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Effective prime factorization 
via quantum annealing by modular 
locally‑structured embedding
Jingwen Ding , Giuseppe Spallitta  & Roberto Sebastiani *

This paper investigates novel techniques to solve prime factorization by quantum annealing (QA). 
First, we present a very-compact modular encoding of a multiplier circuit into the architecture of 
current D-Wave QA devices. The key contribution is a compact encoding of a controlled full-adder 
into an 8-qubit module in the Pegasus topology, which we synthesized using Optimization Modulo 
Theories. This allows us to encode up to a 21 × 12-bit multiplier (and a 22 × 8-bit one) into the Pegasus 
5760-qubit topology of current annealers. To the best of our knowledge, these are the largest 
factorization problems ever encoded into a quantum annealer. Second, we investigated the problem 
of actually solving encoded PF problems by running an extensive experimental evaluation on a 
D-Wave Advantage 4.1 quantum annealer. In the experiments we introduced different approaches to 
initialize the multiplier qubits and adopted several performance enhancement techniques. Overall, 
8,219,999 = 32,749 × 251 was the highest prime product we were able to factorize within the limits of 
our QPU resources. To the best of our knowledge, this is the largest number which was ever factorized 
by means of a quantum annealer; also, this is the largest number which was ever factorized by means 
of any quantum device without relying on external search or preprocessing procedures run on classical 
computers.

Motivations
Integer factorization (IF) is the problem of factoring a positive integer into a product of small integers, called 
factors. If the factors are restricted to be prime, we refer to it as prime factorization (PF). Finding prime factors 
becomes increasingly difficult as the numbers get larger. In particular, the state-of-the-art classical algorithm to 
solve PF is the general number field sieve algorithm1, which has sub-exponential time complexity2. Even though 
PF is not believed to be NP-complete, no polynomial-time classical algorithm solving it has been presented in 
the literature. The hardness of prime factorization is exploited in modern cryptography, where it is used as a 
basis for secure encryption algorithms (e.g. the RSA public-key encryption3) since the process of factoring large 
numbers is currently considered computationally infeasible for classical computers.

State of the art
Quantum computers have the potential to perform PF exponentially faster than classical computers. A first 
approach in tackling PF by quantum computing is Shor’s algorithm4. This technique takes advantage of the 
properties of quantum mechanics, such as superposition and entanglement, to factor numbers into their prime 
factors in poly-logarithmic time. Although several efforts in implementing this algorithm, and variations thereof, 
on existing gate-based quantum computers have been presented in the literature5–9, the size of IP/PF which were 
actually implemented and solved on quantum devices is very small, in the order of a few thousand. Notice that 
a large-scale simulation of Shor’s algorithm on a GPU-based classical supercomputer allowed factorization up 
to 549,755,813,70110.

Another approach consists in relying on variational methods, a form of hybrid classical-quantum procedure. 
Variational algorithms use parameterized quantum circuits, where the gates in the circuit are associated with 
adjustable parameters. These parameters act as variables of a certain cost function, which quantifies the difference 
between the desired quantum state (the ground state) and the state produced by the parameterized circuit. The 
goal is to adjust the parameters and minimize this cost function through an optimization process.
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A couple of papers solved prime factorization on top of variational approaches: a first attempt allowed for the 
factorization of 91 in the IBMQ hardware11; with the integration of an aggressive pre-processing phase, which 
is performed by classical computation, the factorization of the three following biprime numbers were achieved: 
3127 (53 × 59), 6557 (79 × 83), and 1,099,551,473,989 (1,048,589 × 1,048,601)12. These numbers, however, have 
some peculiar characteristics that can make their factorization easy11,13: they can be easily factorized through 
the Fermat factorization technique14, so that an aggressive pre-processing phase might heavily reduce the size 
of the problem to be embedded in the quantum circuit.

Quantum Annealing (QA)15 has shown to be effective in performing prime factorization, e.g., by reduc-
ing high-degree cost functions to quadratic either by using Groebner bases16 or by using equivalent quadratic 
models produced by adding ancillary variables17, or by related approaches18. Currently, the largest factorization 
problem mapped to the quantum annealer D-Wave 2000Q is 376,289. Moreover, all bi-primes up to 200,000 
have been solved by D-Wave 2X processors16,17. Also, by using D-Wave hybrid Classical-QA tool, 1,005,973 has 
been factored19.

We refer the reader to Willsch et al.10 for a recent very detailed survey on solving PF with quantum devices.

Contributions
In this paper, we propose a novel approach based on a modular version of locally-structured embedding of 
satisfiability problems20,21 to encode IF/PF problems into Ising models and solve them using QA. Our contribu-
tion is twofold.

First, we present a novel modular encoding of a binary multiplier circuit into the architecture of the most 
recent D-Wave QA devices. The key contribution is a compact encoding of a controlled full-adder into an 8-qubit 
module in the Pegasus topology22, which we synthesized offline by means of Optimization Modulo Theories. The 
multiplier circuit is then built by exploiting a bunch of novel ideas, namely alternating modules, qubit sharing 
between neighboring modules, and virtual chaining between non-coupled qubits. This allows us to encode up 
to a 21 × 12-bit multiplier (resp. a 22 × 8-bit one) into the Pegasus 5760-qubit topology of current annealers, so 
that a faulty-free annealer could be fed an integer factorization problem up to 8,587,833,345 = 2,097,151 × 4095 
(resp. 1,069,547,265 = 4,194,303 × 255)), allowing for prime factorization of up to 8,583,606,299 = 2,097,143 × 
4093 (resp. 1,052,769,551 = 4,194,301 × 251). To the best of our knowledge, these are the largest factorization 
problems ever encoded into a quantum annealer. We stress the fact that, given the modularity of the encoding, 
this number will scale up automatically with the growth of the qubit number in future chips.

Second, we have investigated the problem of actually solving encoded PF problems by running an extensive 
experimental evaluation on a D-Wave Advantage 4.1 quantum annealer. Due to faulty qubits and qubit couplings 
of the QA hardware we had access to, it was possible to feed to it at most a 17 × 8-bit multiplier, corresponding 
to at most a 33,423,105 = 131,071 × 255 factorization. To help the annealer in reaching the global minimum, in 
the experiments we introduced different approaches to initialize the multiplier qubits and adopted several per-
formance enhancement techniques, like thermal relaxation, pausing, and reverse annealing, which we combined 
together by iterative strategies, discussing their synergy when combined. Overall, exploiting all the encoding 
and solving techniques described in this paper, 8,219,999 = 32,749 × 251 was the highest prime product we 
were able to factorize within the limits of our QPU resources. To the best of our knowledge, this is the largest 
number which was ever factorized by means of a quantum annealer; also, this is the largest number which was 
ever factorized by means of any quantum device

without relying on external search or preprocessing procedures run on classical computers.
Disclaimer. Due to space constraints, some details in some figures may not be easy to grasp from a printed 

version of this paper. Nevertheless, all figures are high-resolution ones, so that every detail can be grasped in 
full if they are seen via a pdf viewer.

