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Surface‑enhanced Raman 
Spectroscopy in urinalysis 
of hypertension patients 
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Arterial hypertension (AH) is a multifactorial and asymptomatic disease that affects vital organs such 
as the kidneys and heart. Considering its prevalence and the associated severe health repercussions, 
hypertension has become a disease of great relevance for public health across the globe. 
Conventionally, the classification of an individual as hypertensive or non‑hypertensive is conducted 
through ambulatory blood pressure monitoring over a 24‑h period. Although this method provides 
a reliable diagnosis, it has notable limitations, such as additional costs, intolerance experienced by 
some patients, and interferences derived from physical activities. Moreover, some patients with 
significant renal impairment may not present proteinuria. Accordingly, alternative methodologies are 
applied for the classification of individuals as hypertensive or non‑hypertensive, such as the detection 
of metabolites in urine samples through liquid chromatography or mass spectrometry. However, the 
high cost of these techniques limits their applicability for clinical use. Consequently, an alternative 
methodology was developed for the detection of molecular patterns in urine collected from 
hypertension patients. This study generated a direct discrimination model for hypertensive and non‑
hypertensive individuals through the amplification of Raman signals in urine samples based on gold 
nanoparticles and supported by chemometric techniques such as partial least squares‑discriminant 
analysis (PLS‑DA). Specifically, 162 patient urine samples were used to create a PLS‑DA model. These 
samples included 87 urine samples from patients diagnosed with hypertension and 75 samples from 
non‑hypertensive volunteers. In the AH group, 35 patients were diagnosed with kidney damage and 
were further classified into a subgroup termed (RAH). The PLS‑DA model with 4 latent variables (LV) 
was used to classify the hypertensive patients with external validation prediction (P) sensitivity of 
86.4%, P specificity of 77.8%, and P accuracy of 82.5%. This study demonstrates the ability of surface‑
enhanced Raman spectroscopy to differentiate between hypertensive and non‑hypertensive patients 
through urine samples, representing a significant advance in the detection and management of 
AH. Additionally, the same model was then used to discriminate only patients diagnosed with renal 
damage and controls with a P sensitivity of 100%, P specificity of 77.8%, and P accuracy of 82.5%.

Abbreviations
AH  Hypertensive
HV  Controls without a diagnosis of hypertension
RAH  Hypertensive with a diagnosis of kidney disease
VIP  Variable importance in projection
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PLS-DA  Partial least squares-discriminant analysis
DBP  Diastolic blood pressure
SERS  Surface-enhanced Raman spectroscopy
KD  Kidney disease
CVD  Cardiovascular disease
DM  Diabetes mellitus
AuNPs  Gold nanoparticles
Cal  Calibration
CV  Cross validation
Pred  Prediction
ROC  Receiver operating characteristic curve
DLS  Dynamic light scattering
2ndD  Second derivative
LV  Latent variables
SenCal  Sensitivity calibration
SenCV  Sensitivity cross validation
SenPred  Sensitivity prediction
SpeCV  Specificity cross validation
SpePred  Specificity prediction
AccCal  Accuracy calibration
AccCal  Accuracy calibration
AccPred  Accuracy prediction

Arterial hypertension (AH) is defined as persistently elevated blood pressure, such as systolic blood pressure 
of ≥ 130 mmHg and/or diastolic blood pressure (DBP) of ≥ 90 mmHg, taken as an average of three correctly 
measured  readings1–3. Furthermore, AH has been closely associated with different alterations, considering the 
intrinsic systemic nature of blood circulation, which frequently affects the kidney to lead to the development of 
kidney diseases (KDs)4 that encompass a great heterogeneity of pathophysiological processes that often coexist 
and overlap with others. Hypertension and KD are interrelated, and both can be the cause and/or consequence 
of each  other5.

