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Optimizing dynamic economic 
dispatch through an enhanced 
Cheetah‑inspired algorithm 
for integrated renewable energy 
and demand‑side management
Karthik Nagarajan 1, Arul Rajagopalan 2*, Mohit Bajaj 3,4,5,6*, R. Sitharthan 2, 
Shir Ahmad Dost Mohammadi 7* & Vojtech Blazek 8

This study presents the Enhanced Cheetah Optimizer Algorithm (ECOA) designed to tackle the 
intricate real-world challenges of dynamic economic dispatch (DED). These complexities encompass 
demand-side management (DSM), integration of non-conventional energy sources, and the utilization 
of pumped-storage hydroelectric units. Acknowledging the variability of solar and wind energy 
sources and the existence of a pumped-storage hydroelectric system, this study integrates a solar-
wind-thermal energy system. The DSM program not only enhances power grid security but also lowers 
operational costs. The research addresses the DED problem with and without DSM implementation 
to analyze its impact. Demonstrating effectiveness on two test systems, the suggested method’s 
efficacy is showcased. The recommended method’s simulation results have been compared to those 
obtained using Cheetah Optimizer Algorithm (COA) and Grey Wolf Optimizer. The optimization results 
indicate that, for both the 10-unit and 20-unit systems, the proposed ECOA algorithm achieves 
savings of 0.24% and 0.43%, respectively, in operation costs when Dynamic Economic Dispatch is 
conducted with Demand-Side Management (DSM). This underscores the advantageous capability 
of DSM in minimizing costs and enhancing the economic efficiency of the power systems. Our ECOA 
has greater adaptability and reliability, making it a promising solution for addressing multi-objective 
energy management difficulties within microgrids, particularly when demand response mechanisms 
are incorporated. Furthermore, the suggested ECOA has the ability to elucidate the multi-objective 
dynamic optimal power flow problem in IEEE standard test systems, particularly when electric vehicles 
and renewable energy sources are integrated.

List of symbols
F(PG) 	� Total generating cost
t  	� Time
PWi 	� Power generated by the ith wind power generating unit
PPVi 	� Power generated by the ith solar power generating unit
PGHi 	� Power generated by the ith pumped hydroelectric storage unit
Ploss 	� Active power loss
CW 	� Direct cost function for wind farm
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CPV 	� Direct cost function for solar photovoltaic generation
CRW 	� Reserve cost for the wind unit
CRPV 	� Reserve cost for the solar photovoltaic generation
PWr,i 	� Rated wind power of ith wind power generating unit
PPVr,i 	� Rated wind power of ith solar power generating unit
FC 	� Overall operation cost
PGi 	� Real power output of ith generator
PD 	� Power demand
Ploss 	� Active power loss
NTH 	� No. of thermal power generating units
NW 	� No. of wind power generating units
NPV 	� No. of solar power generating units
Npump 	� No. of pumped hydroelectric storage units
Tpump 	� Collection of time intervals during which the pumped-storage plant operated in pumping 

mode
NB	� Total number of buses
DRt 	� Percentage of the predicted base load involved in Demand Response Participation (DRP) at 

time t.
Inct 	� Quantity of added load at time t
Lst 	� Load that can be shifted at time
LBase,t	�  Predicted base load at time t
vin 	� Cut-in wind speed
vout 	� Cut-out wind speed
vr 	� Rated wind speed
ai , bi and ci 	� Fuel cost coefficients of ith generating unit
ei and fi 	� Fuel cost coefficients of ith generating unit with valve point effect
Qgj 	� Reactive power output at jth bus
Bjk 	� Transfer susceptance between bus j and bus k
Gjk 	� Transfer conductance between bus j and bus k
h	� Hour
DED	� Dynamic economic dispatch
DSM	� Demand side management
ELD	� Economic load dispatch
OPF	� Optimal power flow
COA	� Cheetah optimizer algorithm
ECOA	� Enhanced Cheetah optimizer algorithm
GWO	� Grey wolf optimizer
PSH	� Pumped-storage hydropower
ENSCSO	� Enhanced non-dominated sorting crisscross optimization
ADFA	� Ameliorated Dragonfly algorithm
CFCEP	� Chaotic fast convergence evolutionary programming
FCEP	� Fast convergence evolutionary programming
CCDE	� Colonial competitive differential evolution
HSPSO	� Heterogeneous strategy particle swarm optimization
SGEO	� Social group entropy optimization
TG	� Thermal generator
PDF	� Probability density function
POZ	� Prohibited operating zone
PV	� Photovoltaic
DG	� Distributed generation
WT	� Wind turbine
NA	� Not available
UR	� Upward ramp
DR	� Downward ramp
DR	� Demand response
TOU	� Time-of-use
PSO	� Particle swarm optimization
ISO	� Independent system operator

Fossil fuel-fired power plants continue to be the primary method of generating electric power. The need to 
investigate alternative energy sources has increased due to the rapid rise in global electricity usage, the continu-
ous depletion of fossil fuel reserves, and the growing environmental impact caused by the burning of fossil fuels 
in power plants1,2. Society’s attention has been directed towards sustainable energy solutions due to the urgent 
need to reduce the negative effects of electricity generation on climate change3. Solar and wind power have 
become noticeable alternatives in this situation, acknowledged for their economic feasibility and ability to meet 
energy needs without causing harmful emissions4,5. However, the incorporation of these environmentally aware 
energy sources, such as wind and solar technologies, has brought about a level of intricacy and uncertainty in the 
energy sector. The emerging transition to renewable energy requires a detailed comprehension of the challenges 
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associated to the inherent irregularity and fluctuation of solar and wind resources6. This requires a thorough 
examination of the dynamic properties that arise from integrating these renewable sources into the power grid. 
As the discussion about sustainable energy progresses, it is crucial to understand the complexities of utilizing 
solar and wind power to achieve their best possible integration into the overall energy system7. These insights 
are essential for progressing the discussion on sustainable energy usage and developing effective strategies to 
align the shift towards green energy with the needs of a reliable and robust power grid8. The load variation is 
unaffected by the unpredictability of solar irradiation and wind speed. These resources’ unpredictability and 
sporadic nature present serious obstacles to solving the generation scheduling issue. The inherent variability and 
irregular characteristics of renewable energy sources, such as wind and solar power, present a potential risk to 
the stability and dependability of the power grid. This oscillating behavior, commonly known as "blinking," can 
have detrimental effects on the grid as a whole9,10. In order to address these challenges and improve the ability 
of the power grid to withstand disruptions, the incorporation of pumped hydroelectric energy storage is seen as 
a feasible solution11. Pumped-storage hydropower (PSH) units are widely recognized globally for their ability to 
effectively manage fluctuations in generation and supply. The growing popularity of PSH units arises from their 
inherent capacity to efficiently store electrical energy. Pumped-storage hydroelectric (PSH) units play a crucial 
role in the electric power systems by storing excess electrical energy, which is usually available and cost-effective 
during low-demand periods, as hydraulic potential energy12. This complex procedure entails the movement of 
water from the lower reservoir of the PSH unit to its upper reservoir. During times of high demand, the stored 
hydraulic potential energy is used to meet the increased load requirements, thereby assisting to maintain stabil-
ity in the power grid. PSH units, operating on a daily or weekly basis, provide an efficient solution to mitigate 
the effects of renewable energy intermittency on the power grid13. Implementing Pumped Storage Hydro (PSH) 
units results in a gradual decrease in the overall fuel expenditure in a power system. The cost-effectiveness of this 
approach is due to the strategic placement of PSH units, which helps to stabilize fluctuations in energy supply 
and demand and optimize the operation of the power system14. Overall, the integration of pumped hydroelec-
tric energy storage, demonstrated by PSH units, is an effective approach to mitigate the intermittent nature of 
renewable energy sources. By utilizing the storage capabilities of PSH, the power grid can attain heightened 
stability, decreased operational expenses, and enhanced flexibility to accommodate the ever-changing landscape 
of renewable energy generation15,16.

