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Application of PET imaging 
delta radiomics for predicting 
progression‑free survival in rare 
high‑grade glioma
Shamimeh Ahrari 1,2, Timothée Zaragori 1,2, Adeline Zinsz 3, Julien Oster 1, Laetitia Imbert 1,2,3 & 
Antoine Verger 1,2,3*

This study assesses the feasibility of using a sample‑efficient model to investigate radiomics changes 
over time for predicting progression‑free survival in rare diseases. Eighteen high‑grade glioma 
patients underwent two L‑3,4‑dihydroxy‑6‑[18F]‑fluoro‑phenylalanine positron emission tomography 
(PET) dynamic scans: the first during treatment and the second at temozolomide chemotherapy 
discontinuation. Radiomics features from static/dynamic parametric images, alongside conventional 
features, were extracted. After excluding highly correlated features, 16 different models were trained 
by combining various feature selection methods and time‑to‑event survival algorithms. Performance 
was assessed using cross‑validation. To evaluate model robustness, an additional dataset including 
35 patients with a single PET scan at therapy discontinuation was used. Model performance was 
compared with a strategy extracting informative features from the set of 35 patients and applying 
them to the 18 patients with 2 PET scans. Delta‑absolute radiomics achieved the highest performance 
when the pipeline was directly applied to the 18‑patient subset (support vector machine (SVM) and 
recursive feature elimination (RFE): C‑index = 0.783 [0.744–0.818]). This result remained consistent 
when transferring informative features from 35 patients (SVM + RFE: C‑index = 0.751 [0.716–0.784], 
p = 0.06). In addition, it significantly outperformed delta‑absolute conventional (C‑index = 0.584 
[0.548–0.620], p < 0.001) and single‑time‑point radiomics features (C‑index = 0.546 [0.512–0.580], 
p < 0.001), highlighting the considerable potential of delta radiomics in rare cancer cohorts.

Radiomics analysis of positron emission tomography (PET) imaging is of great interest, given its ability to 
characterize tumor heterogeneity and its prognostic  value1. In neuro-oncology, radiomics studies have primar-
ily focused on amino-acid PET radiotracers for glioma grading at the initial  diagnosis2,3 and for predicting the 
presence of key molecular  characteristics4–9 in accordance with the latest World Health Organization (WHO) 
 classifications10. The potential benefits of radiomics for  prognosis11–13, detecting  recurrences14–16, and identify-
ing early progression after glioma  chemoradiation17 have also been evaluated. More specifically, studies have 
examined radiomics derived from both static and dynamic acquisitions at the initial  diagnosis18,19, with the aim 
of assessing  prognosis20 or identifying glioma  recurrences21. Neuro-oncological applications of radiomics face a 
unique challenge, due to the relatively low occurrence of brain tumors worldwide, and therefore require the use 
of dedicated modeling workflows and/or data augmentation  techniques22,23. Although gliomas account for almost 
80% of newly diagnosed malignant primary brain tumors and the vast majority are high-grade  glioblastomas24, 
gliomas only represent 2% of all adult cancers. Indeed, the worldwide age-standardized annual incidence of pri-
mary malignant brain tumors is approximately 3 per 100,00025. Despite the standard treatment, which involves 
surgical resection and adjuvant chemoradiation  therapy26,27, our understanding of the prognosis for these tumors 
remains limited. The use of amino-acid PET  radiotracers28, specifically L-3,4-dihydroxy-6-[18F]-fluoro-pheny-
lalanine (18F-FDOPA), in conjunction with magnetic resonance imaging (MRI), is currently  recommended29 as 
a non-invasive diagnostic approach for assessing glioma  progression30–32. The application of amino-acid PET 
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imaging by integrating  dynamic33 and  radiomics34 analyses, has had a significant impact in the field of neuro-
oncology and has improved the diagnostic performance.

The traditional radiomics model utilizes single-time-point medical images to evaluate or predict patient 
outcomes, disregarding changes in tumor characteristics during treatment or influenced by external factors 
such as chemotherapy or radiotherapy. An alternative approach, known as delta radiomics, introduces a time 
component by extracting quantitative features from images acquired at different treatment and follow-up time 
points. The delta radiomics concept, which employs the change in radiomic features during or after treatment 
to guide clinical decisions, may potentially be more suitable for evaluating tumor response to treatment. Using 
machine-learning algorithms, delta radiomics analysis has shown a superior capacity to predict clinical outcomes 
compared to single-time-point radiomics features. Although a number of studies have focused on the application 
of delta radiomics in glioma patients, these have been restricted to MRI imaging and classification  tasks35–37. 
Moreover, changes in radiomic features derived from PET/computed tomography (CT) imaging have also been 
assessed to predict survival outcomes in non-rare glioma cancers such as non-small cell lung  cancer38,39 or head 
and neck  carcinoma40 with effectiveness over at least 45 patients.