AH can induce kidney damage through damage to the blood vessels, sodium dysregulation, increased sym-
pathetic nervous system, scar formation, and hardening of the glomeruli. At the cellular level, hypertension can 
induce significant metabolic changes that contribute to these pathological effects. These changes may involve 
increased production of reactive oxygen species, the activation of the renin–angiotensin–aldosterone system, 
and the alteration of the levels of various metabolites. These metabolic changes can trigger the accumulation of 
toxic waste products and the dysfunction of kidney  cells6. In several cases, most people with AH do not present 
signs or  symptoms7, thereby making it a silent disease. AH is a global public health concern because the num-
ber of cases worldwide has increased from 650 million to 1,280 million in the last 30  years8, and approximately 
one-third of adults are estimated to have  hypertension2. Moreover, as per the World Health Organization, an 
alarming 46% of hypertensive adults remain unaware of their  condition7, and tragically, 8.5 million deaths have 
been attributed to the association of hypertension with other  comorbidities8.

Although the AH diagnosis is simple (it is made through conventional blood pressure measurements in a 
medical office or through ambulatory blood pressure monitoring), the devices for such measurements must be 
validated according to standardized conditions and protocols. In addition, the possible masking effect due to the 
white-coat effect, the discomfort in some patients due to the follow-up time, and the limited availability of access 
to health systems make it challenging to identify hypertension in certain patients. Therefore, technological tools 
that can facilitate the classification of hypertensive patients through urinalysis in populations at a higher risk 
of developing kidney damage due to hypertension can contribute to the clinical characterization of the popula-
tion to support decision-making. This study developed a methodology for classifying hypertensive patients by 
analyzing urine samples using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanoparticles 
(AuNPs) and supported with multivariate statistical analysis (chemometrics).

Raman spectroscopy is an optical spectroscopic technique based on inelastic scattering, which is defined 
by the shifting energy. This shift is calculated by the difference between the energy of incident photons and the 
energy of emitted photons, which is equivalent to the vibrational mode energy of the interrogated  molecules4. 
Raman spectroscopy offers the advantages of minimal treatment of samples, minimal interference by water 
molecules, and nondestructive and automatable sample analysis, among  others9. Another advantage of using 
Raman for this assay is the possibility of finding spectral markers (functional groups) associated with hyperten-
sion patients, which could aid in elucidating the mechanism by which hypertension affects the urine chemical 
environment. For this reason, the direct analysis of urine samples is of great interest. Nonetheless, the Raman phe-
nomenon suffers from a disadvantage in that its occurrence probability is weaker than that of other techniques, 
such as infrared spectroscopy. However, this limitation can be overcome by employing SERS. The implementation 
of AuNPs is useful owing to their plasmonic properties that enhance the Raman signal on the order of  104–109 
times, thereby providing greater sensitivity. In addition, multivariate statistical analysis provides evidence of 
pattern differences in the spectral signals from complex matrices such as urine samples.

The applications of Raman spectroscopy have attracted interest as a promising alternative technique to address 
certain disadvantages in diagnosing  pathologies9. For example, SERS methodologies have been used for the 
detection of different types of  cancer10–12 from urine samples, such as breast  cancer13, prostate  cancer14, and 
colorectal  cancer15, and conventional Raman spectroscopy has been used to detect cervical  cancer16. Other 
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studies have used Raman spectroscopy for the diagnosis of kidney damage by evaluating metabolites from urine 
samples, such as albumin for diabetic  patients17; creatinine, urea, and glucose for hypertensive diabetic  patients18; 
hydroxybutyrate, alanine, creatinine, and porphyrins for the diagnosis of renal  failure19; and SERS analysis to 
determine proteinuria from urine  samples20. In particular, SERS with silver nanoparticles has been used to 
determine hypertension in blood samples. It evaluates the changes in erythrocytes generated by  hypertension21 
The biochemical analysis of urine samples is performed for the classification and diagnosis of healthy people 
and those with diabetes and hypertension by using Raman  spectroscopy22, and the noninvasive and prospective 
diagnosis of coronary heart disease from urine samples is performed by using SERS based on the detection of 
platelet-derived growth factor-BB23.