Foundations
D‑wave quantum annealers
From a physicist’s perspective, D-Wave’s quantum annealers (QAs) are quantum devices that use quantum 
phenomena to reach minimum-energy states in terms of the values of their qubits (i.e. minimum-energy states 
of superconducting loops).

For these QAs, the (quantum) Hamiltonian H(s) —which corresponds to the classical Hamiltonian that 
described some physical system in terms of its energies—is represented by the sum of the driver Hamiltonian 
Hdriver and the classical Ising Hamiltonian HIsing , where σ̂ (i)

x,z are Pauli matrices operating on a qubit qi , such that 
hi and Ji,j are programmable parameters representing the qubit biases and coupling strengths:

The parameter s is the normalized anneal fraction, s = t/tf ∈ [0, 1] , where t is time and tf  is the total time of the 
annealing process. This s-dependent Hamiltonian H(s) smoothly interpolates between Hdriver and HIsing through 
the two annealing functions A(s), B(s), as shown in Fig. 1a. At s = 0 , the system starts in the ground state of 
Hdriver , with all qubits in the superposition state of 0 and 1; as the system is annealed s ↑ , the dominance of Hdriver 
decreases and HIsing comes to play; at the end of the annealing process s = 1 , the system would end up in a clas-
sical state that corresponds to HIsing . According to the quantum adiabatic theorem, the system will remain in the 
instantaneous groundstate through the evolution iff the system is annealed slowly enough. The required runtime 
according to the theorem is proportional to 1

gap2
 , where gap is the minimal gap between the ground state and 

excited states during the system’s evolution.
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From a computer scientist’s perspective, D-Wave’s QAs are specialized quantum computers which draws 
optima or near-optima from quadratic cost functions on binary variables, that is, specialized hardware for solv-
ing the Ising problem21:

where each variable zi ∈ {−1, 1} is associated with a qubit; G = �V ,E� is an undirected graph, the hardware graph 
or topology, whose edges correspond to the physically-allowed qubit interactions; and hi , Ji,j are programmable 
real-valued parameters.

The current Pegasus topology22 was introduced in the D-Wave Advantage quantum annealing machine and is 
based on a lattice of qubits. The lattice is divided into cells (“tiles”), where each cell contains eight qubits arranged 
in a bipartite graph. We call qubits on the same side of the partition either vertical or horizontal qubits. Qubits of 
the same side inside each tile are connected 2-by-2. Figure 1b shows the Pegasus topology for a 3 × 3 subgraph. 
It extends the previous Chimera topology by adding more connections between the tiles so that the degree of 
connectivity of each qubit is up to 15. In particular, each tile is now connected to diagonally neighboring tiles 
through 45◦ , 120◦ and 150◦ connections among qubits w.r.t. the x axis (we will refer to them as diagonal couplings). 
Moreover, the configurable range of coefficients also increases, e.g., D-Wave Advantage 4.1 systems allow for 
biases and couplings such that hi ∈ [−4, 4] and Ji,j ∈ [−2, 1].

Monolithic encoding of small SAT problems based on OMT
Bian et al.21 formulated the problem of encoding SAT problems into Ising models that are compatible with the 
available quantum topology —represented as a graph (V, E) such that the nodes V are the qubits and the edges 
E are the qubit couplings— with the goal of feeding them to the quantum annealer. Here we briefly summarize 
their techniques, adopting the same notation.

Given a (small enough) Boolean formula F(x) and a set of extra Boolean variables a (called ancillae), we first 
need to map the Boolean variables x and a into a subset z ⊆ V  of the qubits in the topology, with the intended 
meaning that the qubit values {1,−1} are interpreted as the truth values {⊤,⊥} respectively. (With a little abuse 
of notation, we consider this map implicit and say that zdef

=x ∪ a .) This map, called placement, can be performed 
either manually or via ad-hoc procedures21.

Then we need to compute the values θ0 , θi , and θij of a penalty function PF(x, a|θ) such that, for some value 
gmin > 0:

Intuitively, PF(x, a|θ) allows for discriminating truth values for x which satisfy the original formula F(x) (i.e., 
these such that min{a}PF(x, a|θ) = 0 ) from these who do not (i.e., these such that min{a}PF(x, a|θ) ≥ gmin ). θ0 , θi , 
θij and gmin are called respectively offset, biases, couplings and the gap; the offset has no bounds, whereas biases and 
couplings have a fixed range of possible values ( [−2,+2] for biases and [−1,+1] for coupling for the old Chimera 
architecture, [−4,+4] for biases and [−2,+1] for couplings for the Pegasus architecture of Advantage systems).

The penalty function PF(x, a|θ) (3) is fed to the quantum annealer, which tries to find values for the z ’s which 
minimizes it. Once the annealer reaches a final configuration, if the corresponding energy is zero, then we can 
conclude that the original formula is satisfiable and the values of x ⊆ z satisfy F(x)—once reconverted from 

(2)argminz∈{−1,1}|V | H(z), such that H(z)
def
=
∑

i∈V hizi +
∑

(i, j) ∈ E Ji,jzizj ,

(3)

PF( x, a
︸︷︷︸
z

|θ)
def
=θ0 +

∑

zi ∈ V θizi +
∑

(zi , zj) ∈ E, i < j θijzizj; zi ∈ {−1, 1}; ∀x min{a}PF(x, a|θ)

{
= 0 if F(x) = ⊤
≥ gmin if F(x) = ⊥

Figure 1.   Information about the D-Wave Pegasus systems. In Fig. 1a, s stands for the normalized anneal 
fraction time..
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{1,−1} to {⊤,⊥} . Notice that we may have a solution for F(x) even if the energy of the assignment is not zero, 
because the truth values of the ancillae do not impact the satisfiability of the original formula F(x) but may affect 
the final energy. (We will call them “ > 0-energy solutions”.) This is not an issue, because checking if the truth 
assignments of the variables in x satisfy F(x) is trivial. Notice also that, since the annealer is not guaranteed to 
find a minimum, if the result is not a solution, then we cannot conclude that F(x) is unsatisfiable.