A modest sovereign system’s optimal generation scheduling using renewable energy sources has been covered 
in17. Although clean and pollution-free, renewable energy sources have a limited ability to provide electricity. The 
optimal approach to address the economic dispatch quandary lies in dynamic economic dispatch (DED). This 
approach efficiently distributes the time-varying load demand across all active generating units, while taking 
into account the limitations presented by thermal generator ramp rates18. In the realm of Dynamic Economic 
Dispatch (DED), decisions made at one time significantly influence subsequent decisions. Addressing this, a 
novel Enhanced Non-Dominated Sorting Crisscross Optimization (ENSCSO) algorithm was introduced to solve 
the multi-objective Dynamic Economic Emission Dispatch problem19. This algorithm was tested via simulations 
on a ten-unit generation system that integrates wind power and a time-of-use demand response program. Ame-
liorated dragonfly algorithm (ADFA) was applied to solve static economic load dispatch and dynamic economic 
load dispatch problem in20. Static economic dispatch was carried out on three different test systems and dynamic 
economic dispatch was implemented on two different test systems. In21, a Levy Interior Search Algorithm was 
crafted with a focus on resolving the multi-objective economic load dispatch issue, integrating the incorpora-
tion of wind power. The objective functions considered were operation cost and system risk. A simulation was 
conducted using a modified IEEE 30-bus system, incorporating the integration of wind power. A distributed 
structure and stochastic linear programming game were presented, allowing for the scheduling of appliances 
and storage units as well for the energy payments in22. A distributed primal–dual continuous time consensus 
algorithm was implemented for solving dynamic economic dispatch problem23. Simulation was carried out on 
three different test systems. An improved version of Circle Search Algorithm was introduced in ref.24 to resolve 
the economic emission dispatch problem by incorporating demand response integration. Improved circle search 
algorithm was investigated on IEEE 6-bus and IEEE 30-bus system to implemented the multi-objective economic 
emission dispatch25. In26, multi-objective particle swarm optimization was proposed to solve the dynamic eco-
nomic emission dispatch problem. Within the Demand-Side Management (DSM) process, a strategy utilizing 
day-ahead load shifting techniques was implemented to manage residential loads. The primary objective involved 
minimizing the utility’s energy bill. The application of the Interior Search Algorithm was utilized to address 
the economic load dispatch problem within a microgrid setting, as referenced in27. Multi-objective dynamic 
optimal power flow problem was implemented using harmony search algorithm. In27, the day-ahead load shift-
ing DSM technique was enacted using a day-ahead pricing strategy combined with an energy consumption 
game. Additionally, in28, the successful implementation of the normal boundary intersection method effectively 
addressed the centralized multi-objective dynamic economic dispatch incorporating demand side management 
for individual residential loads and electric vehicles. Generation costs, emissions, and energy loss are considered 
as objective functions. A suite of innovative optimization algorithms was developed to tackle various complex 
challenges within energy management systems. In29, the Improved Mayfly Optimization Algorithm was devised 
to solve the combined economic emission dispatch problem within a microgrid setting. Ref.30 introduced the 
Chaotic Fast Convergence Evolutionary Programming (CFCEP) aimed at resolving the combined heat and 
power dynamic economic dispatch problem. This solution incorporated demand side management, renewable 
energy sources, and pumped hydro energy storage. The Social Group Entropy Optimization (SGEO) technique, 
highlighted in reference31, was proposed to address the fuel-constrained dynamic economic dispatch problem. 
This strategy combined demand-side management, renewable energy sources, and a pumped hydro storage 
plant. It implemented a Multi-Objective Dynamic Economic Emission Dispatch by incorporating game theory-
based demand response techniques32. Lastly, in ref.33, a Multi-Objective Dynamic Economic Emission Dispatch 
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approach was applied within a microgrid context. This implementation incorporated demand response strategies 
along with a zero-balance approach.

As outlined in the International Energy Agency’s strategic plan, DSM stands as the major choice for energy 
policy decisions. DSM programs offer various advantages, such as cost reduction and heightened security within 
power systems. Here’s an overview of the ongoing research contributions in this domain:

1.	 In our research paper, we introduce the Enhanced Cheetah Optimizer Algorithm (ECOA) to address dynamic 
economic dispatch while integrating renewable energy sources and demand side management. We’ve inte-
grated chaotic sine map and levy flight mechanism and into this algorithm to improve solution quality and 
convergence speed. This learning method involves simultaneously considering an estimate and its opposite 
counterpart, aiming to refine the current candidate solution more effectively.

2.	 The inherent variability of wind and solar power generators is depicted through the utilization of the most 
reliable probability density functions (PDFs).

3.	 The alteration in the generation costs of wind and solar power in relation to the respective scheduled power 
adjustments is thoroughly investigated.

4.	 We subjected our proposed algorithm to a comprehensive evaluation to assess its effectiveness in addressing 
dynamic economic dispatch challenges associated with pumped-storage hydroelectric units and demand-
side management. The ECOA algorithm we introduced plays a vital role in determining optimal times for 
both pumping water to the upper reservoir and releasing it for power generation, taking into consideration 
factors such as electricity prices, demand patterns, and the availability of renewable energy.

5.	 The algorithm we proposed was thoroughly examined for its efficacy in resolving dynamic economic dispatch 
problems involving unconventional energy sources and demand side management. We compared the opti-
mization results of our proposed algorithm with those obtained using COA and GWO for comprehensive 
analysis.

Mathematical formulation of dynamic economic dispatch
The primary aim of integrating renewable energy sources into the Dynamic Economic Dispatch (DED) system is 
to achieve a dual objective of minimizing two factors simultaneously34. The primary objective is to minimize the 
overall expenses linked to thermal power plants by enhancing their operating efficiency. Furthermore, the integra-
tion aims to reduce costs associated with the functioning of wind-power producing units and solar Photovoltaic 
(PV) facilities. This extensive framework of DED expands its scope to incorporate the integration of pumped 
hydroelectric energy storage, acknowledging its crucial role in mitigating the intermittent nature of renewable 
energy sources35,36. The study attempts to achieve an efficient and cost-effective balance between traditional and 
renewable energy sources within the dynamic economic dispatch framework using this integrated method37.

The formulation of the DED problem with DSM encompasses defining the resultant objective function along 
with its associated constraints. The fuel cost function for the ith thermal generator at time t  , accounting for the 
valve-point effect38,39, is expressed as:

where ai , bi and ci are fuel cost coefficients of ith generator, k is the total number of generating units, PGi is the 
output power of the ith generator in megawatts. Here ei and fi represents the generating cost coefficients of the 
ith unit are utilized to model valve point loading effect.

Modelling the costs of renewable energy sources
Assessment of direct costs for wind and solar photovoltaic power
The functioning of energy generation from RESs doesn’t require any fuel. Hence, in cases where Independent 
System Operators (ISO) own Renewable Energy Sources (RESs), only maintenance costs are incurred without 
any associated cost function40. Yet, if private organizations manage RESs, the ISO compensates them as per the 
mutually agreed-upon contract for the scheduled electricity generation40.

The assessment of direct costs for wind turbines and solar photovoltaic (PV) power involves a detailed exami-
nation of the expenses associated with the design, construction, installation, operation, and maintenance of these 
renewable energy systems41,42. Direct costs are those directly attributable to the development and operation of 
the specific technology.

The literature offers the direct cost function for the ith wind farm concerning the planned power40.

Here,  PW represents the generated power and KW represents the direct cost coefficient related to the wind 
turbine. In connection with is, the direct cost involved in solar PV with scheduled power PPV and cost coefficient, 
KPV is represented by the following equation

In this context, PPV denotes the generated power, while KPV represents the direct cost coefficient associated 
with solar photovoltaic generation.

(1)F(PG) =
NTH
∑

i=1

(ai + biPGi + ciP
2
Gi)+ |eisin(fi ∗ (PGimin − Pi)|

(2)CW (PW ) = KWPW

(3)CPV (PPV ) = KPVPPV
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Assessment of reserve cost and penalty cost associated with wind power
As wind energy is inherently unpredictable, the power generated by wind turbines fluctuates over time, poten-
tially surpassing or falling short of the scheduled power43. Therefore, the ISO needs to have backup generating 
capacity to meet demand. The assessment of reserve cost and penalty cost associated with wind power involves 
evaluating the expenses and penalties incurred due to the intermittent and variable nature of wind energy. 
Reserve costs and penalty costs are critical aspects in the economic evaluation and operational planning of power 
systems that include wind power44.

The reserve cost for the wind unit is presented based on the literature40.

When wind generators produce more output power than is scheduled, the ISOs must pay the fine by reducing 
the power of thermal generators when they do not consume the extra power.

Here PW sh,i  represents the scheduled wind power and PW ac,i represents the actual power generated by the 
wind turbine. The rated power is represented by PW r,i while the Probability Density Function (PDF) of the wind 
power is represented as fw

(

pw,i
)

 . Accordingly, it is possible to compute the reserve and penalty costs for solar-
only and solar-and-hydro combined generators45. The required input data for modeling the cost of renewable 
energy sources is obtained from existing literature30.

Assessment of the penalty and reserve cost associated with PV power
Assessing the cost of generating wind power aligns closely with formulating the stochastic generation cost of 
solar PV electricity40. Moreover, the lognormal Probability Density Function (PDF) proves useful in represent-
ing solar radiation40. Additionally, reserve and penalty cost models for solar PV-powered plants are devised 
based on the methodology outlined in Reference46. Section 2.3 does the computation for the solar photovoltaic 
unit’s generated power output. The assessment of reserve cost and penalty cost associated with photovoltaic 
(PV) power involves evaluating the expenses and penalties incurred due to the intermittent and variable nature 
of solar energy. Reserve costs and penalty costs are critical aspects in the economic evaluation and operational 
planning of power systems that include solar PV.