In this study, we have proposed a direct model for the identification of hypertensive patients through 
enhanced Raman signals in urine samples coupled with AuNPs, supported by the chemometrics technique Partial 
Least Squares-Discriminant Analysis (PLS-DA). This alternative methodology for molecular pattern detection 
in urine samples associated with hypertension allows the distinguishing of hypertensive from nonhypertensive 
patients based on the spectral patterns obtained from the urine samples. The PLS-DA models were validated 
and evaluated for their sensitivity, specificity, and accuracy, among other variables.

Materials and methods
Materials
Hydrogen tetrachloroaurate (III) trihydrate  (HAuCl4·3H2O) ≥ 99.9%, Sigma‒Aldrich (St Louis, MO USA); 
sodium citrate dihydrate, granular  (C6H5Na3O7·2H2O) 99.3%, J. T. Baker–Fisher Scientific (Edo. de Mex. Mex-
ico), MiliQ water Arium Comfortm, Sartorius AG (Göttingen, Germany); CLARIO Starplus spectrophotometer 
(BMG-LABTECH The Microplate Reader Company, Ortenberg Germany); Zetasizer LAB (Malvern Panalytical 
a spectris company, United Kingdom). Raman 785 L, Wasatch Photonics (Orlando, FL, USA).

Patients, sample collection, and storage
The Ethics Committee of Universidad Simón Bolívar, Barranquilla–Colombia, approved this study. In addition, 
written informed consent was obtained for the collection of urine samples from all study subjects (approximately 
30 mL for each patient). A total of 162 urine samples were collected from volunteer patients who attended the 
clinic (Clinica de la Costa, Barranquilla–Colombia), including 87 AH patients and 75 healthy volunteers. The 
collected urine samples were identified and labeled AH_N° patients for those with a diagnosis of AH and HV_N° 
patients for healthy volunteers. Then, the urine samples were separated in aliquots of 500 µL and stored at − 80 °C 
until further analysis. In the AH group, 35 patients were diagnosed with kidney damage and were further 
classified into a subgroup termed (RAH). Of the 162 urine samples, 122 were used to generate the prediction 
model, and 40 were used for external validation. The separation of the samples for the training (to generate the 
prediction) and external validation of the model was performed randomly, assigning 75% for training and 25% 
for the validation of the model.

Synthesis and characterization of AuNPs
AuNPs were synthesized following the protocol described by Hermanson et al.24, albeit with some modifica-
tions. AuNPs were prepared via chemical reduction of 20 mM  HAuCl4(III) solution using sodium citrate 2% 
(w/v). Briefly, 1250 µL of 20 mM  HAuCl4 was added to 100 mL of boiling Type 1 water under constant stirring 
at 400 rpm. Then, 500 µL of sodium citrate 2% (w/v) was added to the solution and stirred continuously for 
30 min. The color change of the solution indicated the formation of monodisperse colloidal gold particles. The 
AuNPs were further characterized by determining their absorption maximum with a UV–Vis scan at 350–800 nm 
(CLARIO Starplus) and by determining the hydrodynamic radius of the colloidal solution through dynamic 
light scattering (Zetasizer)25–28.

Urine sample preparation and SERS measurements
The urine sample aliquots were unfrozen for approximately 30 min at room temperature, and the individual 
urine samples were homogenized before acquiring their Raman spectra. For the SERS measurements, 150 µL of 
urine was mixed with 150 µL of AuNP solution. Then, 200 µL of the mixture (urine-AuNPs) was centrifuged at 
2000 rpm for 5 min to generate a pellet at the bottom of the centrifuge tube. The generated pellet was dissolved 
in 50 µL of Type 1 water, and a drop of 5 µL of the urine-AuNP mixture was deposited on a copper plate, after 
which the Raman spectra were measured by focusing a 785 nm laser inside the drop. The integration time was 
1 s, with a laser power of 100 mW. Five Raman spectra were also acquired and averaged in order to have one 
spectrum for each sample.