To the best of our knowledge, no study has to date explored the potential of amino-acid PET-based delta radi-
omics on time-to-event survival data in a rare disease such as glioma. The aim of our current study is therefore 
to evaluate the feasibility of using a sample-efficient model investigating radiomics changes over time to predict 
progression-free survival (PFS) in high-grade glioma (HGG). The objectives of this paper also include assessing 
the robustness of the model and comparing the delta radiomics results to both delta conventional features and 
single-time-point radiomics features.

Material and methods
Patient cohort
The clinical trial consisted in the retrospective analysis of images and medical records with the inclusion of 18 
HGG patients with two consecutive PET scans, the first one during treatment ( PET0 ) and the second at the time 
of adjuvant temozolomide (TMZ) chemotherapy discontinuation ( PET1 ), allowing to assess changes in extracted 
features over time. This population of 18 patients, was selected as a subset from a total of 53 patients who under-
went dynamic 18F-FDOPA PET scans, after following a Stupp protocol, in the Nuclear Medicine Department of 
the Regional University Hospital (CHRU) of Nancy, between January 2018 and May 2022. Minimum follow-up 
was 1 year. The decision to treat with the Stupp protocol and initiate or discontinue adjuvant TMZ therapy was 
determined individually for each patient during the multidisciplinary neuro-oncology tumor board meetings. 
Tumors were classified as HGG based on the surgical sample or biopsies, in accordance with the WHO 2021 
classification  guidelines10. Following the  RANO41 criteria, the clinical endpoint of PFS was defined as the time in 
months from the initial treatment to either the date of progression or censoring. Informed consent was obtained 
from all patients. The institutional ethics committee (Comité d’Éthique du CHRU de Nancy) approved the 
study, on 26 August 2020. The trial was registered at ClinicalTrials.gov (NCT04469244) and complied with the 
principles of the Helsinki declaration.

Data acquisition
Prior to undergoing 18F-FDOPA PET scans, all patients fasted for a minimum of 4 h. Several patients received 
Carbidopa 1 h prior to the examination to enhance tracer uptake in the  brain42. This institutional procedure was 
implemented from February 2018 to September 2020. PET acquisitions were performed with a digital PET/CT 
device (Vereos, Philips  Healthcare®, Eindhoven, The Netherlands). Each patient initially underwent a CT scan, 
then, following the injection of 2MBq of 18F-FDOPA per kg of body weight, a 30-min dynamic PET acquisition 
was performed. Using an OSEM 3D algorithm, a static image was reconstructed based on the last 20 min of the 
acquisition (2 iterations, 10 subsets, 256 × 256 × 164 voxels of 1 × 1 × 1  mm3). Dynamic images were reconstructed 
with 30 frames, each lasting 1 min (3 iterations, 15 subsets, 128 × 128 × 82 voxels of 2 × 2 × 2  mm3). During this 
process, images were corrected for attenuation, dead time as well as random and scattered coincidences. Point-
spread function corrections were only applied to static  images43.

Image pre‑processing
An experienced nuclear physician (A.Z.) manually delineated, healthy brain, striatum, and tumor volumes of 
interest (VOIs) on static images with the LifeX  software44 (lifexsoft.org). For patients who underwent 2 PET scans, 
different segmented VOIs from both PET0 and PET1 were considered. The healthy brain VOI was selected as a 
crescent-shaped region on three consecutive slices of the semi-oval center from the unaffected  hemisphere29. 
Semi-automatic segmentation was performed using a 70% threshold of the maximum standardized uptake 
value  (SUVmax) for the striatum VOI, and a threshold of 1.6 times the mean SUV  (SUVmean) of healthy brain for 
the tumor VOI, to yield the metabolic tumor volume (MTV)29. Dynamic images were registered on the CT to 
correct for patient movement. Considering our focus on the voxel-based analysis and the need to reduce the 
impact of noise on voxel time activity curves (TACs), dynamic images underwent a denoising  process45. As 
recommended  elsewhere46, the impact of Carbidopa on SUV measurements was reduced by normalizing static 
images to the  SUVmean of healthy brain, which provided static tumor-to-background-ratio (TBR) parametric 
images. For dynamic images, region/voxel-based TACs were initially fitted and subsequently normalized to 
the fitted mean brain TACs. Time-to-peak (TTP) values, representing the time interval between the start of 
acquisition and maximum uptake, were extracted. This procedure generated dynamic TTP parametric images 
for the voxel-based analysis.
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Radiomics analysis
Feature extraction
The feature extraction step applied two distinct approaches i.e., the region- and voxel-based analysis. For the 
region-based analysis, conventional features such as mean, maximum and peak of TBR, and tumor-to-striatum 
ratios were extracted from the tumor VOIs. We also obtained the MTV, region-based dynamic TTP, and calcu-
lated the slope of the linear regression for the data acquired between the 10th and 30th  min4, which provided 9 
conventional features. For the voxel-based analysis, we initially resampled the dynamic TTP parametric images 
with a linear interpolation, to achieve a common resolution of 1 × 1 × 1  mm3 with the static TBR parametric 
images, as described by the Image Biomarker Standardization  Initiative47. First-order statistics, morphological, 
intensity histogram, and textural features were extracted using the pyradiomics  package48.