The gap gmin between ground and non-ground states has a fundamental role in making the annealing process 
more effective: the bigger gmin , the easier is for the annealer to discriminate between satisfying and non-satisfying 
assignments. Ancillae a are needed to increase the number of θ parameters, because the problem of finding a 
suitable PF(x, a|θ) matching (3) is over-constrained in general, so that without ancillae there would be no penalty 
function even for very few variables x ’s (e.g., > 3 ). The more ancillae, the more degrees of freedom, the higher 
the chances to have a suitable penalty with a higher gap gmin.

The problem of synthesizing PF(x, a|θ) is solved by using a solver for Optimization Modulo Theories such as 
OptiMathSAT23. For the Pegasus architecture, we feed OptiMathSAT some formula equivalent to:

asking to find the set of values of the θ s satisfying (4) which maximizes the gap gmin . The result, if any, is a suit-
able PF(x, a|θ).

Locally‑structured embedding for large SAT problem
Encoding a Boolean formula F(x) using the monolithic encoding shown in (4) presents several limitations. In 
practice, no more than 10 qubits can be considered if we directly use the formulation in Eq. (4), and recalling 
that some of them are required as ancillary variables, the set of Boolean formulas we can encode monolithically 
this way is quite limited.

To encode larger propositional problems, Bian et al.21 proposed a divide-and-conquer strategy. The original 
formula is first And-decomposed into smaller sub-formulae so that the penalty function PF(x, a|θ) for each 
subformula can be computed for some given placement. In particular, given a formula F(x) , we can And-
decompose it as F(x) :=

∧K
k=1 Fk(x

k) , so that each penalty function can be computed offline by OptiMath-
SAT. The And-decomposition property21 guarantees under some conditions that the penalty function of the 
original formula F(x) can be easily obtained by summing up all the penalty functions from the subformulae: 
PF(x, a|θ) =

∑

k PFk (x
k , ak|θk) , where gmin(F(x)) = mink(g

k
min(Fk(x))) . The penalty function PFk (x

k , ak|θk) of 
each sub-formula Fk(xk) is then mapped into a subgraph in the QA topology –e.g. one of the tiles in the Pegasus 
topology.

When two sub-formulae Fi(xi) and Fj(xj) share one (or more) Boolean variables x, we can (implicitly) 
rename one of the two occurrences into x′ and conjoin a chain of equivalences x ↔ ... ↔ x′ to them. (I.e., 
Fi(..., x, ...) ∧ Fj(..., x, ...) can be (implicitly) rewritten into Fi(..., x, ...) ∧ Fj(..., x

′, ...) ∧ (x ↔ ... ↔ x′) .) This cor-
responds to linking the corresponding qubits x and x′ in the penalty functions PFi (xi , ai|θ

i) and PFj (xj , aj|θ
j) 

by means of a chain of unused qubits used as ancillary variables, forcing all involved qubits to assume the same 
truth value, by using the equivalence chain penalty function 

∑

(z,z′)∈chain(2− 2zz′) for the qubits in the chain, 
corresponding to the Boolean formula x ↔ ... ↔ x′ (here we consider the Pegasus extended ranges). The final 
penalty function is the sum of the penalty functions from the decomposition phase with those of the chains.

We refer the reader to Bian et al.21 for a more detailed description of these techniques.

Methods: encoding binary multipliers into Pegasus quantum annealers
Modular representation of a multiplier
In a fashion similar to Bian et al.21, we developed a modular encoding of a shift-and-add multiplier, so that it 
could be easily extended for future larger quantum devices. To this extent, the binary-arithmetic computation 
of multiplications, as shown in Fig. 2a, is based on a module implementing a Controlled Full-adder (CFA). The 
Boolean representation of a single CFA is:

The structure of a CFA includes four inputs: two operand bits (in1 and in2), a control bit (enable) and a carry-in 
bit c_in . The output-carry bit c_out and the output out of a CFA are computed as is it typically done for classical 
full adder, the only difference being the the fact that the input in1 is enabled by the enable bit: when enable is true, 
the CFA behaves as a standard full adder; when enable is false, the CFA behaves as if in1 were false.

As shown in Fig. 2b, an m× n-bit multiplier can be encoded using m · n CFAs as follows:

where chains corresponds to the set of all the equivalence chains corresponding to the links between bits belong-
ing to different CFAs, as in Fig. 2b (e.g. (enable(i,j) ↔ enable(i,j+1)).

(4)∀x.






(F(x) → ∃a.(PF(x, a|θ) = 0)) ∧
(F(x) → ∀a.(PF(x, a|θ) ≥ 0)) ∧
(¬F(x) → ∀a.(PF(x, a|θ) ≥ gmin))∧�

i(θi ∈ [−4, 4]) ∧
�

i,j(θij ∈ [−2, 1])




,

CFA(in2, in1, enable, c_in, c_out, out)
def
=
(
c_out ↔ ((c_in ∧ ((enable ∧ in1) ∨ in2)) ∨ ((enable ∧ in1) ∧ in2)

)

∧
(
out ↔ ((enable ∧ in1)⊕ in2⊕ c_in)

)

(5)FP=A×B =

n−1∧

i=0

m−1∧

j=0

CFA(in2(i,j), in1(i,j), enable(i,j), c_in(i,j), c_out(i,j), out(i,j)) ∧
∧

(x,x′)∈chains

(x ↔ x′)
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LSE‑based encoding with qubit sharing, virtual chains, and alternating CFAs
A direct approach to building multipliers using multiple CFAs is to encode each CFA into a single Pegasus tile, 
using 2 of the 8 total qubits as ancillae. Once the penalty function for a single CFA has been obtained, we can 
embed them modularly and generate a grid of CFAs that simulates the multiplier. Since some qubits are shared 
among different CFAs, we must add equivalence chains to force the equality of the values of the corresponding 
qubits. First, the carry-out c_out qubit of a CFA placed into one tile must be linked to the carry-in c_in qubit 
of the CFA placed in the tile hosting the left CFA in the grid in Fig. 2b. The same applies to the output out of a 
CFA and the input in2 in the bottom-left CFA in Fig. 2b. Lastly, it is necessary to generate the qubits links cor-
responding to the long red vertical chain and the green horizontal chain in Fig. 2b, linking respectively the in1 
and enable bits.