PLS‑DA model
Chemometric analysis was performed by using MATLAB® 8.6.0.267246 (R2015b; Math Works Inc. Natick, USA) 
and PLS Toolbox 8.1 (Eigenvector Research, Inc., Wenatchee, WA, USA). PLS-DA is a classification technique 
derived from the Partial Least Squares (PLS) algorithm. It identifies latent variables that best separate classes 
in a multivariate space. The PLS-DA algorithm takes the original predictor variables and transforms them into 
a new set of variables, known as latent variables. These latent variables are mathematical constructs derived 
from the original variables, designed to capture the maximum amount of relevant information regarding the 
observed variation in the response variable’s classes. This method is particularly useful for datasets with many, 
possibly correlated, predictor variables and for situations where the predictors outnumber the observations. In the 
evaluation of the performance of predictive models such as PLS-DA, accuracy, sensitivity and specificity are key 
metrics. Accuracy reflects the overall correctness of the model, indicating the proportion of correct predictions. 
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Sensitivity, or the true positive rate, measures the model’s ability to correctly identify actual positives, which is 
crucial for not missing cases in scenarios like disease screening. Specificity, or the true negative rate, assesses the 
model’s capacity to dismiss non-cases, preventing false alarms correctly.

In this study, the spectral data of different samples were preprocessed using different preprocessing such as 
standard vector normalization (SNV), multiplicative scattering correction (MSC), derivative, and combinations 
of the derivative and the priors. the best result was the 2nd derivative (2ndD; order: 2; window: 15 pt; tails: poly-
interp)29, which effectively highlights the maximums and minima of the spectral variables within the Raman 
spectra of urine samples from both healthy subjects and hypertensive patients, additionally 2nd derivative is for 
correcting baseline distortions in the Raman spectrum.

These models were evaluated through the parameters of the confusion matrix, such as sensitivity, specificity, 
and precision for cross-validation (CV), and prediction of sample by external validation (P)30. In addition, the 
area under the receiver–operator curve (ROC), which is a probability curve that displays the performance of 
a classification model, was applied. A ROC curve is a graphical plot that illustrates the diagnostic ability of a 
binary classifier system as its discrimination threshold is varied. It is created by plotting the true positive rate 
(sensitivity) against the false positive rate (1 − specificity) at various threshold settings. The area under the ROC 
curve (AUC) is a measure of the model’s ability to correctly classify the outcomes. The closer the curve follows 
the left-hand border and then the top border of the ROC space, the more accurate the test. Conversely, a curve 
that lies close to the diagonal represents a random guess. Furthermore, an analysis of variable importance in 
projection (VIP) was executed to identify the spectral variables contributing significantly to the discrimination 
between classes. A higher VIP score suggests that a variable is important for the model, and these scores are 
often used to select features during the process of model optimization. Variables with VIP scores greater than 1 
are typically considered significant.

Compliance with guidelines and regulations
We would like to confirm that all procedures and methodologies used in this study were carried out in strict 
compliance with the relevant guidelines and regulations as stipulated by the journal’s editorial policy. Addition-
ally, this study has been approved by the Simon Bolivar University ethics committee (PRO-CEI-USB-0425-00), 
ensuring the integrity and ethics of our research. We have taken all necessary precautions to ensure that the 
methods employed are consistent with established standards and to guarantee the validity and reproducibility 
of our results. We have obtained all required permissions and have ensured that our methods are transparent, 
ethical, and rigorous.

Results
Synthesis and characterization of AuNPs
AuNPs were synthesized as per the protocol of Hermanson et al. (2013), albeit with some modifications. A color 
change of the suspension from light yellow to dark blue to red was observed for monodisperse colloidal AuNPs. 
The optical property (plasmon resonance) of the AuNP solution was verified with a maximum absorption at 
530 nm, corresponding to AuNPs approximately < 50 nm in size (Fig. 1A). In addition, the AuNP particle size 

Figure 1.  Synthesis and characterization of AuNPs: (A) Maximum adsorption of AuNP solution (blue line, 
NP), urine AH patients with AuNP solution (yellow line, AH), urine HV patients with AuNP solution (green 
line, HV) and urine HV patients diagnosed with kidney damage RAH (red line, RAH). (B) Particle size 
distribution of AuNPs solution polygon color blue, urine AH patients with AuNPs polygon color yellow, urine 
HV patients with AuNPs polygon color green and urine RAH patients with AuNPs polygon color red. Tables 
inserted in the figures: sensitivity and specificity for cross-validation (CV) and external validation (P).
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distribution was measured by dynamic light scattering (DLS) using Zetasizer LAB equipment. The AuNP particle 
size distribution was 37 ± 1 nm (Fig. 1B).