The reserve cost for overestimating solar PV power is characterized as40:

where PPV ac,i represents the actual power generated by the solar PV plant, and k′rpv,i denotes the reserve 
cost coefficient related to the solar PV plant. The expectation of solar PV power below P_ is represented by 
E
(

PPV ac,i < PPV sh,i

)

 , and the likelihood of a solar power shortage from the scheduled solar PV power is given 
by fpv

(

PPV ac,i < PPV sh,i

)

. The cost of the penalty for underestimating solar PV power is characterised as40:

where k′ppv,i represents the penalty cost coefficient for the solar PV plant and  fpv
(

PPV ac,i > PPV sh,i

)

 char-
acterizes the likelihood that solar power will be above the scheduled power ( PPV sh,i ), and E

(

PPV ac,i > PPV sh,i

)

 
indicates the expectation that solar PV power will be above PPV sh,i.

Formulation of overall generation cost with the integration of renewable energy sources
The overall operation cost is a critical metric that reflects the economic efficiency of the power system operation. 
The overall operation cost considers the intermittent nature of renewable energy sources, accounting for periods 
of high and low generation, and the associated economic implications.

The overall operation cost within the DED problem is structured as follows30,40:
Minimize

(4)
CRW ,i

(

PWsh,i − PWac,i

)

= k′rw,i
(

PWsh,i − PWac,i

)

= k′rw,i
PWsh,i

∫
0

(

PWsh,i − pw,i
)

fw
(

pw,i
)

dpw,i

(5)

CPW ,i

(

PW ac,i − PW sh,i

)

= k′rw,i
(

PW ac,i − PW sh,i

)

= k′pw,i
PWr,i

∫
PW sh,i

(

pw,i − PW sh,i

)

fw
(

pw,i
)

dpw,i

(6)
CRPV ,i

(

PPV sh,i − PSac,i
)

= k′rpv,i
(

PPV sh,i − PPV ac,i

)

= k′rpv,i fpv
(

PPV ac,i < PPV sh,i

)[

PPV sh,i − E
(

PPV ac,i < PPV sh,i

)]

(7)
CPPV ,i

(

PPV ac,i − PPV sh,i

)

= k′ppv,i
(

PPV ac,i − PPV sh,i

)

= k′ppv,i fpv
(

PPV ac,i > PPV sh,i

)[

E
(

PPV ac,i > PPV sh,i

)

− PPV sh,i

]

(8)

FC = F(PG)+
NWG
∑

i=1

[

CW (PW )+ CRW ,i

(

PW sh,i − PW ac,i

)

+ CPW ,i

(

PW ac,i − PW sh,i

)]

+
NPV
∑

i=1

[

(CPV (PPV )+ CRPV ,i

(

PPV sh,i − PPV ac,i

)

+ CPPV ,i

(

PPV ac,i − PPV sh,i

)]
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Equality and inequality constraints
Equality constraints
Generator power output constraint.  The total power generation, when combined with demand-side manage-
ment, can be expressed through the following Eq30:

where NTH , NW , NPV  and Npump denotes the quantity of thermal power units, wind power units, solar pho-
tovoltaic units, and pumped storage units, respectively. The power generated by the ith thermal, wind, solar 
photovoltaic, and pumped storage units is represented as PGi , PWi , PPVi and PGHi respectively.

In order to achieve optimal economic load dispatch, one must include transmission line losses. The transmis-
sion line losses are calculated using Newton–Raphson methods and B-coefficient methods. In order to calculate 
the active power loss Ploss . Newton–Raphson method is used in conjunction with the power flow solution. The 
subsequent equation defines the actual power loss while adhering to equality prerequisites40.

With j = 1, 2, . . .NB ; in this case, NB represents the total number of buses. Vj and Vk represents the jth bus 
and kth bus voltage respectively. Qgj denotes the jth bus reactive power output and δj and δk characterizes the 
voltage angle at bus j and bus k respectively.Bjk and Gjk represents the transfer susceptance and conductance 
between buses j and k respectively. PDj and QDj represents the jth bus active and reactive power load respectively. 
In order to determine the equality constraints, the Newton–Raphson load flow technique solution is used. Bus 
voltage magnitudes and angles can be determined using the power flow solution.

Inequality constraints
Limits on the lowest and highest generation capacities.  Each generator’s active power generation output needs 
to stay within specific minimum and maximum limits40. Power generation constraints refer to the limitations 
and restrictions imposed on the operation of power generation units over time. These constraints are crucial for 
ensuring the secure and reliable operation of the power system.

Pumped‑storage constraints.  The integration of pumped-storage hydro units adds a dynamic and flexible com-
ponent to the system, enabling better balancing of supply and demand.

The net water usage of the pumped-storage hydropower (PSH) unit should balance out to zero as the final 
and initial water volumes in the upper reservoir are considered equal within this scenario30.

Given the equality between the initial and final water volumes of the upper reservoir in the pumped-storage 
hydroelectric (PSH) unit for this scenario, the total net water used by the PSH unit should equate to zero30.

(9)
NTH
∑

i=1

(PGit)+
NW
∑

i=1

(PWit)+
NPV
∑

i=1

(PPVit)+
Npump
∑

i=1

(PGHit) = (1− DRt)× LBase,t + LSt + Ploss

(10)
NTH
∑

i=1

(PGit)+
NW
∑

i=1

(PWit)+
NPV
∑

i=1

(PPVit)−
Npump
∑

i=1

(PPHit) = (1− DRt)× LBase,t + LSt + Ploss

(11)PGj − PDj − Vj

NB
∑

j=1

Vk

[

Gjk cos
(

δj − δk
)

+ Bjksin
(

δj − δk
)]

= 0

(12)QGj − QDj − Vj

NB
∑

j=1

Vk

[

Gjk sin
(

δj − δk
)

+ Bjkcos
(

δj − δk
)]

= 0

(13)PGimin ≤ PGi ≤ PGimax∀i ∈ NTH

(14)Pmin
w ≤ Pw ≤ Pmax

w

(15)Pmin
PV ≤ PPV ≤ Pmax

PV

(16)Vres,j(t+1) = Vres,jt + Qphjt

(

Pphjt
)

, j ∈ Npump, t ∈ Tpump

(17)Vres,j(t+1) = Vres,jt − Qghjt

(

Pghjt
)

, j ∈ Npump, t ∈ Tgen

(18)Pmin
ghj ≤ Pghj ≤ Pmax

ghj , j ∈ Npump, t ∈ Tgen

(19)Pmin
phj ≤ Pphj ≤ Pmax

phj , j ∈ Npump, t ∈ Tpump

(20)Vmin
res,j ≤ Vres,jt ≤ Vmax

res,j , j ∈ Npump, t ∈ T
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Ramp rate limits of thermal generator.  The ramp rate limits of thermal generators are crucial parameters in 
power system operation and control. The ramp rate refers to the maximum rate at which the power output of a 
generator can change over a specified time interval. Rapid and large changes in power output from generators 
can lead to instability in the power grid. By imposing ramp rate limits, the system operators ensure that the 
changes in power output are gradual, helping to maintain grid stability.

Wind, solar and hydro uncertainty models
To represent the unpredictable output power from Renewable Energy Sources (RESs), a range of Probability 
Density Functions (PDFs) are utilized.

The wind speed determines how much power the wind turbines can produce. According to past research 
investigations40,46, the likelihood of wind speed follows Weibull PDF.

The Weibull distribution is commonly used in the field of wind energy because it is well-suited for modeling 
the variability of wind speeds at a particular location.

where  α represents the scale of the Weibull PDF and stands for the shape parameter of the Weibull PDF. These 
variables’ values were collected from30. Weibull PDF’s median is provided by:

The gamma ( Ŵ) function is crucial in the context of the Weibull probability density function (PDF) for wind 
distribution because it is used to normalize the Weibull distribution and ensure that it integrates to 1 over its 
entire range.