In the Pegasus topology, each tile has some direct connections with the neighbor tiles along several directions 
(expressed in degrees counterclockwise with respect to the horizontal line): 0◦ , 90◦ , 45◦ , 120◦ and 150◦ . Consider-
ing all these constraints, two macro-configurations for placing the CFA grid of Fig. 2b into a Pegasus architecture 
can be considered. In both configurations, due to the high number of inter-tile 45◦ connections, the horizontal 
connections in Fig. 2b (the c_out − c_in and enable links) are placed along the 45◦ inter-tile connections. With 
the first configuration, in Fig. 3a, the input qubits in1 from vertically-aligned CFAs in the grid are connected by 
90◦ inter-tile connections and the out − in2 links are connected via 120◦ ones. This allows for fitting a 22 × 8-bit 
multiplier into the whole Pegasus topology. The second configuration, in Fig. 3b, differs from the first one by 
chaining the in1 qubits along 120◦ connections and the out − in2 links along 150◦ ones. Using diagonal chains 
has the main advantage to fit a larger 21 × 12-bit multiplier. Both configurations work modulo symmetries: for 
instance, encoding the grid of CFAs such that the input variable in1 is propagated bottom-up instead of top-down 
is feasible by slightly changing the qubits placement into the tile.

Unfortunately, an 8-qubit CFA encoding to replicate the two configurations described above turned out to 
be unfeasible in practice, because no such encodings can be generated. This fact is due to two main issues: (i) 
the low number of ancillae (only 2) available for encoding each CFA, which drastically reduces the chances of 
finding a suitable penalty function, and (ii) the absence of pairwise direct 45◦ couplings between the same qubits 
in the neighbor tiles, which prevents any direct implementation of the enable chain along the 45◦ direction. (A 
similar issue occurs also in the second macro-configuration of Fig. 3b for the the in1 bit along the 120◦ direction.)

To cope with these issues, we propose three novel techniques: Alternating CFAs, Qubit sharing, and Virtual 
chaining.

Alternating CFAs
To address the issue (ii) of missing couplings between qubits on the 45◦ direction, we propose to alternate two 
slightly-different CFAs in tiles along the 45◦ line. In particular, in Fig. 4b,c we make the OMT solver compute 
two different CFAS forcing enable to be positioned respectively in the first vertical qubit on the upper tile and 
the third horizontal qubit in the 45° bottom-left tile. Such qubits are pairwise directly coupled, allowing thus 
a chain for enable qubit along the 45° direction (the green links). We stress the fact that the two different CFA 
encodings are not guaranteed to have the same gap gmin , and that different placements leading to different gmin 
values typically may negatively affect the annealing process.

Figure 2.   Details about the modularity of shift-and-add multipliers.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3518  | https://doi.org/10.1038/s41598-024-53708-7

www.nature.com/scientificreports/

Qubit sharing
To address the issue (i) of the low number of ancillae, we propose a technique to share qubits between neighboring 
tiles. Rather than connecting two qubits from different CFAs with an equivalence chain, we suggest utilizing a 
single qubit that is shared between the two CFAs. This means that the qubit will be used for the encoding of one 
CFA as an output variable and as an input variable for the subsequent CFA. This approach leads to partially-
overlapping CFAs and the extra qubit can be used as an ancillary variable to increase the minimum gap of each 
CFA. Consider the schema in Fig. 4d. The encoding of each CFA involves not only the 8 qubits of its tile but also 
the 3 qubits of neighbor tiles. In particular, the carry-out c_out is placed on the same qubit as the carry-in c_in 
of the next 45° bottom-left tile –corresponding to the left CFA in Fig. 2b—and the out qubit is placed in the same 
qubit of the in2 of the next bottom-right 120° tile –corresponding to the lower-right CFA in Fig. 2b. The same 
idea applies also to the schemata in Fig. 4b,c. (The role of the enable_out qubit in Fig. 4d will be explained later.)

Notice that, since the global penalty function is the sum of the penalty functions of all CFAs plus these of 
all the equivalence chains, the value of the bias for the shared qubit in the global penalty function is the sum of 
these two qubits with different roles in the two penalty functions of the two sharing CFAs. (E.g., the bias of the 
qubit which is a c_out for one CFA and a c_in for another CFA is the sum of the c_in and c_out biases of a CFA 
encodings.) Thus, to generate penalty functions for the CFAs that allow qubit sharing, we introduce additional 
constraints to the OMT formulation in (4). In particular, we add an arithmetical constraint to force the sum of 
the biases of the shared qubits from two CFAs to fit in the bias range, thus simulating their over-imposition (e.g., 
we add a constraint like (θc_in + θcout ∈ [−4, 4]) ). In fact, if the final bias values did not fit into the range, then 
the D-Wave encoders would automatically rescale all values of biases and couplings, reducing the gmin value and 
thus negatively affecting the probability of reaching a global minimum.

Virtual chaining
The concept of qubit sharing can be exploited to simulate the existence of equivalence links when physical con-
nections are missing, providing another solution to issue (ii). Consider the CFA encoding in Fig. 4d and the 
enable logical variable. Its truth value is shared by all CFAs belonging to the same row in the grid so that all the 
enable qubit of each CFA should be connected by an equivalence chain with the enable qubit of the 45◦ bottom-
left CFA. Unfortunately, there is no arc linking pairwise the respective qubits of the tiles along this direction.

Figure 3.   Modular encoding of binary multipliers on the D-Wave Pegasus topology.

Figure 4.   CFA structure for the four versions of multipliers.
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In such cases, two qubits that are intended to hold the same truth value but lack a direct coupling can be 
virtually chained by using the links with the common neighbors. This is performed by extending the encoding 
as follows: 

(a)	 Create a new virtual logical variable (i.e. enable_out ) to be placed in the qubit in the neighbor tile cor-
responding to the variable we want to chain virtually (i.e. enable);

(b)	 Extend the formula defining a CFA by conjoining the equivalence constraint between the chained and 
the virtual variables (i.e., CFA′(in2, in1, enable, c_in, c_out, out, enable_out)

def
=CFA(in2, in1, enable, c_in,

c_out, out) ∧ (enable ↔ enable_out);
(c)	 Build the penalty function of CFA′ instead of CFA by applying qubit-sharing also to enable and 

enable_out.

It should be noted that if two directly-connected qubits are both involved in qubit sharing (i.e. c_in and enable), 
then also the respective coupling is shared by the two CFAs. Therefore an arithmetic constraint must be added 
to force the sum of the two couplings to be in the coupling range (i.e. (θc_in,enable + θc_out,enable_out ∈ [−2, 1])).

Comparing different multiplier configurations
Overall, exploiting Alternating CFAs, qubit sharing, and Virtual chaining made it possible for us to generate four 
multiplier configurations, which are summarized in Table 1. Versions V1, V3 and V4 allow for implementing 
the 22 ×8-bit schema of Fig. 3a, whereas version V2 allows for implementing the 21 × 12-bit schema of Fig. 3b. 
Versions V2, V3 and V4 correspond to the encodings in Fig. 4b–d respectively.