PLS‑DA models
Three PLS-DA models were generated; the first PLS-DA model was created with the absorbance data of the vis-
ible spectrum of AuNPs. Figure 1A displays the visible spectrum of AuNPs (blue line, NP), urine AH patients 
with AuNP solution (yellow line, AH), urine HV patients with AuNP solution (green line, HV) and urine RAH 
patients with AuNP solution (red line, RAH). Figure 1A shows that when the AuNPs are mixed with urine, a new 
absorption band appears, which may be attributed to the interaction of the AuNPs with the existing metabolites 
in urine, possibly due to an agglomeration generated in the sample. The sensitivity and specificity for cross-
validation (CV) and external validation (P) for this model were 0.70, 0.75, 0,63, and 0,61, respectively (see table 
inserted in Fig. 1A); these values indicate acceptable discrimination, suggesting that the concentrations and the 
type of metabolites in urine differ between HV patients and AH patients. A second model PLS-DA, based on the 
size distribution data, was obtained by DLS, as verified by the size of the AuNP clusters with urinary metabolites 
measured by DLS (see Fig. 1B), giving a sensitivity and specificity of 0.67, 0,64, 0,50, and 0,79, respectively (see 
table inserted in Fig. 1B).

A third PLS-DA model was generated using the second derivative of SERS spectral data of urine samples 
from HV and AH patients. The root-mean-standard error for cross-validation (RMSECV) of the model to dif-
ferent latent variables was 0.413, 0.357, 0.299, 0.237, 0.261, and 0.285 and the lowest error value was with an 
error of 0.237 with 4 latent variables. The root means square error of calibration (RMSEC) of 0.2269. The model’s 
performance was evaluated through the parameters of the confusion matrix, such as sensitivity and specificity. 
Sensitivities and specificities were calculated for the cross-validation (CV), and validation external (P) of predic-
tion  models31. The results indicated a sensitivity of CV of 0.769 (76.9%), sensitivity P of 0.864 (86.4%), specificity 
of CV of 0.772 (77.2%), specificity of P of 0.778 (77.8%), accuracy of CV of 0.770 (77.0%), and accuracy P of 
0.825 (82.5%) (see Table 1). The same model was then used to discriminate only patients diagnosed with renal 
damage and controls, and a new confusion matrix was generated; the sensitivity and specificity were found to be 
better than for discrimination considering hypertension (see Table 1). The results for RAH have a sensitivity of 
CV of 0.843 (84.3%), sensitivity P of 1.000 (100.0%), specificity of CV of 0.772 (77.2%), specificity of P of 0.778 
(77.8%), accuracy of CV of 0.795 (79.5%), and accuracy P of 0.825 (82.5%).

In addition, the ROC curve of the third PLS-DA model was generated to verify how strong the contribution 
of the spectral variables was with respect to the classification of HV, AH, and RAH patients. The ROC curve was 
evaluated with the specificity and sensitivity parameters for the CV and P model for AH + RAH (see Fig. 2A), 
and RAH (see Fig. 2B), with an AUC for CV of 0.835 (83.5%) and 0.870 (87.0%), respectively; and for P is 0.907 
(90.7%) and 0.90.1 (90.1%), respectively. Figure 2C,D show the value predicted for AH in the classification of 
patients into two classes, HV and AH (with the RAH subclass), of the model classification for hypertension. In 
addition, the contribution of LV scores in the classification of patients displays two well-defined classes of HV 
and AH patients using a graph of scores with only the first 4 LVs. Notably, even with the obtained sensitivity 
and specificity, it was necessary to conduct validation to evaluate the clinical efficacy of the classification model 
for hypertensive patients.