Ŵ function can be represented as:

As shown in Fig. 1, the frequency distribution is derived from Weibull fitting using wind speed results 
obtained through simulating 8000 Monte Carlo scenarios. The values for the scale and shape parameters are 
sourced from30. Consistent with the literature30, the PDF parameter values have been selected. Achieving a 
cumulative rated output of 175 MW involves the collective output from 35 wind generators, each possessing a 

(21)Vres,j0 = Vres,jT = Vstart
res,j = Vend

res,j

(22)

Qnet,spent,j = Qspent,TOT ,j − Qpump,TOT ,j

=
∑

t∈Tgen
Qghjt

(

Pghjt
)

−
∑

t∈Tpump

Qphjt

(

Pphjt
)

= 0

(23)PGit − PGi(t−1) ≤ URi , i ∈ Nt , t ∈ T

(24)PGi(t−1) − PGit ≤ DRi , i ∈ Nt , t ∈ T

(25)fwv(v) =
(α

�

)( v

�

)(α−1)
exp[−( v

� )]α for 0 < v < ∞

(26)Mw = � ∗ Ŵ
(

1+ α−1
)

(27)Ŵ
(

x′
)

=
∞
∫
0
e−t tx

′−1dt
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Figure 1.   Wind speed variation in wind power generation unit.
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capacity of 5 MW. The subsequent equation delineates the power generated by the wind turbines, contingent 
upon the wind speed.

where PWr denotes the rated power of a single turbine. vin signifies the cut-in speed,  vout denotes the cut-out speed 
whereas vr is the rated speed. The study investigated different Weibull parameters that dictate the distribution of 
wind speeds, in line with the selections made in previous studies30. Equation (40) emphasizes the discrete nature 
of the wind generator’s output power, notably in specific regions. Specifically, wind farm output remains at zero 
when wind speed falls below the cut-in speed or exceeds the cut-out speed. The wind generators operate at their 
rated power within the range delineated between the cut-out and cut-in regions. Previous studies30,40 detail the 
probability associated with these discrete zones.

In the continuous domain, the probability distribution for wind power is expressed as follows40,46:

This Weibull PDF is utilized to characterize and model the probability distribution of wind speeds, which is 
crucial for assessing the potential power output of wind turbines.

Furthermore, the solar photovoltaic (PV) output power is solely contingent on solar irradiance (G), conform-
ing to the parameters of the lognormal Probability Density Function (PDF)40,46. A previous study40 outlined the 
probability distribution of solar irradiance, specifying its mean and standard deviation. The lognormal distribu-
tion is often used in PV modeling because it provides a good fit for the skewed and positive-valued nature of 
solar irradiance and power output data. Many natural processes, including solar irradiance, exhibit lognormal 
characteristics, making the lognormal distribution a suitable choice for modeling. The lognormal distribution 
is well-suited for data with a positively skewed distribution, capturing the asymmetric behavior often observed 
in solar irradiance data. The parameters in the lognormal distribution have physical interpretations, such as the 
mean and standard deviation, which can provide insights into the characteristics of the solar resource.

The subsequent equation represents the mean of the lognormal distribution ( MLgn)

After running 8,000 Monte Carlo simulations, a frequency distribution for solar irradiance is derived, and 
Fig. 2 illustrates the lognormal fitting, demonstrating the solar PV output power.

The critical value ( RC) introduces a threshold beyond which the model transitions to a simpler form. This 
threshold may represent a point where the PV system behavior changes, possibly due to system constraints, 
saturation effects, or other factors.

In the standard environmental conditions, standard deviation of solar irradiance is represented by Gstd and 
certain irradiance is characterized by RC . The assumed value for Gstd  stands at 1000 W/m2, whereas for RC , it 
amounts to 150 W/m2. Regarding the PV module, the rated output power PPVr is specified as 175 MW.

Demand‑side management
DSM initiatives bring forth numerous benefits such as cost efficiency and improved power system security47. 
These programs encompass various categories, prominently featuring demand response. Among these, the time-
of-use (TOU) program48 stands out—it redistributes a segment of the load demand from peak hours to off-peak 
periods or times of lower cost, while maintaining the overall load demand. This TOU program served as the 
foundational inspiration for the demand response program applied in this study. This flattens the load curve and 
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lowers the expected operation cost. The numerical model for the TOU program is created in line with Eq. (35) 
and is constrained by Eqs. (36) - (39).

Enhanced Cheetah optimizer algorithm
Akbari et al.49 introduced the COA algorithm, drawing inspiration from the hunting techniques of cheetahs. 
This method integrates three primary strategies: prey search, ambush tactics, and active attacks. Significantly, 
it implements a mechanism to navigate away from a prey location and return to a home position, effectively 
avoiding entrapment in local optimal points. Each cheetah’s potential hunting patterns correspond to potential 
solutions for the problem at hand. The algorithm operates on the premise that the population’s best position 
determines the optimal solution, akin to identifying the prey. Cheetahs adapt their hunting patterns to enhance 
their performance over the hunting period. By mimicking these strategies, the COA algorithm49 effectively seeks 
optimal solutions for intricate problems.

When a cheetah scans its surroundings, it can detect potential prey, giving it the option to either wait for the 
prey to approach or to initiate an immediate attack upon spotting it. The attack itself involves two distinct phases: 
a rapid approach followed by capture. However, several factors might prompt the cheetah to abandon the hunt, 
such as low energy reserves or if the prey is too agile. In such scenarios, the cheetah might retreat to its resting 
spot, preparing for a fresh hunting opportunity. The cheetah carefully assesses the prey’s condition, the environ-
ment, and the distance involved before choosing between these strategies. The COA algorithm encapsulates 
this entire hunting process, relying on the strategic utilization of these tactics across multiple hunting cycles or 
iterations49. Essentially, the COA algorithm leverages these intelligent hunting strategies iteratively throughout 
the hunting process.

	 i.	 Searching: Cheetahs engage in scanning or active search within their territories or the surrounding area 
to locate prey within the search space.

	 ii.	 Sitting-and-waiting: Upon detecting prey but under unfavorable conditions, cheetahs may opt to sit and 
wait, allowing the prey to approach or for a better opportunity to arise.

	 iii.	 Attacking: This strategy involves two crucial phases:

a.	 Rushing: Once committed to an attack, cheetahs sprint toward the prey at maximum speed.
b.	 Capturing: Leveraging speed and agility, cheetahs capture the prey by closing in swiftly.

(35)Lt = (1− DRt)× LBase + Lst
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Figure 2.   Distribution of solar irradiance for solar PV.
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	 iv.	 Returning home and leaving prey: This strategy comes into play under two circumstances. Firstly, if the 
cheetah fails to catch its prey, it may choose to relocate or return to its territory. Secondly, when a certain 
time lapses without successful hunting, the cheetah may reposition itself to the last known prey location 
and conduct further searches in that area49. Detailed mathematical models for these hunting strategies 
are expounded upon in subsequent sections.

The CO algorithm has demonstrated strong capabilities in tackling expansive problems. However, as the 
upcoming experimental results will demonstrate, there remains an opportunity for improvement in terms of 
convergence speed and computational time, particularly when fine-tuning the parameters of photovoltaic mod-
els. To overcome these limitations, we present an upgraded iteration of the COA algorithm tailored explicitly 
to tackle these drawbacks.

Searching strategy
In the exploration phase of the COA algorithm, each cheetah adjusts its position by referencing its prior location. 
Cheetahs commonly follow the lead of the leader within their group. Expanding upon this notion, the search 
approach detailed in Eq. (16) is adapted based on the position of the group’s second-best cheetah, designated as 
Xt
L,j , influencing the modification process. This adjustment is detailed as follows50:

where the randomization parameter ( ̂rt ) and the random step length ( αt
i,j ) undergo modifications as follows:

The value of the randomization parameter ( ̂rt ) in Eq. (40) can be ascertained through the implementation 
of a sine map, where the initial values for Ct and a are specifically set at 0.36 and 2.8 as indicated in reference51.

where t  represents the current iteration number.
The random step length ( αt

i,j ) can be represented as

Here Xt
k′ ,j and Xt

i′ ,j are the positions of  kth and ith cheetahs in the sorted population, respectively.
Emphasizing the alignment of every cheetah’s position around the group leader plays a crucial role in the 

local search phase. Furthermore, the second term in Eq. (40) enhances solution diversity, actively aiding in the 
global search or exploitation phase. In addition, introducing substantial strides during the hunting phase via 
the random parameter extends solutions beyond variable ranges. Subsequently, these are substituted by fresh 
random solutions within the population. This dual purpose not only broadens the spectrum of solutions but also 
shields the algorithm from being stuck in local optimum points.

Attacking strategy
To bolster the optimization capabilities of COA algorithm, the researcher crafted the Enhanced Cheetah Opti-
mizer (ECOA) algorithm. This new approach combines principles inspired by Levy flights, mirroring the flight 
patterns observed in birds. Adopting a Levy flight-based approach for system identification offers expedited 
convergence without relying on derivative information40. This method employs stochastic random searches based 
on Levy flight concepts52. Integrating the Levy flight approach bolsters local search capabilities, mitigating the 
risk of local entrapment for the optimal solution52.

Furthermore, the attacking strategy within the ECOA algorithm undergoes reformulation as follows40:

where σ can be calculated as40:

The function Ŵ(x) represents the factorial of (x-1), while r1 and r2 denote indiscriminate numbers within 
the range of [0, 1]. For 1 < β ≤ 2 , a constant value (e.g., 1.5) for β is specifically applied in this research49. The 
symbol Levy(�) signifies step length, employing the Levy distribution characterized by infinite variance and a 
mean of 1 < � < 3 . � serves as the distribution factor, with Ŵ(.) representing the gamma distribution function.