In particular: by exploiting Alternating CFAs, with versions V1, V2 and V3 (Fig.  4a–c), we could implement 
an enable chain along the 45◦ diagonal, and with version V1 (Fig.  4b) an in1 chain along the 120◦ diagonal; by 
exploiting Qubit sharing, with versions V2, V3, V4 (Fig. 4b–d), we have saved two qubits, which we could use as 
ancillae, improving also the quality of the encodings and their gap gmin ; by exploiting Virtual chaining, with V4 
(Fig. 4d), we could implement a virtual chain for the enable qubit along the 45◦ diagonal; with V2 (Fig. 4b) we 
could implement a virtual chain for the in1 qubit along the 120◦ diagonal.

Version V1 (Fig. 4a) implements the 22 × 8-bit macro-configuration of Fig. 3a and relies exclusively on alter-
nating CFAs, linking inter-tile qubits only by physical chains. Although alternation allowed the production of 
an actual encoding, which was not possible otherwise, without qubit sharing only two ancillae were available, 
producing two alternating configurations with different and very low gaps: 1 and 4

9
 . These numbers are way lower 

than the gap used for chains, the annealers tend to be stuck on local minima since changing the spin of chained 
qubits becomes difficult.

Version V2 (Fig. 4b) implements the 21 × 12-bit macro-configuration of Fig. 3b with alternating CFA encod-
ings, using a virtual chain for implementing the in1 chain along the 120◦ direction, and qubit sharing for the 
c_in− c_out (the blue qubits) and out − in2 (the magenta qubits) connections, which saves two qubits and allows 
for 4 ancillae. This allows us to improve significantly the gaps to 2 and 4

3
 respectively. Nevertheless, the two CFAs 

have different gmin , which negatively affects the global gap (which is thus 4
3
 ) and thus the overall performances 

of the annealer.
Version V3 (Fig. 4c) instead implements the 22 × 8-bit macro-configuration of Fig. 3a with alternating CFA 

encodings, using a physical 90◦ in1, also using qubit sharing for the c_in− c_out and out − in2 connections, 
allowing 4 ancillae. With this configuration, we obtain two CFAs with identical gap 2, which is a significant 
improvement. Nevertheless, having two physical chains for two different variables (enable and in1) affects the 
annealer’s performances: the longer the chains, the more difficult is for the quantum system to flip all values of 
the chained qubits and escape a minimum.

Version V4 (Fig. 4d) also implements the 22 × 8-bit macro-configuration of Fig. 3a, but uses only one CFA 
encoding of gap 2. This is achieved by exploiting not only qubit sharing for the c_in− c_out and out − in2 con-
nections, but also virtual chaining for implementing the enable chain, whereas in1 is physically chained vertically. 
By using a single CFA and having only one physical chain rather than two, most of the issues affecting annealing 
in the previous cases is solved, thus the optimization of the penalty function by the QA turns out to be more 
effective. Consequently, all experiments in the subsequent section employ version V4.

Table 1.   Comparison of the four multipliers obtained through qubit sharing and virtual chaining.

 Multiplier version V1 V2 V3 V4

Multiplier Max. Size 22 × 8 21 × 12 22 × 8 22 × 8

# of ancillae per CFA 2 4 4 4

# of different CFA encodings 2 2 2 1

Gap of CFA penalty functions (1, 4
9
) (2,4

3
) (2,2) 2

Connection in1(i, j)− in1(i + 1, j − 1) Chain (90◦) Virtual chain (120◦) Chain (90◦) Chain (90◦)

Connection enable(i, j)− enable(i,+1) Chain (45◦) Chain (45◦) Chain (45◦) Virtual chain (45◦)

Connection c_in(i, j)− c_out(i, j + 1) Chain (45◦) Qubit sharing Qubit sharing Qubit sharing

Connection out(i, j)− in2(i + 1, j − 1) Chain (45◦) Qubit sharing Qubit sharing Qubit sharing
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Methods: solving prime factorization on D‑wave advantage 4.1 system
The results presented in the previous section do not account for the actual limitations of quantum annealers. 
In particular, due to hardware faults, some of the qubits, and some connections between them are inactive 
and cannot be tuned during annealing. These inactive nodes and connections, referred to in the literature as 
faulty qubits and faulty couplings respectively, are spread all around the entire architecture, and are marked in 
orange in Fig. 3a,b for the D-Wave Advantage 4.1 annealer, which we have used in all our experiments in this 
paper. Therefore, although it is theoretically possible to create multipliers up to 21× 12 bits or 22× 8 bits , these 
hardware constraints compel us to test smaller multipliers to avoid faulty qubits and couplings. An empirical 
evaluation of possible placements of multipliers into the Advantage 4.1 system leads us to determine an area 
of the architecture with no faulty nodes nor couplings that is suitable for being tested, capable of embedding 
a multiplier of maximum size 17× 8bits with the configuration of Figs. 3a and 4d. All the experiments in this 
section will consider these hardware limitations. Also, the experimental evaluation reported in this section was 
constrained by the limited amount of QPU time on the Advantage 4.1 annealer we were given access to (600 
seconds per month). As a consequence, no extensive statistical evaluation can be made on the experiments, so 
that no standard deviation has been inferred on the outcomes. Also, it could be the case that there may have 
been some lucky (and likewise unlucky) shots among the tests.

Initializing qubits
To factor a specific integer, it is necessary to initialize several qubits within the multiplier embedding: all qubits 
associated with the output bits need to be initialized to represent the target number for factorization —e.g., if the 
output [P37...P00] of the 4 × 4-bit multiplier in Fig. 2a,b is forced to 00100011 (i.e. 35), then the corresponding 
qubits are initialized respectively to {−1,−1, 1,−1,−1,−1, 1, 1} ; additionally, the variables c_in and in2 on the 
most external CFAs should be forced to be 0, as depicted in Fig. 2b, so that their corresponding qubits should 
be initialized to −1.