Several machine learning methods were also tested, such as Logistic Regression, SVM, Random Forest, KNN, 
Decision Tree, Gradient Boosting, MLP, AdaBoost, Gaussian Naive Bayes, and Ridge Classification. We found 
that there was no significant improvement in the results. (see Supplementary Material).

To identify the significant spectral bands for the model, the VIP scores > 1 were identified and compared with 
the average Raman spectra and the signals generated by the [2ndD] preprocess (Fig. 3). A comparison of the 
spectrum (data) average of the urine samples from HV with AH was generated (Fig. 3A). Considerable variations 

Table 1.  PLS-DA classification confusion matrix for hypertensive models.

Hypertensive model

AH, RAH HV Sensitivity Specificity Accuracy

Confusion table (cross validation)

 Predicted as AH, RAH 50 13 0.769 0.772 0.770

 Predicted as HV 15 44

Confusion table (prediction)

 Predicted as AH, RAH 19 4 0.864 0.778 0.825

 Predicted as HV 3 14

Hypertensive diagnosis with kidney damage model

RAH HV Sensitivity specificity Accuracy

Confusion table (cross validation)

 Predicted as RAH 22 13 0.846 0.772 0.795

 Predicted as HV 4 44

Confusion table (prediction)

 Predicted as RAH 9 4 1.000 0.778 0.852

 Predicted as HV 0 14
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were observed in the presence and intensity of spectral peaks in different regions between 400–570, 600–800, 
900–1170, and 1200–1400  cm−1. When performing second-derivative preprocessing, as shown in Fig. 3B, the 
different spectral bands were highlighted, with the observation of the highest intensities in the spectral ranges 
600–800, 970–1050, and 1300–1350  cm−1.

VIP is the measure that indicates the variables that are important and displays their contributions to the 
model. It helps to select the variables that will be used to develop the predictive model. The calculation of the 
VIPs of the variables is conducted by means of the weighted sum of the squared correlations between the com-
ponents and the original variable and whose weightings correspond to the percentage variation explained by 
the PLS-DA component in the  model32,33.

The VIP scores help identify the most important spectral regions that contribute to the optimal performance 
of the  model33.

In the VIP scores of the Raman spectra matrix of urine samples for the classification model of hypertensive 
patients, 36 bands were identified that exceeded the limit value, some contributing to the classification model 
with more weight than others. A total of 36 Raman spectral bands that contribute to the PLS-DA classification 
model were assigned tentatively, according to the literature, and the bibliographic references of the main Raman 
bands in urine samples from HV and AH (Table 2).

Examining the 36 spectral bands that exceeded the VIP score threshold, the analysis showed that 19 bands had 
VIP scores between 1 and 2, indicating a moderate impact on the model. Additionally, 8 bands registered more 
pronounced VIP scores > 2.0, specifically at Raman shift 660, 726, 993, 1008, 1026, 1037, 1327, and 1342  cm−1. 
These notable bands correspond to functional groups associated with essential biomolecules such as DNA, 
RNA, amino acids, proteins, carbohydrates, and uric acid, as confirmed by scientific literature (see Table 2). 
The differences in the levels and types of these metabolites between classes suggest metabolic changes that may 