Within the COA algorithm, the interaction factor considers the position of neighbouring cheetahs. Ordinarily, 
cheetahs hunt individually, adapting their positions in response to their prey’s whereabouts. Therefore, in this 
newly suggested attack strategy, each cheetah adjusts its position relative to the prey during the attack phase, 
advancing toward it following this formula50:
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This refined attack strategy significantly accelerates the COA algorithm’s ability to approach near-optimal 
solutions swiftly. It bolsters the algorithm’s local search prowess (exploitation phase), thus amplifying its con-
vergence speed. Figure 3 showcases the schematic of the enhanced Cheetah Optimizer Algorithm as proposed.

Results and discussion
Test system: I
The proposed approach has been deployed to address the dynamic economic dispatch problem, both with and 
without DSM. To gauge its effectiveness, optimization outcomes were compared against COA, GWO, CFCEP30, 
FCEP30, CCDE30, and HSPSO30. The MATLAB 9.12 software was utilized to implement the ECOA, COA, and 
GWO53 models on a Laptop with an AMD Athlon processor, 1 TB storage, and 3.0 GHz processing speed. The 
test system encompasses 10 thermal power plants, one equivalent wind turbine, a solar photovoltaic plant, and 
a pumped-storage hydroelectric plant. The scheduling spans 24 intervals, considering the valve-point loading 
effect on thermal generators. The input data, including bus data, PDF parameters, and cost coefficients, were 
gathered from a preceding study30. Notably, during intervals 11, 12, and 13, peak loads are identified, prompt-
ing DSM to redistribute 10% of the load from these hours to the 2nd, 3rd, and 4th intervals. It’s important to 
note that the pumped-storage hydroelectric (PSH) plant operates in generating mode specifically when both 
the power generated and discharge rate are positive. Conversely, it functions in pumping mode when pumping 
power and pumping rate are negative30.

The Weibull PDF parameters in this case are chosen from Ref.30. The direct cost coefficients, penalty cost 
coefficients, and reserve cost coefficients for wind power are sourced from literature30. Notably, the direct cost 
of renewable power is lower than the average cost of thermal power. Additionally, the penalty incurred for 

(46)βt
i,j = Xt

B,j − Xt
i,j
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Figure 3.   Flowchart of the proposed enhanced cheetah optimizer algorithm.
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underutilizing available wind power is less than the direct cost40. Examining the scheduled power range from 0 
to the wind farm’s rated power, Fig. 4 illustrate the variations in reserve, penalty, direct, and total costs for the 
two wind farms. The total cost comprises the combined direct, reserve, and penalty costs corresponding to the 
scheduled power. The direct cost shows a linear relationship with scheduled power; as scheduled power rises, a 
larger spinning reserve becomes necessary, leading to increased reserve costs and consequently driving up the 
overall generation cost. The penalty cost decreases, albeit at a slower rate, as scheduled power increases. Similarly, 
the cost variations for solar power over/under-estimation against scheduled power are portrayed in Fig. 5. The 
yearly operating and maintenance costs for solar PV power plants align within a comparable range to those of 
onshore wind power plants30. Lognormal PDF parameters for solar irradiance are adopted from Ref.30 as well. 
Furthermore, the direct cost coefficients, penalty cost coefficient, and reserve cost coefficient for solar power are 
also referenced from literature30. Yet, using the chosen PDF parameters for solar irradiance, the overall cost of 
solar power doesn’t follow a strictly upward trajectory.

The solar PV plant’s stochastic power output is shown as a histogram in Fig. 6. The solar PV system’s scheduled 
electricity delivery to the grid is shown by the red dotted line. As previously said, the schedule power can be any 
amount of electricity that ISO and the owner of the solar PV firm mutually agreed upon. Figure 7 represents the 
stochastic power generated by the wind farm. The red dotted line represents the scheduled electricity delivery 
to the grid by the wind farm. Tables 1 and 2 presents the optimal scheduling of the ten-unit system with and 
without DSM respectively. The best, average and worst cost and average CPU time among 100 runs of solutions 
acquired from the proposed ECOA, COA and GWO with and without DSM are summarized in Table 3. It is 
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observed from Table 3 that execution time for ECOA algorithm is lesser compared to COA, GWO, HSPSO, 
CCDE, FCEP and CFCEP. Reduced computation time enables more effective implementation of demand-side 
management strategies since quick response times are essential for implementing demand response programs, 
load shedding, or load shifting, contributing to improved demand-side management and grid reliability. Fur-
thermore, faster computation facilitates better integration of variable renewable energy sources by adapting 
quickly to their inherent variability.

Figures 8 and 9 illustrate the cost convergence patterns obtained from the proposed ECOA, COA, and GWO 
algorithms, both with and without DSM.

It is apparent from Fig. 8’s convergence characteristics that the proposed ECOA algorithm achieves con-
vergence after 163 iterations in the context of dynamic economic dispatch with demand-side management. In 
comparison, the conventional COA and GWO algorithms converge at the end of 167 and 172 iterations, respec-
tively. It is evident from Fig. 8 that the convergence behavior indicates the proposed ECOA algorithm reaches 
convergence after 170 iterations, while the conventional COA and GWO algorithms converge at the conclusion 
of 173 and 180 iterations, respectively. The findings suggest that the convergence of the proposed ECOA was 
not only swift but also exhibited a smoother trajectory compared to COA and GWO. Table 3 reveals that the 
operational cost is minimized when dynamic economic dispatch incorporates Demand-Side Management (DSM), 
as opposed to dynamic economic dispatch without DSM. Furthermore, the cost derived from the proposed 
ECOA remained the most economical among all methods. The achieved mean cost value closely approached 
the minimum, showcasing ECOA’s competence in reaching global optimal solutions. Moreover, Table 3 reveals 
that the proposed ECOA algorithm exhibits a lower standard deviation in comparison to COA and GWO. This 
reduced standard deviation suggests greater stability and consistency in the performance of the ECOA algorithm, 
highlighting its potential for reliable and predictable outcomes. Due to space limitations, results acquired from 
COA and GWO53 cannot be given here. A sensitivity analysis was performed based on 100 trial test runs. Table 4 
displays the results of the sensitivity analysis conducted for the proposed ECOA algorithm applied to Test System 
I and II. The results lead to the conclusion that a population size of 30 for the provided test system yields the 
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Table 1.   Optimal Scheduling of the 10-Unit System to Minimize Operational Costs without DSM.

Hour PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PW PPV PGH

1 56.369 101.93 76.486 80.001 52.265 68.002 112.16 210.77 202.29 133.42 146.26 0 − 100

2 46.265 113.78 74.847 106.8 94.454 120.01 137.14 5 199.91 189.57 149.41 174.97 0 − 100

3 52.414 112.68 69.1 121.12 81.051 68.034 132.65 145.02 178.07 170.41 169.45 0 − 100

4 36 99.134 60.854 111.65 97 98.343 185.82 138.13 169.51 138.55 175 0 − 100

5 66.575 69.426 78.941 122.58 70.484 92.821 180.76 149.93 161.96 199.06 175 2.4674 − 100

6 72.954 108.92 71.755 122.46 97 122.31 114.96 226.58 135 143.08 175 29.976 − 100

7 78.747 96.444 98.868 80 69.357 127.86 175.26 203.36 150.24 183.31 175 71.568 − 100

8 100.25 114 62.013 94.745 84.438 104.74 115.75 277.86 176.85 132.78 175 101.56 − 100

9 91.245 111.08 60.868 90.157 97 68.185 135.64 286.83 135.1 158.94 77.135 107.82 100

10 108.38 75.323 78.146 122.86 78.229 68 139.67 230.91 156.82 197.33 103.98 130.35 100

11 90.355 109.59 68.657 83.845 95.575 89.456 210.47 279.09 135.07 177.36 40.853 159.69 100

12 107.43 82.915 68.746 84.613 97 104.34 250.11 282.86 177.89 157.24 43.476 153.88 89.4996

13 107.46 89.675 82.648 92.879 69.059 137.39 177.46 215.91 135.8 133.63 126.7 135.28 96.1123

14 96.877 100.77 95.341 127.21 87.245 108.1 144.08 213.47 136.1 160.66 116.57 97.166 16.4035

15 88.568 88.228 94.776 112.25 89.325 91.954 120.18 198.84 137.13 163.38 81.161 87.363 86.8651

16 101.67 103.69 93.559 81.962 91.737 90.376 133.66 142.27 191.47 149.24 175.04 34.157 31.1899

17 114.57 87.975 77.885 125.06 97 119.18 187.05 156.86 150.02 167.37 25.976 40.137 30.9262

18 113.46 95.974 89.964 80.075 83.874 125.16 138.37 181.38 205.68 192.27 67.895 21.178 64.7108

19 114 81.986 76.897 132.86 97 100.13 141.26 157.62 235.66 163.45 154.16 9.2724 75.7171

20 87.264 93.894 60.285 104.74 87.787 139.96 206.25 159.79 284.16 174.53 89.179 0 22.1501

21 84.528 102.89 85.279 114.47 84.436 94.975 256.23 135.02 279.57 157.84 174.76 0 − 100

22 103.67 94.127 93.716 80.093 84.489 82.126 291.74 195.43 222.18 141.72 110.7 0 − 100

23 87.353 112.85 68.025 123.46 75.234 71.983 276.77 135 235.43 138.79 105.1 0 − 100

24 85.143 94.78 60.967 80.835 53.968 84.865 233.28 135.43 263.83 202.79 84.111 0 − 100

Table 2.   Optimal Scheduling of the 10-Unit System to Minimize Operational Costs with DSM.