D-Wave Advantage interface provides an API, the fix_variables() function, which allows us to impose desired 
values on the qubits of the underlying architecture. This function operates by substituting the values of the qubits 
into the penalty function and subsequently rescaling the resulting penalty function to ensure all coefficients fall 
within the limited ranges of biases and couplings, possibly resulting into a lower gmin . For instance, if we have 
the penalty function PF(x|θ) = 2+ 4x1 + x2 + x1x2 and we set x2 to 1, then the penalty function becomes 
P′F(x|θ) = 2+ 4x1 + 1+ x1 = 3+ 5x1 , which is then rescaled into 12/5+ 4x1 by multiplying it by a 4/5 factor 
in order to fit the bias of x1 into the [−4, 4] range, thus reducing gmin by multiplying it the same 4/5 factor. On the 
one hand, this substitution simplifies the penalty function by removing one binary variable; on the other hand, 
it can hurt the minimal gap due to coefficient rescaling.

To cope with the latter problem, we propose an alternative method to initialize qubits on a quantum device. 
We can partially influence the quantum annealer to set a specific truth value for a qubit by configuring flux 
biases24. In particular, if we want to impose the value si ∈ {−1, 1} on a qubit, we set the flux bias for that qubit 
as φi = 1000φ0si , where φ0 is the default annealing flux-bias unit of the DWave system 4.1, whereas 1000 is an 
empirical value we choose based on our experience.

The experiments suggested a further minor improvement in the CFA encoding. Since there may be more than 
one penalty function with the optimum value of gmin , we make a second call to an OMT solver in which we fix 
gmin and ask the solver to find a solution which also minimizes the number of those falsifying assignments which 
make the penalty function equal to gmin . The intuition here is to minimize the possibility of the annealer to get 
excited from ground states to first excited un-satisfying states. (Hereafter we refer as “CFA1” the CFA encoding 
obtained with this improvement and as “CFA0” the basic one.)

In Table 2 (left) we compare the performances of the two initialization techniques on small prime factorization 
problems, with the annealing time Ta set to 10µs . The column labeled #(PF = 0) reports how many occurrences 
of 0-energy samples are obtained out of 1000 samples. We noticed that flux biases (with CFA1) outperform 
the native API, having a higher probability of reaching the global minimum. All the experiments from now on 
assume qubit initialization is done by tuning flux biases.

Exploiting thermal relaxation
In order to test the limits of the flux-bias initialization, we applied it to factoring the 10 largest numbers of 7 × 
7 and 8 × 8 bits with the same annealing time as the previous experiments ( Ta = 10µs .) The results, reported 
in Table 2 (right), suggest that the success probability of getting a solution for 16-bit numbers is almost null. 
Increasing the annealing time Ta , however, would probably not significantly increase the success probability; to 
further improve the solving performances, we investigate the effectiveness of thermal relaxation25 on solving our 
problems. This technique is integrated into the DWave system by introducing a pause Tp at a specific point Sp dur-
ing the annealing process, with Sp ∈ [0, 1] . We tested it to solve 8 × 8, 9 × 8 and 10 × 8-bit factorization problems.

In the experiments, the pausing time Tp was set to 100 μs, whereas the pause point Sp is selected in the set 
{0.33, 0.34, . . . , 0.51} and tested in ascending order until the ground state is found.

The results illustrated in Table 3 (top), if compared with these in Table 2 (right) indicate the positive impact of 
thermal relaxation. Ground states were successfully reached for some 18-bit numbers (the largest being 256271), 
although challenges persist with most numbers of that size.

Exploiting quantum local search
For the factorization problems in Table 3 (top) that did not end up in the global minimum, we further exploited 
quantum local search, consisting of refining a sub-optimal state to reach the global minimum. Quantum local 
search is implemented in the DWave system by mean of reverse annealing (RV)26. The annealer is initialized in a 
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local minimum, whereas the annealing process starts from s = 1 moving towards s′ = 0 and then returning back 
to s = 1 . We remark that reverse annealing admits pauses during the process: in this case, the system pauses for 
Tp microseconds at a middle point s′ = S′p.

In our experiments, we chose the lowest-energy state from Table 3 (top) as the initial state of RV. If multiple 
lowest-energy samples are obtained with different Sp values, we pick the one whose pause is performed later. The 
pause points for RV were tested in decreasing order (in opposition to forward annealing when we opted for the 
ascending order) until a ground state was found. The results are reported in Table 3 (bottom). We observe that 
reverse annealing, enhanced by thermal relaxation, helps in solving up to 9 × 8-bit factorization problems. We 
also reported the Hamming distance �HAM between the lowest-energy state from forward and reverse anneal-
ing, showing how much a sample moved from one minimum to another, possibly a ground state.

For the instances that still failed to reach a solution, we investigated the impact of different pause lengths for 
RV to find ground states. The main observation from this additional analysis is that, given a low-energy initial 
state: (i) increasing the pause length and performing the pause at a late annealing point can help reverse annealing 
in jumping larger Hamming distances; (ii) increasing the pause length and triggering the pause at early annealing 
points cannot make RV move even farther. From these observations, we could imply that if the initial state of 
a reverse annealing process is very far from the ground state, it could be hard to reach the global minimum by 
only increasing the pause length. However, the local minimum used for the initial state of RV, which is obtained 
by standard annealing, tends to be highly excited (i.e., with high energy and very far from the ground state), as 
the problem size increases.

In the next section, we follow the iterated reverse annealing27 approach, which was studied numerically in 
a closed-system setting, and propose an iterative strategy for the DWave system to solve bigger problems. The 

Table 2.   Results of standard forward annealing to solve prime factorization. We used 1000 samples for each 
annealing step. Left: Comparison of the two initialization techniques on prime factorization of small numbers, 
with Ta = 10µs . Right: Prime factorization of the 10 biggest 7 × 7 and 8 × 8 numbers configuring flux biases, 
with Ta = 10 μs.

Size Input N

CFA0 CFA1

#(PF = 0) #(PF = 0)

3 × 3

25 (5 × 5) 161 136

35 (5 × 7) 389 951

49 (7 × 7) 450 997

4 × 4

121 (11 × 11) 17 0

143 (11 × 13) 40 67

169 (13 × 13) 31 5

5 × 5

289 (17 × 17) 5 0

323 (17 × 19) 2 0

361 (19 × 19) 1 3

391 (17 × 23) 6 9

437 (19 × 23) 17 0

493 (17 × 29) 3 2

527 (17 × 31) 21 37

529 (23 × 23) 5 8

551 (19 × 29) 0 4

589 (19 × 31) 16 52

667 (23 × 29) 0 105

713 (23 × 31) 11 138

841 (29 × 29) 5 7

899 (29 × 31) 17 343

961 (31 × 31) 1 338

 Size Input N #(PF = 0) Size Input N #(PF = 0)

7 × 7

10,033 (127 × 79) 0

8 × 8

49,447 (251 × 197) 0

10,541 (127 × 83) 1 49,949 (251 × 199) 0

11,303 (127 × 89) 0 52,961 (251 × 211) 0

12,319 (127 × 97) 0 55,973 (251 × 223) 0

12,827 (127 × 101) 1 56,977 (251 × 227) 0

13,081 (127 × 103) 2 57,479 (251 × 229) 0

13,589 (127 × 107) 10 58,483 (251 × 233) 0

13,843 (127 × 109) 0 59,989 (251 × 239) 2

14,351 (127 × 113) 0 60,491 (251 × 241) 0

16,129 (127 × 127) 7 63,001 (251 × 251) 0
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goal is to converge to a low-energy state that can be used as the initial state for single-iteration RV to reach the 
global minimum with an effective pause Tp.