The previously described in-house  software4 was used to identify local intensity features (https:// github. com/ 
TimZa ragori/ Sklea rn_ Neste dCV/ blob/ master/ Radio mics_ gliom as_ artic le/ local_ inten sity_ featu res. py) that were 
not available in pyradiomics. Discretization of the parametric images was performed using a fixed bin width 
of 0.1 for the static TBR and 1 min for dynamic TTP parametric images, resulting in 199 extracted radiomics 
features (94 static TBR radiomics features, 94 dynamic TTP radiomics features and 11 morphological features).

Feature sets
Four methods were used to compute changes in radiomics and conventional features. These included delta-
absolute ( FPET1

− FPET0
 , with ΔAR and ΔAC defined as delta-absolute radiomics and conventional features, 

respectively) and delta-relative ( 
(

FPET1
− FPET0

)

/FPET0
 , where ΔRR and ΔRC represent delta-relative radiomics 

and conventional features, respectively).
In addition, we also evaluated weighted delta-absolute ( 

(

FPET1
− FPET0

)

/
(

tPET1
− tPET0

)

 , by considering 
WΔAR and WΔAC for weighted delta-absolute radiomics and conventional features, respectively) and weighted 
delta-relative ( 

(

FPET1
− FPET0

)

/FPET0

(

tPET1
− tPET0

)

 , with WΔRR and WΔRC referring to weighted delta-rela-
tive radiomics and conventional features, respectively), which normalized the delta features by the time interval 
between the two collected PET scans. The analysis also included the single-time-point feature ( FPET1

 , where 
STPR refers to the single-time-point radiomics feature). Here, FPET0

 , FPET1
 represent the extracted features and 

tPET0
 and tPET1

 indicate the acquisition dates of the PET scans collected during treatment and after the last treat-
ment sessions respectively.

Feature selection methods and machine learning algorithms
To reduce the risk of overfitting in this small patient cohort, several steps were considered in the applied pipeline. 
For a given training and test set, all transformations and algorithms were initially fitted exclusively to the training 
set and then applied to the test set for output prediction. After the feature extraction, variables with zero variance 
were eliminated, while the other variables underwent Z-score normalization. To address the problem of highly 
correlated features, we used hierarchical clustering based on the absolute Spearman correlation coefficient as 
a similarity metric, with a threshold of 0.9 to form the  clusters49. The selected feature was the medoid of each 
cluster, which represents the most centrally located feature in terms of maximizing the similarity to all other 
features within the same cluster. Due to the limited number of samples, where the algorithm is sensitive to small 
perturbations, the consensus  clustering50 technique was implemented to enhance the stability and robustness of 
the clustering process. This involved performing the clustering on each of the 500 bootstrap samples extracted 
from each training fold, resulting in 500 clustering outcomes, each representing a different arrangement of 
features. The final clusters were then determined by comparing the cluster assignments using a co-association 
matrix, based on a 0.5 threshold. This matrix represents the frequency or probability of features being assigned 
to the same cluster across multiple clustering runs.

In order to obtain non-redundant features after the clustering step, feature selection was performed and we 
compared several approaches including univariate concordance index (C-index), mutual information (MI), 
LASSO Cox and recursive feature elimination (RFE) methods to identify the most informative features. For the 
filter-based feature selection methods, i.e. univariate C-index and MI, the process was repeated 500 times using 
bootstrap samples from each training fold with features ranked according to the score in each bootstrap sample 
and overall rank computed with the importance  score49. To model time-to-event survival data, Cox proportional 
hazards (CoxPH), ElasticNet Cox, support vector machine (SVM), and gradient boosting with component-wise 
least squares as base learner (GB-Linear)  algorithms51 were employed, resulting in a total of 16 different models 
being trained (4 feature selections multiplied by 4 regressors).

Model training strategy
Two different strategies (Fig. 1) were explored for predicting PFS based on feature changes using the described 
pipeline.

In the main strategy, referred to as the default strategy, the pipeline was directly applied to the subset of 18 
samples with 2 PET scans. Due to the small number of samples, the model hyperparameters were fixed, without 
undergoing further optimization (Supplementary Table S1). In this strategy, the feature selection methods were 
restricted to select consecutively 1, 2, and 3 single-time-point and delta features for comparison purpose. Model 
performance was evaluated using a 4-fold cross-validation (CV) with 25 repetitions.