Hour PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PW PPV PGH

1 113.7 83.48 106.1 80 47 135.5 149.9 135 135 145.1 109.2 0 − 100

2 60.68 69.39 120 80.53 72.38 89.99 151 196.5 149 155.5 125 0 − 100

3 114 99.98 74.57 87.96 97 125.1 110.5 202.5 136.5 148.9 103 0 − 100

4 40.02 53.86 71.01 103.9 95.61 130 240.6 131.1 209.2 131 103.8 0 − 100

5 101.31 96.177 60 80 97 93.483 201.58 198.64 135 130.28 175 1.531 − 100

6 102.81 114 61.806 95.321 72.751 124.92 160.41 148.68 191.15 148.88 175 24.27 − 100

7 114 91.751 66.466 108.5 76.599 128.21 123.23 150.68 211.03 190.24 175 74.31 − 100

8 110.92 114 60 80 97 96.356 165.78 139 240.71 151.57 175 109.67 − 100

9 114 88.635 86.921 74.294 96.905 140 110 135.89 137.96 245.44 147.83 116.05 26.077

10 113.85 114 101.02 80 82.989 104.15 184.55 148.97 290.22 135.33 63.874 131.94 39.1097

11 114 82.131 120 81.127 53.703 93.107 170.86 194.29 300 133.02 85.488 164.08 48.2002

12 101.42 114 106.43 80 72.706 68 125.77 145 299.75 272.43 22.025 185.61 106.8507

13 114 78.888 104.91 97.221 94.729 68.875 110 166.9 299.02 275.91 13.601 123.9 52.0403

14 105 44.822 79.712 80 89.245 96.126 180.52 156.42 227.41 135.82 115.46 105.86 83.6024

15 67.591 77.363 89.312 87.174 97 68 110 174.8 151.74 274.83 55.032 87.155 100

16 47.398 88.502 106.37 80 71.112 104.7 126.89 159.42 205.75 186.45 175 34.373 34.0362

17 40.223 114 69.957 118.79 65.547 68 110 197.81 245.52 134.55 171.04 38.106 6.461

18 73.747 86.484 60 158.79 47 80.794 120.09 240.26 205.37 156.99 116.79 21.503 92.1738

19 87.287 114 97.597 131.57 58.785 104.36 110 225.78 267.93 190.99 42.81 8.8921 100

20 114 85.367 74.886 190 75.73 68 149.87 209.86 210.02 182.92 49.344 0 100

21 105.67 114 60 136.68 97 110.69 190.37 231.68 288.45 176.74 58.713 0 − 100

22 77.876 106.99 76.672 141.57 96.762 68 255.35 201.76 236.08 131.4 107.55 0 − 100

23 93.923 82.877 78.265 88.772 91.786 82.301 175.74 195 300 142.37 98.957 0 − 100

24 86.877 70.656 60 80 77.523 80.593 152.24 249.7 238.26 171.97 112.19 0 − 100
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Table 3.   Statistical analysis of optimization results for test system – I.

Algorithm Minimum operating cost ($) Mean operating cost ($) Maximum operating cost ($) Standard deviation cost ($) Execution time (s)

With DSM

 CFCEP30 3,87,732 3,87,735 3,87,741 NA 23.9351

 FCEP30 3,88,213 3,88,218 3,88,226 NA 31.5054

 CCDE30 3,88,309 3,88,314 3,88,324 NA 33.1036

 HSPSO30 3,88,322 3,88,330 3,88,342 NA 37.0679

 GWO53 3,87,635 3,87,639 3,87,642 NA 24.6821

 COA 3,87,609 3,87,614 3,87,625 0.374 23.8047

 ECOA (Proposed) 3,87,595 3,87,603 3,87,615 0.185 21.1208

Without DSM

 CFCEP30 3,88,651 3,88,655 3,88,662 NA 22.3517

 FCEP30 3,89,059 3,89,064 3,89,073 NA 30.0548

 CCDE30 3,89,158 3,89,165 3,89,174 NA 32.5302

 HSPSO30 3,89,207 3,89,215 3,89,225 NA 35.9527

 GWO53 3,88,566 3,88,571 3,88,578 NA 23.6924

 COA 3,88,539 3,88,545 3,88,555 0.384 22.5736

 ECOA (Proposed) 3,88,525 3,88,533 3,88,545 0.128 20.3891
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Figure 8.   Characteristics of convergence in a 10-unit system without DSM.
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Figure 9.   Characteristics of convergence in a 10-unit system with DSM.
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global optimum for the test system—I. Consequently, the simulation outcomes firmly support the conclusion 
that the ECOA algorithm, as introduced in this study, holds significant potential for delivering high-quality 
solutions when contrasted with alternative algorithms.

Test system: II
This system comprises twenty thermal power plants, two similar wind power generation units, two equivalent 
solar photovoltaic (PV) facilities, and two pumped-storage hydroelectric plants. The data for this test system are 
derived by mirroring the information from test system 1. Notably, the power demand in this configuration is 
twice that of test system 1. Specifically, hours 11, 12, and 13 represent peak load periods. During Demand-Side 
Management (DSM), 10% of the load during the 11th, 12th, and 13th hours is shifted to the 2nd, 3rd, and 4th 
hours. The optimal scheduling of the 20-unit system with and without DSM respectively for the 20-unit system 
is presented in Tables 5 and 6. Tables 5 and 6 provides an analysis of the best, average, and worst costs and aver-
age CPU time for 100 runs of solutions obtained from the proposed ECOA, COA and GWO with and without 
DSM. Table 7 reveals that the computational time for the ECOA algorithm is notably shorter than that of COA, 
GWO, HSPSO, CCDE, FCEP, and CFCEP algorithms. This accelerated computational speed enables swift deci-
sion-making in the face of dynamic system conditions, including abrupt shifts in demand or renewable energy 
generation. Additionally, the proposed ECOA algorithm adeptly harnesses available renewable energy while 
safeguarding system stability, thereby optimizing the equilibrium between conventional and renewable genera-
tion. Furthermore, faster algorithms may require fewer computational resources, making them more efficient and 
cost-effective for implementation on various hardware platforms, including embedded systems or edge devices.

Figures 10 and 11 show the cost convergence characteristics obtained from planned ECOA, COA, and GWO54 
with and without DSM respectively. It is evident from Fig. 10’s convergence characteristics that the proposed 
ECOA algorithm achieves convergence after 221 iterations, while the conventional COA and GWO algorithms 
converge at the end of 226 and 230 iterations, respectively. It is noted from Fig. 11 that the convergence char-
acteristics indicate the proposed ECOA algorithm achieves convergence after 193 iterations in the scenario of 
dynamic economic dispatch with demand-side management. In contrast, the conventional COA and GWO algo-
rithms converge at the conclusion of 215 and 217 iterations, respectively. According to the findings, the proposed 
ECOA’s convergence characteristic was faster and smoother than those of COA and GWO. Table 6 showcases 
that the inclusion of DSM results in lower costs compared to scenarios without DSM. Furthermore, among all 
the approaches, the proposed ECOA exhibits the most economical cost. The achieved mean cost value was close 
to the lowest value. Table 7 illustrates that, in comparison to COA and GWO, the proposed ECOA algorithm 
displays a diminished standard deviation. This decrease in standard deviation implies enhanced stability and 
consistency in the performance of the ECOA algorithm, underscoring its potential for delivering reliable and 
predictable outcomes. This proves that ECOA has the efficacy to create a global optimal solution. The findings 
from COA and GWO cannot be presented here due to space restrictions. The outcomes of the sensitivity analysis 
for the proposed ECOA algorithm on Test System I and II are presented in Table 4. These results indicate that, 
for Test System II, a population size of 45 results in the global optimum. Based on the simulation outcomes, it is 
evident that the ECOA algorithm proposed in this study possesses a greater probability of generating superior-
quality results compared to alternative algorithms.

Conclusion and future research directions
The current study introduces an enhanced Cheetah Optimizer Algorithm that addresses the unpredictability of 
renewable energy sources and the involvement of pumped-storage hydroelectric units. This enhancement serves 
as a practical solution for real-life Distributed Energy Dispatching (DED) scenarios, both with and without 
Demand-Side Management (DSM). The proposed ECOA, COA and GWO are used to resolve two test systems. 
Optimization results indicate that the operational expenses associated with Demand-Side Management (DSM) 
are lower compared to those incurred without its implementation. Furthermore, research indicates that the 

Table 4.   Sensitivity Analysis for the test systems I and II. Significant values are in [bold].