Solving prime factorization with iterated reverse annealing (IRV)

In general, we assume that starting reverse annealing from a state that is close to the ground state could be ben-
eficial in finding the solution. We remark, however, that we have no prior knowledge of the solution. To cope 
with this missing information, we assumed that a low-energy state may be closer to the ground state and our 
proposal is built on top of this assumption.

The IRV strategy starts by running a standard forward annealing process, with thermal relaxation disabled. 
The obtained lowest-energy state is selected as the starting point for the subsequent iterations of the algorithm. 
At each iteration of the IRV, we execute a batch of RV processes, with several pause lengths Tp and pausing 
points Sp taken into consideration, until we obtain a lower-energy space. The lower-energy space refers to the set 
of lower-energy states retrieved in one iteration whose energy is below the starting point. Once that space has 
been retrieved, we check if there is a ground state in that space: when this happens, we have the solution for the 
problem and we stop the entire procedure; otherwise, this procedure is iterated until the system finds the ground 
state or hits a certain number of iterations.

It is not trivial to determine how long a pause should be and when to trigger it for the intermediate iterations 
to gradually approach the ground state. Based on the previous observations,

we chose a set of pause lengths e.g., {1, 10, 30, 50, 100}µs and a set of pause point, e.g., {0.46, . . . , 0.33} , adapt-
ing those parameters

to the initial states of this iteration. We tested IRV on the DWave Advantage System 4.1 by trying to factorize 
the numbers 1,027,343, 4,111,631, and 16,445,771 using respectively a 12 × 8, 14 × 8, and 16 × 8-bit multiplier. 
The experiments consider the assumptions discussed in the previous paragraphs, a further analysis of these 
conditions is left as future work. Table 4 (top) reports the successful search paths of IRV in finding the ground 
state, demonstrating that IRV is effective in reaching a solution even from an excited state very far away from the 
minimum, by approaching it gradually. We highlight that from our experiments it was impossible for standard 
reverse annealing to factor 4,111,631 even with a 600µs pause.

We also propose a variant of the IRV strategy discussed above. From the failed factorization of 16,445,771, 
we noticed that the last iteration got stuck in the local minimum even with a pause of 100µs . To cope with this 
issue, we opted to focus on triggering long distances. This is done by increasing the pause length at each iteration, 
i.e., Tp ∈ {100, 200}µs . Correspondingly, we simplify the choice of the starting state for an iteration, choosing 
a lower energy state as the initial state of each iteration. The experimental results shown in Table 4 (bottom) 
demonstrate the improvement of this variant of IRV, in terms of fewer iterations required to reach the solution, 
at the cost of more QPU time.

Notice that in the case of the 23-bit number, 8,219,999, we use a pause of 1µs . This is due to the fact the initial 
state is highly excited and a 1µs pause can still trigger a relatively long distance, saving QPU time. According to 
the results in Table 4 (bottom), we highlight how the fourth iteration highly benefits from the long pause. Despite 
starting from a local minimum that is very far away from the solution, the long pause enables RV to travel long 
Hamming distances and reach a local minimum closer to our solution. This closer state provides a good initial 
state for the last-iteration RV to find the solution successfully.

Overall, exploiting all the encoding and solving techniques described in this paper, 8, 219, 999 = 32, 749×251 
was the highest prime product we were able to factorize. To the best of our knowledge, this is the largest number 
that was ever factorized by means of quantum annealing.

Discussion
A comparative analysis
About QA methods
In contrast to existing methodologies for solving prime factorization through quantum annealing16–18, which hing 
upon global embeddings, our approach introduces a novel modular encoding paradigm by adopting a strategy 
which is based on local embedding20,21.

In global embedding strategies, each problem instance undergoes a pre-processing phase and generates a 
penalty function that could be mapped only into unconstrained sub-graphs. Then, in order to map it into the 
constrained graph of quantum-device architecture, an additional step of minor embedding must be performed, 
which is provided by the D-Wave QA classical API. We remark that since the minor-embedding problem is NP-
complete28,29, this step may be computationally demanding, and the classical computational effort to perform it 
grows with the size and the complexity of the problem instance.

Our method, instead, relies on local embedding: we have computed offline and once forever via OMT an 
encoding of a single CFA which is aligned with the Pegasus topology; to encode a n×m-bit multiplier, we simply 
replicate it n×m times into a matrix structure, eliminating the need for minor embedding; then each PF instance 
is produced by simply forcing the values of the output qubits of the multiplier. We stress the fact that, due to the 
modularity of the encoding and unlike previous approaches, the size of the PF problems we can encode into a 
Pegasus QA scales-up automatically and effortlessly with the growth of the qubit number in future chips.

About hybrid methods
Despite many papers using the expression “hybrid classical-quantum”, there seems to be no universally-agreed 
definition of this concept. In this paper, by “hybrid classical-quantum” methods for solving computationally-
hard search problems we mean methods in which, for each problem instance, the search effort is shared between 
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quantum devices and classical search procedures. Therefore we have called “hybrid classical-quantum” the fol-
lowing methods.

•	 The D-Wave hybrid Classical-QA tool30, which is used in19, alternates the usage of D-Wave’s QAs on (smaller) 
subproblems, which result from a partitioning of the original (bigger) problem, with classical tabu search 
engines, which are used to combine these partial solutions and to refine them into a final global solution. 
Therefore, the computationally-hard search effort is shared between the quantum annealer and classical 
search procedures.

•	 The variational methods in11,12 heavily rely on the computational effort of classical search procedures opti-
mizing the quantum-circuit parameters. In particular, given the input number, a measurement is sampled, 
yielding one of the possible outcomes from the quantum circuit. The measurement is then used to tune the 
parameters of the quantum circuit by invoking classical optimization algorithms. This adjustment continues 
iteratively until the parameters converge to values that minimize the cost function. Similarly to the previ-
ous case, the interleaving of quantum computation and classical optimization has a huge role in solving the 
factorization problem.