The second strategy, serving as a validation of the first, is termed the fine-tuned strategy and involves a 
two-stage process. Initially, optimized hyperparameters and informative features were obtained from a separate 
and larger sample set (stage 1) and subsequently transferred to a smaller cohort of interest (stage 2). Focusing 
on single-time-point features in stage 1, information was extracted from all the patient with a single PET scan 
only (n = 35). This information was then used to build the model for stage 2, specifically aimed at evaluating 

https://github.com/TimZaragori/Sklearn_NestedCV/blob/master/Radiomics_gliomas_article/local_intensity_features.py
https://github.com/TimZaragori/Sklearn_NestedCV/blob/master/Radiomics_gliomas_article/local_intensity_features.py
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the delta features extracted from the 18 patients with 2 PET scans. During stage 1, a 7-fold CV (ensuring the 
presence of at least 5 samples in the validation set) was repeated 20 times. The model hyperparameters were 
optimized (Supplementary Table S1) through a Bayesian search using Gaussian processes (https:// github. com/ 
scikit- optim ize/ scikit- optim ize) over 100 iterations, with a focus on maximizing the C-index. Feature selection 
methods were limited to selecting at most 3 single-time-point radiomics and conventional features. In stage 1, 
the importance of features was calculated for each model across all folds using SHapley Additive  exPlanations52 
(SHAP) values, and subsequently, single-time-point features were ranked based on their importance. In stage 
2, the analysis of single-time-point and delta features focused on the previously optimized hyperparameters in 
stage 1 and compared models by consecutively inputting 1, 2, and 3 top-ranked features identified in stage 1. The 
final model performance was assessed during stage 2 through a repeated CV process (4 folds, 25 repetitions) on 
the population of 18 patients with 2 PET scans.

The results were finally compared to a CoxPH model applied to conventional features only, which served as 
the baseline model (Baseline). The CoxPH model was also used to evaluate both absolute and relative changes 
of  TBRmax and  TBRmean for a univariate comparison.

Model robustness evaluation
Firstly, to address the limited number of samples with 2 PET scans, a fine-tuned strategy was developed (Fig. 1), 
transferring information from a larger set (n = 35) with single-time-point features to assess delta features within 
the smaller set (n = 18), serving as a validation of the default strategy.

Secondly, the results of different models employed for the default strategy were compared in terms of 
performance.

Thirdly, the applied pipeline integrated the bootstrap-based consensus clustering technique to improve clus-
ter stability in each fold. The adjusted rand  index53 (ARI), used as a similarity measure between two clustering 
results, was computed between the clustering results of all possible CV fold pairs and presented as the average of 
these pairs. Cluster similarity was determined by a negative ARI for discordant clustering, an ARI close to 0 for 
random labeling, and an ARI close to 1 when the clustering results were identical. ARI was also used to assess 
the similarity between the clusters of the first fold, arbitrary considered as the reference fold, and those derived 
from subsequent folds. For each cluster of the first fold, the most analogous cluster and the corresponding medoid 
features were identified, allowing us to evaluate the stability of these medoid features throughout CV folds.

Lastly, feature importance was calculated through SHAP values to assess whether the same features were 
selected across various models of the default strategy.

Statistical analysis
Categorical variables are expressed as counts and percentages and continuous variables as medians with inter-
quartile ranges (IQR). The model performance on the test set was evaluated using the C-index, which assesses 
the probability that the sample with the highest predicted risk experiences an event before the sample with the 
lowest predicted risk among all the possible pairs. The integrated time-dependent area under the curve (iAUC) 
was calculated as a complementary metric to address potential limitations of the C-index. The iAUC estimates 
how effectively a predictive model can differentiate individuals who will experience an event within a specific 
time period from those who will not. The final result was obtained from one thousand bootstrap iterations of 
the CV performance distribution and summarized as the mean and standard error values with a 95% confidence 
interval (CI). To evaluate whether delta radiomics are superior to both delta conventional features and single-
time-point radiomics features, one-sided Mann–Whitney U tests were conducted on the C-indices. To account 
for multiple comparisons, the p-values were corrected using the Benjamini-Hochberg54 method. A p-value < 0.05 
was considered statistically significant. All analyses were performed in Python 3.8, using the scikit-survival51 

Figure 1.  Flowchart describing the overall research pipeline. CV: cross-validation; PET: positron emission 
tomography; HC: hierarchical clustering; HP: hyperparameter.

https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize
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library. Important features were identified using SHAP values for both the default strategy model and the second 
stage of the fine-tuned strategy.

Results
Patient characteristics
Among the 53 HGG patients identified, 18 patients with the following characteristics had undergone 2 PET scans 
(Supplementary Table S2). The median age was 62 years (IQR, 45–69) and the patients included 6 (33%) women. 
The median PFS was 11 months (IQR, 8–21), with a total of 16 (89%) patients relapsing. Carbidopa premedica-
tion was administered to 5 (28%) patients prior to 18F-FDOPA PET acquisition. The patients underwent either 
surgery (78%) or biopsy (22%) with tumors classified at the initial diagnosis according to the WHO 2021 glioma 
 classification10. There were 3 (17%) IDH-mutant and 1p/19q non-codeleted astrocytomas (67% grade III and 
33% grade IV) and 15 (83%) IDH-wildtype glioblastomas.