Algorithm

Population size

10 20 30 40 50 60

Test System—I (With DSM)

 COA 4,46,643 4,46,834 3,87,609 3,95,344 3,98,753 4,14,628

 ECOA (Proposed) 4,41,012 4,42,982 3,87,595 3,94,746 3,97,534 4,10,122

Test System—I (Without DSM)

 COA 4,32,143 4,12,484 3,88,539 3,94,213 3,99,322 4,16,454

 ECOA (Proposed) 4,29,832 4,10,242 3,88,525 3,92,332 3,94,354 4,07,323

Test System—II (With DSM)

 COA 8,64,213 8,45,288 8,14,386 7,77,552 7,86,344 8,85,645

 ECOA (Proposed) 8,60,435 8,39,334 8,04,537 7,77,537 7,84,242 8,78,256

Test System—II (Without DSM)

 COA 8,75,534 8,41,898 8,17,747 7,80,897 7,95,586 8,89,528

 ECOA (Proposed) 8,73,638 8,39,575 8,10,686 7,80,884 7,92,672 8,76,821
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introduced ECOA algorithm surpasses COA and GWO in performance metrics. The proposed ECOA approach 
exhibits adaptability and reliability, making it a viable solution for tackling multi-objective energy management 
challenges within a microgrid, especially when integrating demand response mechanisms. Future endeavors will 

Table 5.   Optimal scheduling of the 20-unit system to minimize operational costs without DSM.

Hour PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13

1 108.1029 60.1923 60 80 65.7863 97.6835 110 243.5302 145.2416 152.3126 83.3058 114 60

2 91.0981 36 63.7358 120.6764 47 99.5283 136.876 268.6854 135 130 102.5503 88.656 63.2285

3 73.1295 62.1047 66.5134 104.0168 48.5109 68 152.8058 231.3161 138.095 147.1419 114 114 60

4 67.9991 61.5119 64.7481 143.5745 47 85.821 140.2162 173.3276 135 130 112.9842 104.4644 97.4367

5 55.6974 56.509 60 177.062 71.6839 68 110 141.3841 193.2149 181.3715 114 92.4425 107.5309

6 44.6613 36 96.4745 134.3154 47 101.5172 130.6187 183.95 224.7853 135.5623 109.524 92.9528 86.1058

7 36 47.8664 120 190 53.1942 68 110 135 187.9087 182.5007 114 77.3611 120

8 73.6868 36 80.7531 171.8098 47 83.0275 146.9289 206.5279 135 156.5039 94.1844 114 87.4071

9 36 37.9839 108.6906 149.5987 49.6962 69.2374 110 193.3063 202.5991 130 114 97.7036 120

10 100.123 75.1051 120 108.1616 54.7552 68 165.2875 264.2586 259.2461 135.0203 103.8804 114 81.0339

11 75.7331 84.9877 92.6434 143.843 59.2309 114.2713 173.4729 300 252.1301 130 114 95.2477 60

12 84.4967 114 60.6099 154.0953 47 68 220.019 249.6406 278.8747 186.6605 91.0165 114 90.4077

13 69.1382 78.4242 60 113.3671 72.1971 92.2096 195.6303 215.8091 251.3734 141.3433 68.9178 81.2684 92.2367

14 88.9082 39.8821 64.4997 111.7048 75.0528 68 184.3167 249.2074 174.928 170.7527 92.6253 114 60

15 110.8295 42.1354 60 80 47 98.8403 175.3106 300 135 138.4318 78.7269 110.7036 72.041

16 91.2153 84.9405 66.1724 102.4882 75.9566 68 115.5887 281.1194 150.5427 154.0954 39.487 108.3686 60

17 38.9726 38.0418 88.0523 84.1843 97 79.5784 110 228.1104 221.6327 132.5589 39.3133 78.9023 64.63

18 36 46.8847 60 127.9403 92.7418 68 189.4286 287.822 265.7663 160.604 62.6874 114 97.5153

19 63.4276 78.7592 70.2449 80 97 86.1347 110 244.202 263.8824 170.2554 82.2628 80.5542 64.8019

20 36 114 60 102.1573 87.574 88.2215 112.1325 164.829 212.2056 231.9443 114 41.632 64.1221

21 75.0578 109.423 88.6467 80 97 68 110 238.3878 221.6501 176.3759 107.3378 36 77.9447

22 36 105.323 120 103.0307 84.0713 107.3123 128.7362 213.149 188.2462 130 114 39.6238 69.2848

23 37.0253 88.2791 113.8247 80 70.2716 93.9824 196.5583 290.224 173.6683 141.358 97.3037 65.9074 73.0128

24 36 114 105.5582 121.169 52.0558 75.6393 163.4923 215.3294 138.8152 130 74.4361 76.183 60

Hour PG14 PG15 PG16 PG17 PG18 PG19 PG20 PW1 Pw2 PPV1 PPV2 PGH1 PGH2

1 80 47 68 110 177.1258 135 145.2984 168.7103 168.7103 0 0 − 100 − 100

2 84.3366 58.1412 70.1596 132.8084 135 179.2514 196.1092 150.5794 150.5794 0 0 − 100 − 100

3 81.6938 79.3056 68 110 183.0599 157.7592 190.5473 175 175 0 0 − 100 − 100

4 80 93.6586 83.87 167.1174 179.8135 135 206.2304 155.1132 155.1132 0 0 − 100 − 100

5 95.1894 97 68 181.5469 179.5619 141.6913 195.8725 175 175 1.1209 1.1209 − 100 − 100

6 124.2447 74.0307 95.2349 110 211.5975 172.0199 206.1434 175 175 36.6309 36.6309 − 100 − 100

7 113.2291 97 68 121.2502 284.3411 229.0946 183.0757 175 175 66.0891 66.0891 − 100 − 100

8 155.373 95.5338 110.8291 110.6361 217.1306 242.9829 148.2919 175 175 108.1967 108.1967 − 100 − 100

9 132.3259 97 138.1668 115.0341 176.8372 219.3531 150.0817 102.4631 102.4431 114.679 114.671 65.2941 92.8352

10 80 96.9051 128.9554 169.9397 209.8324 270.244 163.2031 70.0916 70.0966 135.0605 135.0605 1.0251 0.7143

11 105.4322 70.2628 81.9824 110 262.9495 256.2991 131.5255 72.8291 72.8091 161.8973 161.8973 65.8765 30.6793

12 131.7218 97 68 184.4151 218.9225 296.1273 194.0114 24.414 24.415 156.209 156.209 69.4251 20.3088

13 80 82.7181 97.8308 110 169.4343 300 163.1071 126.2277 126.2277 117.2148 117.2093 83.9202 94.1948

14 83.2266 97 75.0409 149.3401 135.9134 254.3718 195.7902 92.5371 92.5371 103.9221 103.9221 22.5207 100

15 135.6014 74.0102 68 110 148.6189 176.5508 182.4218 75.7884 75.7884 94.9903 94.9903 94.2207 100

16 81.3946 97 81.0251 115.7603 176.2134 135 165.3819 175 175 35.763 35.763 68.7235 100

17 90.2805 74.0399 80.7472 148.6343 135 160.5651 166.4329 175 175 33.4296 33.4296 86.4635 100

18 127.402 97 69.3392 200.3352 202.0722 210.5119 159.3673 80.3367 80.3367 23.8616 23.8616 35.1226 1.0621

19 80 86.8416 110.2013 230.3272 225.14 170.1286 225.3737 165.1055 165.7055 0.3878 0.3878 87.377 41.4986

20 118.1765 82.2929 140 281.0238 257.9843 229.77 236.5814 73.625 73.625 0 0 98.1028 100

21 125.2106 97 137.7453 232.1439 300 270.7243 201.5218 144.9152 144.9152 0 0 − 100 − 100

22 97.4715 94.3273 140 300 234.9859 288.2082 201.8611 102.1844 102.1844 0 0 − 100 − 100

23 141.6286 93.037 113.6687 228.0614 237.2991 300 169.1697 27.8599 27.8599 0 0 − 100 − 100

24 122.1083 97 86.2949 193.8073 264.365 270.0783 237.082 63.2929 63.2929 0 0 − 100 − 100
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involve exploring the capabilities of the enhanced cheetah optimization algorithm in addressing multi-objective 
optimization problems that encompass constraints. This investigation will specifically focus on navigating the 
trade-offs between conflicting objectives and constraints. Additionally, there is an opportunity to delve into 

Table 6.   Optimal scheduling of the 20-unit system to minimize operational cost with DSM.

