNPA0 mRNA and then inhibits the migration and invasion of esophageal carcinoma cells31. 
Repression of mitophagy by USP30-AS1 may have a role in the development of glioma tumors32. MIR200CHG 
promotes breast cancer proliferation, invasion, and treatment resistance33. In gastric cancer cells, TFAP2A-AS1 
was confirmed to inhibit the proliferation and migration34. SIAH2-AS1, AP005131.2, AL031316.1, and C6orf99 
parts of lncRNAs risk models were implicated with autophagy, immunity, and hypoxia, suggesting a close asso-
ciation of tumor metabolism with these processes. In recent years, numerous studies, including those related to 
miRNA–lncRNA interaction prediction, have been conducted in the field of bioinformatics35,36. In the Sankey 
diagram, we identified several lncRNAs that were associated with key genes, including GBE1, HK3, PGM1, 
PYGL, and UGP2, which were involved in glycogenesis. Fluctuations in specific metabolite levels can contribute 
to the development of cancer. Detecting such deviations in metabolite levels can assist in disease diagnosis37.

Moreover, low-risk patients showcased higher numbers of B cells, CD8+ T cells, T helpers, and TIL cells, stress-
ing the importance of metabolism-related lncRNAs in controlling tumor immune infiltration. It was observed 
that immune infiltration in BC was linked to these lncRNAs38,39. With the tumor environment related to the 
outcome of immune checkpoint inhibitor treatments40,41, our study found that low-risk patients demonstrated 
higher levels of CTLA-4, PD-1, and PD-L1, suggesting that immunotherapies targeting these entities could be 
more beneficial for such patients. This casts light on tumor immunotherapy in a novel way. When coupled with 
endocrine therapy in advanced BC, CDK4/6 inhibitors have been demonstrated to improve response rates and 
prolong disease control42,43. The antitumor efficacy of small compounds was determined through in vitro testing44. 
Several researchers have developed novel deep learning predictive models to identify and avoid serious cardio-
toxicity inhibitors45. Interestingly, CDK4, CDK6, and PIK3CA were significantly overexpressed in the high-risk 
group, implying that CDK4/6 inhibitors and PIK3CA inhibitors may improve outcomes in the high-risk group.

We performed molecular verification using BC cell line MCF-7, which revealed high expression levels of 
C6orf99. BC cells displayed augmented proliferation, migration, and invasion influenced by C6orf99, thereby 
proposing C6orf99 as a potential oncogene in BC, contributing to cancer proliferation and metastasis.

Single-cell multimodal sequencing techniques have become available to enhance our understanding of 
cancer cellular function and heterogeneity of individual cancer cells46. Several single-cell multimodal analysis 
frameworks have been developed, providing a more comprehensive understanding of cellular heterogeneity and 

Figure 8.   Potential therapeutic targets and drugs for different risk groups. (A) Expression of important known 
drug targets in breast cancer in different risk subgroups. (B) The sensitivity to Docetaxel, Paclitaxel, and AKT 
inhibitor VIII of BC patients. *P < 0.05, **P < 0.01, ***P < 0.001.
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facilitating research in biomedical diseases47,48. Hence, there is a necessity to advance data analysis frameworks 
founded on deep learning to enhance the effectiveness of data analysis.

However, our study also recognizes potential limitations of the metabolism-related lncRNAs prognostic 
signature that may restrict its applicability, necessitating further improvement. Although we used data from 
the TCGA and GEO public databases, obtaining prospective, multicenter, real-world data can substantiate our 
predictive model. Theoretical modeling studies of gene/protein signaling networks are crucial for understand-
ing regulatory mechanisms and identifying potential therapeutic targets for diseases49–51. Future studies can be 
strengthened by the incorporation of more state-of-the-art computational models and technologies.

Conclusion
In conclusion, we discovered a new metabolism-related predictive risk model in breast cancer made up of 9 lncR-
NAs (SIRLNT, SIAH2-AS1, MIR205HG, USP30-AS1, MIR200CHG, TFAP2A-AS1, AP005131.2, AL031316.1, 
C6orf99). If the nine metabolism-related lncRNA signature is verified prospectively, it has the potential to 
improve prediction accuracy and lead to personalized treatment for breast cancer patients.

Figure 9.   Evaluating risk features and constructing a prognostic nomogram. (A) Univariate and multivariate 
analysis in BC. (B) ROC curves of risk model score and clinical features. (C) The prognostic nomogram utilized 
the risk score and clinicopathological characteristics to predict one-, three-, and five-year survival rates. (D) 
Calibration curves demonstrated the concordance between predicted and observed 1-, 3-, and 5-years survival 
rates based on the nomogram.
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Data availability
The datasets are available for download in the TCGA: https://​portal.​gdc.​cancer.​gov/ and GEO database, https://​
www.​ncbi.​nlm.​nih.​gov/​geo/.
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