Survival analysis
Results obtained by selecting 1, 2, and 3 features were largely consistent (Fig. 2). The highest prediction per-
formance was obtained with the SVM model in combination with RFE for delta-absolute radiomics (ΔAR: 
C-index = 0.783 [0.744, 0.818]) and with C-index feature selection for delta-relative radiomics (ΔRR: 
C-index = 0.740 [0.700, 0.778]), both based on a single selected feature (Fig. 2). Interestingly, GLCM Informa-
tion Correlation 2 from dynamic TTP parametric images emerged as the most important radiomics feature in 
both models. The previously mentioned SVM + RFE model for delta-absolute and the SVM + C-index model 
for delta-relative features demonstrated significantly better performance for delta radiomics compared to sin-
gle-time-point radiomics (Table 1), highlighting the positive influence of delta radiomics features on model 
decision-making (STPR of SVM + RFE: C-index = 0.546 [0.512, 0.580], p < 0.001 and STPR of SVM + C-index: 
C-index = 0.555 [0.514, 0.594], p < 0.001). These models also displayed a significantly better result for the delta 
radiomics compared to the delta conventional features (ΔAC of SVM + RFE: C-index = 0.584 [0.548, 0.620], 
p < 0.001 and ΔRC of SVM + C-index: C-index = 0.552 [0.513, 0.589], p < 0.001, when comparing the results of 
delta-absolute/relative radiomics features with their corresponding pairs of conventional features). Weighted 
delta radiomics results (WΔAR of SVM + RFE: C-index = 0.721 [0.682, 0.759] and WΔRR of SVM + C-index: 
C-index = 0.719 [0.682, 0.757], Supplementary Table S3) indicated a similar trend, with a better performance 
compared to single-time-point radiomics (p < 0.001 for both WΔAR and WΔRR) and weighted delta conven-
tional features (WΔAC of SVM + RFE: C-index = 0.533 [0.492, 0.577], p < 0.001 and WΔRC of SVM + C-index: 
C-index = 0.451 [0.408, 0.495], p < 0.001).

Model robustness evaluation
Firstly, the fine-tuned strategy demonstrated optimal performance using the same combination SVM + RFE 
model as those used with the default strategy but with 2 selected features (Supplementary Fig. S1), revealing 
the delta-absolute and relative GLCM Cluster Prominence from dynamic TTP parametric image as the most 
informative radiomics features in stage 2 (ΔAR: C-index = 0.751 [0.716, 0.784] and ΔRR: C-index = 0.779 [0.742, 
0.812], Table 2). Aligned with the default strategy, delta radiomics in the fine-tuned strategy also performed better 
than those obtained with single-time-point radiomics (p < 0.001 for both delta-absolute/relative radiomics) and 
delta conventional features (p < 0.001 for both delta-absolute/relative radiomics). Results from weighted delta 
radiomics reinforced this observation (see Supplementary Table S4), outperforming both single-time-point radi-
omics (p < 0.001 for both weighted delta-absolute/relative radiomics) and weighted delta conventional features 
(p = 0.006 for weighted delta-absolute, and p = 0.007 for weighted delta-relative radiomics). In both strategies, 

Figure 2.  Heatmap representing the C-indices of the default strategy based on the machine-learning algorithms 
(y-axis) and feature selection methods (x-axis) of the test set. The bold values indicate a significant p-value 
when comparing the radiomics model with its respective Baseline. GB: gradient boosting; SVM: support vector 
machine; MI: mutual information; RFE: recursive feature elimination.
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delta radiomics derived from the dynamic TTP parametric image and notably belonging to the same second-
order radiomics family (GLCM) emerged as the most informative attribute (Fig. 3).

Secondly, in the default strategy, the methods employed to calculate changes in radiomics features did not 
significantly influence the results (the C-index range of 0.688 to 0.783 for delta-absolute and 0.619 to 0.740 for 
delta-relative, each based on a single selected feature), indicating a reliable extraction of relevant information 

Table 1.  Performance of the default strategy based on one selected feature, using the SVM + RFE model for 
delta-absolute and the SVM + C-index model for delta-relative features. *p-value significant for delta radiomics 
compared to delta conventional features; ¥p-value significant for delta radiomics compared to single-time-
point radiomics; #p-value significant for delta radiomics compared to univariate delta  TBRmax; §p-value 
significant for delta radiomics compared to univariate delta  TBRmean. iAUC: integrated time-dependent area 
under the curve; ΔATBRmax: delta-absolute of maximum tumor-to-brain ratio; ΔRTBRmax: delta-relative of 
maximum tumor-to-brain ratio; ΔATBRmean: delta-absolute of mean tumor-to-brain ratio; ΔRTBRmean: delta-
relative of mean tumor-to-brain ratio; STPR: single-time-point radiomics; ΔAC: delta-absolute conventional; 
ΔAR: delta-absolute radiomics; ΔRC: delta-relative conventional; ΔRR: delta-relative radiomics; SVM: support 
vector machine; RFE: recursive feature elimination.