Figure 2.  (A) The ROC curve of the hypertensive model, (B) ROC curve of the hypertensive diagnosed with 
kidney damage model: cross-validation (black line) and prediction (red line). (C) Classification of patients 
according to Y predicted the cross-validation (D) Classification of patients according to Y predicted the external 
validation, the green points for HV, the red points for AH, and the blue points for RAH.
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be associated with an inflammatory response characteristic of hypertension, with subsequent effects on kidney 
function and possibly other organs. The analysis underscores the pertinence of urinary DNA, which encompasses 
DNA fragments shed from damaged or necrotic cells. In hypertensive conditions, elevated blood pressure can 
inflict mechanical and metabolic stress on renal tissues, instigating cellular demise and the subsequent liberation 
of DNA into the  urine38. The detection of urinary non-coding RNAs (ncRNAs) and changes in amino acid and 
protein profiles reveal the complex interactions within the body’s structural and functional systems, particularly 
in the milieu of hypertension and its renal manifestations. These findings highlight how an alteration in a specific 
organ, such as the kidney in hypertension, can arise from multiple causes and manifest in heterogeneous effects 
both locally and systemically, as exemplified by conditions such as acute kidney injury (AKI). Furthermore, 
this research reveals the intricate interrelationship between the genome and epigenome and how these genetic 
and epigenetic influences are reflected in phenotypic characteristics, having significant implications for organ 
 health39–41. Additionally, the presence of urinary uric acid can provide information on the balance between uric 
acid production and excretion. In hypertension, elevated uric acid levels in the urine may reflect an overproduc-
tion or decreased renal excretion of uric  acid42.

Discussion
Hypertension is a silent disease that is associated with other comorbidities, accounting for 8.5 million deaths 
 worldwide8, with a national prevalence in Colombia of 9.08% per 100  inhabitants43. The effect of hypertension 
on the clinical implications of kidney disease and chronic diseases makes it critical to search for tools that allow 
early and easy classification of patients with high blood pressure to prevent potential hypertensive kidney dam-
age. This study aimed to develop a noninvasive, rapid, and sensitive method for the diagnosis of AH based on 
urine analysis using AuNPs and Raman spectroscopy. Enhanced Raman spectroscopy can be used to classify 
hypertensive and nonhypertensive patients quickly, simply, and economically. We hypothesized that the urine 
of hypertensive patients presents biochemical changes that can be detected by using AuNPs as Raman signal 
enhancement agents and by using PLS-DA as a multivariate classification method.

This study is relevant in its endeavor to develop alternatives to the conventional technique of blood pressure 
measurement for the diagnosis of a condition due to AH, which is a chronic disease that affects millions of people 
across the world and involves a high risk of developing cardiovascular, renal, and cerebrovascular diseases. In this 
study, we innovated the combined use of AuNPs and Raman spectroscopy as a photonic technique that facilitates 
the provision of chemical and structural information from biological samples without any prior preparation or 
the use of chemical reagents. AuNPs act as Raman signal enhancement agents by inducing an effect known as 
SERS, which increases the intensity of the spectrum by up to five orders of magnitude, thereby allowing detec-
tion of the molecules even at trace levels.

Our study used enhanced Raman spectroscopy to distinguish healthy patients from hypertensive patients 
and to detect the differences between the molecular composition of the urine of these patients. Moreover, the 
Raman spectra and PLS-DA allowed the classification of urine samples of the two classes under the study owing 
to the exclusive spectral characteristics of these samples that facilitated molecular assignments possible to the 
spectroscopic signals (Table 2). As seen in this table, several bands displayed highly significant scores that con-
tributed significantly to the model, without leaving aside the bands that presented lower scores as they could be 
significant. This analysis was not based on a single factor or molecular pattern but rather on a combination of 

Figure 3.  Relationship of Raman spectra with preprocessing and representative spectral bands: (A) Average 
data spectrum Raman (Baseline and Standard Normal Variate Scaling (SNV)) from AH (solid orange line) and 
HV (solid blue line). (B) Average of second-preprocessing data spectrum Raman from AH (solid orange line) 
and HV (solid blue line). (C) VIP scores > 1 of the Raman spectra matrix of urine samples-AuNPs (solid blue 
line).
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several factors, and the relevant information could be extracted from the Raman spectra through PLS-DA, which 
makes it possible to demonstrate the difference between HV and AH urine spectra and attribute the variations 
in the molecular patterns.