Our method, instead, integrates iterative quantum processes without relying on external classical search steps, 
and without using classical computing to enhance convergence or to refine intermediate states. Classical comput-
ing is only involved in interfacing with the quantum annealers, utilizing the output of one iteration as the input 
for the subsequent one based on predefined heuristics, using a predefined amount of iterations. To this extent, 
our method does not require any significant computational effort from any classical piece of software, and as 
such we do not refer to it as a hybrid method.

Contextualization within the field
Despite in principle Shor’s algorithm suggests a theoretical quantum supremacy for PF problems, in practice 
the effectiveness of quantum techniques for PF is still far from that of standard algorithms run on classical 
computers, like the number field sieve1. Indeed the practical success of Shor’s algorithm is restricted by the scale 
of the gate-based quantum computers currently developed, like the IBM and Google devices, which is still very 
limited. A similar problem applies to the variational approaches, where only results for very specific biprime 
numbers have been obtained.

Quantum annealers are instead specialized quantum devices able to perform specific optimization and sam-
pling tasks. One fundamental benefit of QAs with respect to classical optimization techniques, like simulated 

Table 4.   Result about IRV. The label �HAM reports the Hamming distance between the forward annealing 
lowest energy sample and the reverse annealing lowest energy sample. The labels HAM and HAMnew report the 
Hamming distance of respectively the starting point and the lowest energy sample of that iteration with respect 
to the ground state. The bold number near 0 reports how many samples reached 0 energy for that iteration, 
out of 1000. Top: Results of the original IRV algorithm. For the 16 × 8 problem, since no ground state has been 
retrieved, no comparison of Hamming distances with the ground state is provided (thus HAM and HAMnew 
are left empty). Bottom: Results of the IRV variant that focuses on longer pauses.

Size Input N # Tp Sp min(PF ) min(PF )new (HAM,�HAM,HAMnew)

12 × 8 1,027,343
(4093 × 251)

1 1 0.31 10.167 4.000 (263, 142, 151)

2 1 0.38 10.167 4.083 (128, 122, 58)

3 100 0.38 4.083 0[2] (58, 58, 0)

14 × 8 4,111,631
(16381 × 251)

1 1 0.35 18.167 8.083 (290, 353, 249)

2 1 035 16.000 6.000 (273, 219, 240)

3 50 0.37 10.000 2.083 (277, 280, 85)

4 10 0.38 2.083 0[67] (85, 85, 0)

16 × 8 16,445,771
(251 × 65521)

1 1 0.34 18.333 6.083 (, 294,)

2 10 0.35 10.000 4.000 (, 374, )

3 50 0.36 6.083 4.167 (, 292, )

4 100 0.39 4.167 4.000 (, 8,)

13 × 8 2,055,941
(8191 × 251)

1 100 0.38 14.083 6.083 (204, 185, 55)

2 100 0.42 6.083 0[216] (55, 55, 0)

14 × 8 4,111,631
(16,381 × 251)

1 200 0.39 16.167 6.083 (164, 178, 136)

2 200 0.44 6.083 0[467] (136, 136, 0)

15 × 8 8,219,999
(32,749 × 251)

1 1 0.4 20.333 12.167 (279, 126, 217)

2 100 0.43 12.167 8.000 (217, 180, 277)

3 200 0.43 8.000 6.000 (277, 65, 282)

4 200 0.44 6.000 4.083 (282, 247, 71)

5 200 0.43 4.083 0[329] (71, 71, 0)
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annealing, is the exploitation of effects like quantum tunneling to escape local minima15. On the one hand, a 
theoretical analysis of the running times required by the quantum-annealing hardware to factor integers is cur-
rently lacking in the literature, so that it is not currently possible to speak of any theoretical quantum speedup for 
QA-based PF algorithms. On the other hand, QAs are technologically significantly ahead of gate-based quantum 
computing in terms of qubit number, and D-Wave QAs have grown in size with a Moore-like exponential trend 
since their early stages21, currently reaching 5760 qubits.

To this extent, unlike with previous QA-based approaches to PF, our technique allows for encoding effortlessly 
arbitrarily-large multipliers and PF instances into a Pegasus architecture, being limited only by the size of current 
QA chips. Also, our technique could be used as an intermediate step inside the hybrid classical-QA methods19,30.

Conclusions and future work
In this paper, we have proposed a novel approach to prime factorization by quantum annealing. Our contribu-
tion is twofold.

First, we have presented a novel modular encoding of a binary multiplier circuit into the Pegasus architecture 
of the most recent D-Wave QA devices. The key to success was a compact encoding of a controlled full-adder 
sub-circuit into an 8-qubit module in the Pegasus topology, which we synthesized offline by means of Optimi-
zation Modulo Theories. This allows us to encode up to a 21 × 12-bit multiplier (resp. a 22 × 8-bit one) into a 
5760-qubit Advantage 4.1 annealer. To the best of our knowledge, these are the largest factorization problems 
ever encoded into a quantum annealer. Also, due to the modularity of the encoding, this number will scale up 
automatically with the growth of the qubit number in future chips. Thus, we believe that this encoding can be 
used as a baseline for many future research for prime factorization via QA.

Second, we have investigated the problem of actually solving encoded PF problems by running an extensive 
experimental evaluation on a D-Wave Advantage 4.1 quantum annealer. Despite the presence of faulty qubits 
and couplings and within the limited amount of QPU time we had access to, by exploiting all the encoding and 
solving techniques we introduced and described in this paper, 8,219,999 = 32,749 × 251 was the highest prime 
product we were able to factorize. To the best of our knowledge, this is the largest number which was ever fac-
torized by means of a quantum annealer, and more generally by a quantum device, without adopting hybrid 
quantum-classical techniques. We are confident that even better results can be obtained with a less-faulty annealer 
and larger availability of QPU time.

There is still much room for further developments. First, efficient encodings for alternative multiplier sche-
mata could be developed18. Second, other solving strategies within the annealing process could be conceived and 
empirically investigated. Moreover, D-Wave recently announced the upcoming generation of quantum proces-
sors built on top of a new topology, Zephyr, that provides more connections and cliques among different sets of 
qubits. Once we have access to a large-enough Zephyr processor, we plan to test out encoding algorithms to get 
better penalty functions for the CFAs reach global minima more easily during the solving phase.

Data availability
Data about the experimental section, and in particular the code to replicate the solving experiments, is publicly 
accessible here: https://​gitlab.​com/​jingw​en.​ding/​multi​plier-​encod​er/.
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