Features/metrics

Training Test

iAUC C-index iAUC C-index

Univariate CoxPH

 ΔATBRmax 0.721 ± 0.004 [0.714, 0.729] 0.656 ± 0.004 [0.650, 0.663] 0.710 ± 0.019 [0.672, 0.744] 0.668 ± 0.016 [0.635, 0.696]

 ΔRTBRmax 0.721 ± 0.004 [0.713, 0.729] 0.665 ± 0.004 [0.657, 0.673] 0.709 ± 0.021 [0.667, 0.746] 0.672 ± 0.017 [0.636, 0.704]

 ΔATBRmean 0.666 ± 0.004 [0.658, 0.674] 0.625 ± 0.003 [0.620, 0.631] 0.681 ± 0.019 [0.643, 0.716] 0.650 ± 0.015 [0.620, 0.680]

 ΔRTBRmean 0.680 ± 0.004 [0.672, 0.688] 0.632 ± 0.004 [0.625, 0.638] 0.694 ± 0.019 [0.658, 0.729] 0.657 ± 0.015 [0.627, 0.685]

SVM + RFE

 STPR 0.802 ± 0.005 [0.791, 0.811] 0.719 ± 0.004 [0.711, 0.726] 0.554 ± 0.023 [0.513, 0.597] 0.546 ± 0.018 [0.512, 0.580]

 ΔAC 0.711 ± 0.006 [0.699, 0.723] 0.666 ± 0.004 [0.658, 0.674] 0.599 ± 0.023 [0.556, 0.642] 0.584 ± 0.019 [0.548, 0.620]

 ΔAR 0.901 ± 0.003 [0.894, 0.908] 0.826 ± 0.004 [0.818, 0.834)] 0.815 ± 0.018 [0.775, 0.850] 0.783 ± 0.018*¥#§ [0.744, 
0.818]

SVM + C-index

 STPR 0.793 ± 0.006 [0.779, 0.806] 0.717 ± 0.003 [0.710, 0.724] 0.559 ± 0.024 [0.510, 0.606] 0.555 ± 0.020 [0.514, 0.594]

 ΔRC 0.805 ± 0.006 [0.793, 0.818] 0.738 ± 0.005 [0.728, 0.749] 0.542 ± 0.024 [0.494, 0.586] 0.552 ± 0.020 [0.513, 0.589]

 ΔRR 0.904 ± 0.003 [0.897, 0.911] 0.832 ± 0.004 [0.825, 0.840] 0.775 ± 0.021 [0.732, 0.816] 0.740 ± 0.020*¥#§ [0.700, 
0.778]

Table 2.  Performance of the fine-tuned strategy based on two selected features, using the SVM + RFE model 
for delta-absolute/relative features. *p-value significant for delta radiomics compared to delta conventional 
features; ¥p-value significant for delta radiomics compared to single-time-point radiomics; #p-value significant 
for delta radiomics compared to univariate delta  TBRmax; §p-value significant for delta radiomics compared to 
univariate delta  TBRmean. iAUC: integrated time-dependent area under the curve; ΔATBRmax: delta-absolute 
of maximum tumor-to-brain ratio; ΔRTBRmax: delta-relative of maximum tumor-to-brain ratio; ΔATBRmean: 
delta-absolute of mean tumor-to-brain ratio; ΔRTBRmean: delta-relative of mean tumor-to-brain ratio; STPR: 
single-time-point radiomics; ΔAC: delta-absolute conventional; ΔAR: delta-absolute radiomics; ΔRC: delta-
relative conventional; ΔRR: delta-relative radiomics.

Features/metrics

Training Test

iAUC C-index iAUC C-index

Univariate CoxPH

 ΔATBRmax 0.721 ± 0.004 [0.714, 0.729] 0.656 ± 0.004 [0.650, 0.663] 0.710 ± 0.019 [0.672, 0.744] 0.668 ± 0.016 [0.635, 0.696]

 ΔRTBRmax 0.721 ± 0.004 [0.713, 0.729] 0.665 ± 0.004 [0.657, 0.673] 0.709 ± 0.021 [0.667, 0.746] 0.672 ± 0.017 [0.636, 0.704]

 ΔATBRmean 0.666 ± 0.004 [0.658, 0.674] 0.625 ± 0.003 [0.620, 0.631] 0.681 ± 0.019 [0.643, 0.716] 0.650 ± 0.015 [0.620, 0.680]

 ΔRTBRmean 0.680 ± 0.004 [0.672, 0.688] 0.632 ± 0.004 [0.625, 0.638] 0.694 ± 0.019 [0.658, 0.729] 0.657 ± 0.015 [0.627, 0.685]

SVM + RFE

 STPR 0.628 ± 0.005 [0.617, 0.639] 0.612 ± 0.004 [0.603, 0.620] 0.633 ± 0.023 [0.589, 0.677] 0.607 ± 0.019 [0.570, 0.643]

 ΔAC 0.709 ± 0.004 [0.701, 0.717] 0.656 ± 0.004 [0.648, 0.663] 0.701 ± 0.020 [0.659, 0.737] 0.659 ± 0.017 [0.623, 0.689]

 ΔAR 0.835 ± 0.002 [0.831, 0.840] 0.762 ± 0.003 [0.757, 0.767] 0.790 ± 0.018 [0.751, 0.825] 0.751 ± 0.016*¥#§ [0.716, 
0.784]