In the application of the PLS-DA model to classify hypertensive patients and healthy subjects, it was found 
that in a group of patients who were detected positive for hypertension with the conventional diagnostic tests, 
86.4% gave positive results with this model, and in the group of patients who gave negative results with the 
conventional technique, 77.8% were deemed negative with the PLS-DA model. The present results for both 
specificity and sensitivity displayed values suitable as a proof of concept that promotes further larger-scale 
studies toward developing more robust models that guarantee accurate diagnosis. In addition, the present PLS-
DA model could identify hypertensive patients with kidney damage, which propels the investigation of a new 
line of study. It is important to identify hypertensive patients with kidney damage, as they have a higher risk of 
progressing to chronic kidney failure or developing cardiovascular complications, which may necessitate renal 
replacement therapy.

In addition, in a clinical setting, the proposed method can be applied for the management of hypertensive 
patients with kidney damage, such as the possibility of adjusting antihypertensive treatment by preventing or 
delaying the progression of kidney damage, monitoring response to treatment, or evaluating long-term prognosis. 
In the future, the proposed method should be optimized, such as with the use of other urinary biomarkers that 

Table 2.  VIP scores matrix spectra Raman urine samples. n.r., not resolvable. Significant values are in bold.

Signal Value VIP scores Urine peaks  (cm−1) Possible assignment

1 1.68 302 n.r

2 1.41 326 n.r

3 1.32 432 n.r

4 1.77 531 S–S stretching  protein14

5 1.21 607 Creatinine,  glycerol34,35

6 1.79 630 Glycerol, C–S gauche amino acid  methionine35

7 1.25 642 Uric acid, C–C twisting mode of  tyrosine15,35

8 2.07 660 C–S stretching mode of cystine collagen type II17,35

9 1.91 706 N–H Uric acid, C–S trans amino acid  methionine16,35

10 2.35 726 DNA/RNA bases, hypoxanthine, C–S protein, CH2 rocking adenine15,35

11 1.24 770 Alanina19

12 1.97 786 Ring vibration cytosine, DNA O–P–O uracil,  thymine16,35

13 1.31 801 Backbone geometry and phosphate ion  interaction35

14 1.33 828 Glutathione, tyrosine  PO2 stretch DNA phosphodiester, O–P–O stretching DNA/
RNA15,35

15 1.49 894 Phosphodiester  deoxyribose35

16 1.52 907 Creatinine, creatine,  hydroxibutyrate34

17 1.34 935 C–C stretching mode of proline and valine and protein  backbone34

18 2.16 993 Ring vibration uric acid, phenylalanine16

19 6.53 1008 N–C–N stretching urea, phenylalanine34,35

20 2.23 1026 C–H stretching phenylalanine14

21 2.85 1037 n.r

22 1.32 1064 Skeletal C–C stretch of  lipids35

23 1.25 1089 Po2 stretch, phosphate, histidine, nucleic  acid15,16,35,36

24 1.47 1100 C–C vibration mode of the gauche-bonded chain, amide  III35

25 1.97 1121 C–N stretch protein backbone, vibrations C–O, C–C, C–N uric  acid16,37

26 1.76 1146 C–C lipids, fatty  acid35,36

27 1.68 1271 Amide III band in protein, amide III C–N stretch, C=C fatty acid, typical 
 phospholipids35

28 1.35 1292 Interring stretching,  cytosine35

29 1.47 1306 CH3/CH2 twisting or bending mode of lipid/collegen35

30 2.40 1327 CH3CH2 wagging mode in purine bases of nucleic acids35

31 3.25 1342 CH3, CH2 twisting nucleic acid, wagging protein, G(DNA/RNA), CH deformation 
protein and carbohydrates14,35,37

32 1.32 1378 Ring breathing modes DNA,  paraffin16,35

33 1.62 1404 CH  deformation35

34 1.71 1417 C=C stretching in quinoid  ring35

35 1.17 1428 CH2 creatinine,  valine15,17

36 1.20 1479 Amide  III35
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may be related to hypertensive kidney damage, the use of other metal nanoparticles that may have a different 
SERS effect, or the use of other statistical techniques that may optimize the classification model.

Data availability
All data sets generated for this study are included in the manuscript/supplementary files.
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