Hour PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13

1 37.3128 113.8076 97.9928 80.0952 96.9905 68 175.9137 146.9246 167.0984 130.9087 36.9984 36.0176 93.5046

2 36 74.5683 119.907 89.2318 95.0956 101.2094 152.9806 154.5984 141.7792 184.5178 63.4197 62.9975 119.984

3 36.1197 112.8643 110.3084 81.7605 96.9014 131.5096 161.7571 135.8964 135.0853 131.0968 62.4208 95.148 106.5183

4 38.4291 88.5094 74.6193 90.4389 70.0581 139.7603 112.0816 198.0846 136.3087 205.4107 102.1917 101.4295 119.8981

5 36.0378 64.2761 60.0678 81.8924 47.0873 122.6198 158.5708 135.9815 135 157.1624 114 74.2763 110.5423

6 60.5084 102.2803 68.4642 120 54.4903 139.9728 110.0284 186.4127 197.6057 130 84.1791 81.9235 104.3547

7 36.0061 113.9284 60.1784 79.9823 47.0289 140 162.4973 135 239.9571 161.1096 114 114 95.654

8 39.4973 114 70.1287 115.6082 65.1803 139.8702 110 194.1197 216.3743 130 75.9201 89.606 120

9 36.1823 113.9835 88.9051 79.9851 47.1204 94.3806 117.371 135 239.0358 135.684 109.0012 67.7355 61.1097

10 67.0164 82.0184 60.2149 110.1268 54.7403 101.4972 110 206.0016 253.5906 143.5232 114 44.6623 120

11 89.5683 72.1096 87.6046 79.9653 70.6208 76.8705 136.6458 135 300 130 78.5271 36 100.5328

12 113.9805 93.4121 119.9706 102.9037 96.9825 115.0291 110 190.3009 235.7152 136.3359 114 63.1466 74.4287

13 86.8703 113.9786 120 80.0631 81.9317 68.0289 174.7342 135 209.5424 130 92.0238 36 103.3732

14 103.9038 84.5189 115.8753 126.9403 67.8047 100.4103 164.309 174.4941 217.245 199.975 114 72.0433 101.4909

15 101.2608 113.8728 117.3586 110.0237 82.7104 68.0375 110 242.7881 295.8536 130 75.2704 36 82.4004

16 97.4271 103.2914 110.0648 93.8236 87.6302 68 116.5027 192.3857 235.5748 148.084 88.6398 36.8851 84.6239

17 73.8902 113.9734 87.9256 80.0317 84.3516 68.1034 110 135 218.3567 130 97.3548 36 60

18 106.0299 80.1178 71.0974 97.2408 92.5073 107.6023 122.3339 187.9961 240.8119 178.3037 92.8131 66.4119 86.3314

19 113.1892 113.9841 80.0873 0.49503 96.9861 73.4058 140.4095 202.2621 243.3256 130 83.5021 97.722 60

20 53.2831 85.0235 64.9074 101.7126 95.1689 93.5189 209.1839 156.9075 300 166.5225 114 114 69.786

21 113.589 113.9748 86.7583 80.0638 96.9827 139.8923 226.012 135 277.9724 197.6992 104.9794 107.8184 60

22 83.9741 110.0328 71.6073 86.8309 97 134.1082 250.296 164.683 300 130 114 114 74.2884

23 111.3018 113.7943 69.5485 80.1074 96.9572 135.5708 195.3541 135 236.4314 131.077 91.3774 79.6101 60

24 82.8706 89.7031 67.2091 123.6673 85.4982 139.9984 212.4477 196.901 229.1149 130 99.1642 114 80.4807

Hour PG14 PG15 PG16 PG17 PG18 PG19 PG20 PW1 Pw2 PPV1 PPV2 PGH1 PGH2

1 80.9865 65.3868 135.7805 162.5987 299.9175 222.4703 145.7904 42.807 42.698 0 0 − 100 − 100

2 134.9542 54.1173 139.0863 124.6997 260.1784 250.0169 220.9632 143.9145 143.7784 0 0 − 100 − 100

3 188.5076 47.9876 102.1566 149.1296 297.9851 253.9012 152.9458 175 175 0 0 − 100 − 100

4 133.1037 71.8045 85.0932 199.5053 267.8705 180.7985 174.6051 175 175 0 0 − 100 − 100

5 80 97 117.8084 158.6468 238.736 239.1221 144.1009 175 175 8.5371 8.5371 − 100 − 100

6 85.5447 80.554 72.987 160.7096 188.0746 233.6558 155.6407 175 175 36.3077 36.3077 − 100 − 100

7 138.0218 97 68 216.4846 187.7225 202.1911 130.7652 175 175 65.2387 65.2387 − 100 − 100

8 100.6637 82.0863 78.9181 261.0531 255.0128 152.8245 148.1213 161.2237 161.1237 99.3363 99.3363 − 100 − 100

9 80 71.9432 68 254.7606 220.8481 149.0445 224.0972 146.7796 147.2496 114.5869 114.5869 81.395 41.2139

10 85.3087 47 97.1716 298.3814 188.7563 135 181.8477 108.8248 108.7248 136.4118 136.4118 88.7667 100

11 84.9246 64.217 68 245.5182 135 135.8734 228.0353 39.8849 39.8049 165.5604 165.5604 86.1753 100

12 88.3885 90.1177 123.071 198.5515 173.113 135.012 200.7906 32.4445 32.0545 154.3801 154.3801 47.9464 63.5473

13 80 74.9642 68 110 149.726 135 157.0464 119.355 119.355 138.6669 138.6669 68.4906 89.1846

14 114.0378 47 96.0641 165.5976 142.7678 191.4358 144.6205 103.6662 103.6662 97.0957 97.0957 51.2425 2.7032

15 80 69.4132 140 110 174.7635 135 182.6264 71.8047 71.9247 96.3721 96.3021 70.2559 15.9605

16 126.8792 58.5364 111.9376 130.9252 135 142.1664 145.0151 175 175 37.143 37.143 65.4135 36.9085

17 127.8299 97 113.4723 110 144.0982 135 130.4953 175 175 43.2377 43.2377 70.6439 100

18 84.1304 80.1879 130.585 178.8923 136.2552 173.9859 230.7839 128.7198 128.7198 24.8131 24.8131 30.428 38.0889

19 106.2855 87.4505 140 154.6307 295.6345 178.6413 193.8302 160.821 160.921 2.0812 2.0812 66.6929 95.5607

20 160.6522 73.2388 95.4266 180.8051 245.2812 169.7054 165.757 77.807 77.807 0 0 49.5079 100

21 146.4634 71.9394 80.0493 161.2413 205.8004 240.8837 142.8759 175 175 0 0 − 100 − 100

22 184.9398 47 115.8709 188.1886 214.9894 163.6858 140.3121 107.0969 107.0969 0 0 − 100 − 100

23 171.5641 72.9698 137.6944 191.1575 204.1894 239.0902 140.4945 83.3546 83.3546 0 0 − 100 − 100

24 113.1805 47 100.8866 139.4604 135 300 203.1523 35.1323 35.1323 0 0 − 100 − 100
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Table 7.   Statistical analysis of optimization results for test system—II.

Algorithm Minimum operating cost ($) Mean operating cost ($) Maximum operating cost ($) Standard deviation cost ($) Execution time (s)

With DSM

 CFCEP30 7,77,681 7,77,686 7,77,693 NA 35.0743

 FCEP30 7,78,212 7,78,217 7,78,227 NA 44.9034

 CCDE30 7,78,323 7,78,333 7,78,344 NA 47.0977

 HSPSO30 7,78,371 7,78,383 7,78,393 NA 48.5723

 GWO53 7,77,583 7,77,589 7,77,596 NA 34.8702

 COA 7,77,552 7,77,557 7,77,568 0.354 33.9125

 ECOA (Proposed) 7,77,537 7,77,542 7,77,553 0.105 32.7846

Without DSM

 CFCEP30 7,80,948 7,80,954 7,80,962 NA 33.3047

 FCEP30 7,81,265 7,81,271 7,81,279 NA 43.0541

 CCDE30 7,81,337 7,81,346 7,81,358 NA 45.1057

 HSPSO30 7,81,399 7,81,410 7,81,423 NA 45.9378

 GWO53 7,80,921 7,80,927 7,80,939 NA 33.3047

 COA 7,80,897 7,80,903 7,80,914 0.398 32.4092

 ECOA (Proposed) 7,80,884 7,80,890 7,80,902 0.092 31.2318
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Figure 10.   Characteristics of convergence in a 20-unit system without DSM.
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Figure 11.   Characteristics of convergence in a 20-unit system with DSM.
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hybridization with other optimization techniques, aiming to enhance convergence speed and improve solu-
tion accuracy. The suggested ECOA can be analyzed for its application in realizing the multi-objective optimal 
operation of bipolar DC microgrids. Furthermore, the suggested ECOA can be applied to elucidate the multi-
objective dynamic optimal power flow problem in multi-microgrid systems which involve the integration of 
electric vehicles and renewable energy sources.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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