 ΔRC 0.719 ± 0.004 [0.710, 0.727] 0.656 ± 0.004 [0.648, 0.663] 0.703 ± 0.020 [0.660, 0.738] 0.664 ± 0.017 [0.627, 0.694]

 ΔRR 0.817 ± 0.003 [0.810, 0.823] 0.752 ± 0.004 [0.745, 0.759] 0.819 ± 0.017 [0.779, 0.852] 0.779 ± 0.017*¥#§ [0.742, 
0.812]
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from the input features by the model (Fig. 1). Similarly, the majority of radiomics models in the default strategy 
outperformed their conventional pairs (Fig. 1). Implementing bootstrap-based consensus clustering efficiently 
reduced the dimension of highly correlated features, resulting in a mean ARI value of 0.59 across CV folds for 
the SVM + RFE and a single selected feature within this strategy. Despite moderate cluster stability (ARI = 0.59), 
70% of the medoid features assigned to the clusters were consistently observed in at least 80% of CV folds (Fig. 4). 
Furthermore, subsequent feature selection demonstrated consistency, with the GLCM Information correlation 
2 extracted from dynamic TTP parametric images provided as the highest rank feature in terms of importance 
across all model combinations (Fig. 5).

Discussion
This study evaluated the prognostic value of delta radiomics features extracted from 18F-FDOPA PET scans 
acquired during HGG treatment and after the final treatment session and how these correlated with time-to-
event survival data. Our results demonstrate that delta radiomics can be effectively performed and evaluated 
in rare cancer cohorts and that they outperform delta conventional features and single-time-point radiomics 
features. Notably, the delta radiomics model applied to rare cohorts in this study has demonstrated some criteria 
of robustness.

To the best of our knowledge, this study is the first to investigate the potential of PET-based radiomics 
changes over time to predict PFS in a relatively small cohort, typical of rare disease patient cohorts such as 
glioma. The aim of this methodological approach was to assess whether delta radiomics features were amenable 
to small patient numbers and how were their performances compared to both delta conventional features and 
single-time-point radiomics features. In addition to extracting single-time-point features from the PET scan 
conducted after the final treatment session, we also considered the absolute and relative changes of the extracted 
features, as well as their normalized versions, taking into account the time intervals between the 2 PET scans. 
We developed a robust pipeline incorporating key steps to enhance the reliability of the analysis, and thereby 
address the limitations of examining a relatively small number of cases. The pipeline specifically included feature 
normalization to ensure fair comparisons, bootstrap-based consensus clustering to obtain stable uncorrelated 
features, diverse feature selection methods for informative feature identification, and time-to-event survival 
algorithms to explore associations with event outcomes. Based on a CV estimation of the performance, a PFS 
prediction was conducted by directly applying the pipeline to the cohort of 18 HGG patients with 2 PET scans, 
referred to as the default strategy.

For the default strategy, delta radiomics, whether assessing absolute or relative changes, outperformed delta 
conventional features and single-time-point radiomics features (Table 1). Similar results were found for the 
weighted delta radiomics (Supplementary Table S3). These findings suggest that delta radiomics may capture 
more pertinent information for the PFS prediction task, irrespective of the specific time interval between the 
two collected PET scans. In general, models from the default strategy yielded superior performance when evalu-
ated with a single selected feature. This may be attributed to the small number of longitudinal samples, as fewer 
features made it easier to identify meaningful patterns and extract relevant information.

To address the limited number of samples with 2 PET scans, several robustness criteria were assessed to vali-
date the default strategy. First of all, we developed the fine-tuned strategy applied to a larger cohort of 35 patients 
with a single PET scan, and subsequently, the information obtained was used to evaluate delta features within the 
smaller cohort of 18 patients. Interestingly, the fine-tuned strategy also exhibited a similar trend than the default 
one, highlighting the efficiency of delta radiomics, particularly when integrating the SVM algorithm with the 

Figure 3.  SHAP values indicate the feature importance in (a) the default strategy based on a single selected 
delta-absolute radiomics, and in (b) the second stage of the fine-tuned strategy based on two selected delta-
absolute radiomics employing the SVM + RFE model in both strategies. The presence of TTP at the end of a 
feature name indicates that the corresponding feature is extracted from dynamic TTP parametric images.
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Figure 4.  The consistency of medoid features assigned to clusters across CV folds of the default strategy, based 
on a single selected feature and using the SVM + RFE model. The right side of the figure exhibits the medoid 
feature observed in the majority of folds, along with its corresponding percentage. The presence of TTP at 
the end of a feature name indicates that the corresponding feature is extracted from dynamic TTP parametric 
images. CV: cross-validation; GLRLM: gray level run length matrix; GLCM: gray level co-occurrence matrix; 
GLSZM: gray level size zone matrix; NGTDM: neighboring gray tone difference matrix; NGLDM: neighboring 
gray level dependence matrix.
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RFE method for feature selection (Table 2). In both strategies, the delta radiomics extracted from dynamic TTP 
parametric images, along with the same second-order radiomics family (GLCM), were identified as the most 
informative features, reinforcing the prognostic value of dynamic  analysis33. Notably, the GLCM Information 
Correlation 2 feature played a significant role in the default strategy, while the GLCM Cluster Prominence feature 
was crucial for the fine-tuned strategy (Fig. 3).

Dealing with the common challenge of limited sample size in rare cancer cohorts, it is essential to implement 
a robust pipeline, as attempted in this study. Additional criteria for ensuring the robustness of the default strategy 
included the following considerations. The methods used for computing changes in radiomics features did not 
show a notable impact on the outcomes, suggesting that the model reliably extracted pertinent information from 
the input features. Likewise, most radiomics models demonstrated superior performance compared to their 
conventional pairs, highlighting the potential efficacy of the default strategy (Fig. 2). In addition, integrating 
bootstrap-based consensus clustering into the dimensionality reduction step of the pipeline resulted in an average 
ARI value of 0.59 across CV folds for the best model within the default strategy, and subsequent evaluation of 
medoid features demonstrated consistency (Fig. 4). Interestingly, the GLCM Information Correlation 2 attribute 
emerged as the highest rank feature across all 16 model combinations (Fig. 5).

Some studies have explored the effectiveness of the delta  SUVmax feature in predicting PFS and overall survival 
in diffuse large B-cell  lymphoma55–57. However, in the present study, the analysis of the delta feature demon-
strated that, for both strategies, delta radiomics performed better than delta  TBRmax, the normalized version of 
 SUVmax using the mean of the brain (Tables 1 and 2, p < 0.001 when comparing delta-absolute of radiomics with 
 TBRmax for both strategies, and p = 0.003 and p < 0.001 when comparing delta-relative of radiomics with  TBRmax 
for default and fine-tuned strategies respectively) and delta  TBRmean, the normalized version of  SUVmean using 
the mean of the brain (Tables 1 and 2, p < 0.001 when comparing the results of delta-absolute/relative radiomics 
features with their corresponding pairs of  TBRmean feature for both default and fine-tuned strategies) showcasing 
the superior performance of delta radiomics. This finding emphasizes the importance of further investigation 
within established guidelines such as  PERCIST58. It is crucial to note that to comprehensively understand the 
implications of radiomics features, conducting additional evaluations over a larger cohort with more diverse 
samples is essential. Several studies have investigated deep learning and multitask learning approaches for ana-
lyzing time-to-event survival  data39,59–61. While these algorithms demonstrate efficiency at capturing non-linear 
temporal patterns and managing temporal relationships across multiple time points, they also introduce complex-
ity and require a larger sample size for generalization. These methods could nevertheless be a matter of future 
research. Conversely, working explicitly with delta radiomics provides several advantages, including reducing 
feature dimensionality and directly capturing temporal changes for enhanced interpretability and computational 
efficiency, which is adapted to the small number of samples. The proposed pipeline in this work can effectively 
be applied to explore the potential of radiomics changes over time in other rare patient cohorts.

The current study has several limitations. Firstly, as a retrospective study, the data was collected from a prese-
lected patient population, thereby restricting patient inclusion. Given that our study was a single-center analysis, 
it would be useful to consider including samples from other centers or collecting data from new patients in our 
center for external validation to provide further verification in terms of the robustness and generalizability of the 
models developed. Admittedly, due to the retrospective nature of our study and the unavailability of raw data, we 
did not perform the repeatability of radiomics features in the current analysis. A feature repeatability assessment 
is, nevertheless worth considering in future studies to ensure reliable performance of the generated radiomics 

Figure 5.  SHAP value distributions for the top 10 ranked features across all 16 model combinations based on 1, 
2, and 3 selected features in each CV fold within the default strategy. The presence of TTP at the end of a feature 
name indicates that the corresponding feature is extracted from dynamic TTP parametric images. CV: cross-
validation; GLCM: gray level co-occurrence matrix; GLSZM: gray level size zone matrix; NGTDM: neighboring 
gray tone difference matrix; NGLDM: neighboring gray level dependence matrix.
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 models22,23. Furthermore, although the study involved a limited number of patients who underwent 2 PET scans, 
the sample size corresponds to the typical range of longitudinal case numbers observed in rare diseases such as 
 glioma35–37, and therefore reflects real life conditions. It is important to highlight that the primary objective of 
this study was to investigate the potential additive value of radiomics changes over time for predicting PFS in a 
small cohort of rare cancer patients. To address this, we implemented a robust pipeline and employed two distinct 
strategies, both of which yielded similar results, confirming the efficacy of the default strategy for delta radiomics.

Conclusion
This study highlights the considerable potential of delta radiomics analysis when applied to a relatively small 
cohort of patients with rare HGG disease, and demonstrates its superior performance compared to both delta 
conventional features and single-point radiomics features. The proposed pipeline, assessed through robustness 
criteria and adapted to small case numbers, needs to be evaluated in other cancer indications to confirm the 
effectiveness of delta radiomics. Such analyses may lead to the development of novel prognostic biomarkers for 
patients with rare cancers.

Data availability
Available in supplementary information files.
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