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Embracing firefly flash pattern 
variability with data‑driven species 
classification
Owen Martin 1,2,8, Chantal Nguyen 2,8, Raphael Sarfati 2,4, Murad Chowdhury 1,2, 
Michael L. Iuzzolino 1, Dieu My T. Nguyen 1,2, Ryan M. Layer 1,2* & Orit Peleg 1,2,3,5,6,7*

Many nocturnally active fireflies use precisely timed bioluminescent patterns to identify mates, 
making them especially vulnerable to light pollution. As urbanization continues to brighten the night 
sky, firefly populations are under constant stress, and close to half of the species are now threatened. 
Ensuring the survival of firefly biodiversity depends on a large‑scale conservation effort to monitor 
and protect thousands of populations. While species can be identified by their flash patterns, 
current methods require expert measurement and manual classification and are infeasible given the 
number and geographic distribution of fireflies. Here we present the application of a recurrent neural 
network (RNN) for accurate automated firefly flash pattern classification. Using recordings from 
commodity cameras, we can extract flash trajectories of individuals within a swarm and classify their 
species with an accuracy of approximately seventy percent. In addition to its potential in population 
monitoring, automated classification provides the means to study firefly behavior at the population 
level. We employ the classifier to measure and characterize the variability within and between 
swarms, unlocking a new dimension of their behavior. Our method is open source, and deployment 
in community science applications could revolutionize our ability to monitor and understand firefly 
populations.

Nocturnal fireflies (Coleoptera: Lampyridae) have evolved a visually impressive light-based communication 
system under simultaneous evolutionary pressures to advertise their species, accentuate their sexual fitness, and 
avoid  predation1–3. Using a luciferin-luciferase reaction within their  abdomen4, fireflies broadcast their species 
identity via light  pulses1,5. In many North American genera both sexes flash and must also encode biological sex 
in their  signals1,6,7. Sympatric species, or those that share the same geographic area, must also produce distin-
guishable patterns to effectively communicate species  identity1,5,8.

This unique signaling system makes fireflies particularly susceptible to human-created population threats like 
light  pollution9–12. Artificial light at night (ALAN) interferes with fireflies’ perception of conspecific signals and 
disrupts their communication timings, curtailing flash signaling behavior and preventing successful  mating10,13. 
In addition to light pollution, habitat degradation, pesticide use, water pollution, and climate change comprise 
some of the most serious environmental stressors causing declines in firefly populations across the  globe14. 
Recent Red List assessments by the International Union for Conservation of Nature (IUCN) have identified that 
at least 14% of 132 firefly taxa in the United States alone are in danger of  extinction12, but this value is a likely 
underestimate due to a lack of information on over half the species  assessed6,12. Further studies and fieldwork 
are urgently needed to monitor changes in firefly abundances and evaluate and mitigate the threats imperiling 
fireflies  worldwide6,12. Many other insect species share these environmental threats and are experiencing dramatic 
 declines10,15,16. Because of their charismatic nature and popular appeal, fireflies can serve as a flagship symbol to 
foster public attention toward this conservation crisis.

The major barrier to planning effective conservation efforts is the dearth of quantitative data on firefly 
 populations6,12,14,17. The high-throughput population monitoring studies that provide the fundamental data for 
understanding population-level  dynamics18 have not been performed for nearly all firefly  species6. This gap is 
largely due to limitations of existing monitoring methodologies, which require the presence of human expert 
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 observers6, are often  subjective6, and typically characterize firefly flash behavior by single, imprecise pictorial 
representations despite known temperature dependence and individual  variability7,8. To address the data defi-
ciency in current conservation efforts, we propose a scalable, automated population monitoring method that 
combines recent advances in stereoscopic filming, computer vision, and machine learning to classify individuals 
and quantify swarm-level dynamics. Our method starts with a field recording of a swarm using two consumer-
grade cameras (Fig. 1A), produced following procedures described previously  in19. From this recording, we 
identify individual firefly trajectories and extract time series representing their flash patterns (Fig. 1B). We then 
trained a recurrent neural network (RNN) on these data to accurately determine species identity from nothing 
more than the temporal differences in each species’ flash pattern, achieving precision and recall of approximately 
0.8 and 0.6, respectively (Table 1). We additionally visualize the distinguishability of firefly flash patterns via a 
dimensionality reduction of the weights of the last hidden layer of the neural network, using t-distributed sto-
chastic neighbor embedding (t-SNE)20. The t-SNE embedding reveals significant clustering by species (Fig. 1C). 
To our knowledge this is the first application of machine learning to firefly behavioral biology.

Using the most probable predictions of each species, we also provide estimates of flash pattern variability, 
including the first-ever quantitative characterization of Bicellonycha wickershamorum and Photuris forresti, two 
formerly data-deficient species which may be severely  threatened21. Automated and data-driven methods like the 
one proposed here are essential to scaling ecology and conservation biology  projects17. This work enables accu-
rate identification and classification of firefly species in order to ensure their protection and long-term survival.

Results
Using our precise, high-throughput data acquisition method (Fig. 1A and Methods Section "Acquisition of 
flash sequence data"), we recorded nine firefly swarms during the summer months of 2020, 2021, and 2022 that 
comprise seven North American firefly species: Bicellonycha wickershamorum, Photuris bethaniensis, Photinus 
carolinus, Photuris forresti, Photuris frontalis, Photinus knulli, and Photinus obscurellus. This resulted in a total 
of 65,389 flash pattern time series after cleaning (see Methods Section "Acquisition of flash sequence data" and 
Ref.24 for the original dataset). These data are a dramatic expansion from previously published results, which were 
primarily a single characteristic pattern per species. This large dataset enables us to leverage machine learning 
for species classification and characterization of intra-swarm variability.

0 1 2 3
Time (s)

Flash duration# flashes = 6
Inter-flash gap

0

1

2

4
2 2

0 0

z (m)

x (m)
y (m)

0 30 60
Time (s)

P. frontalis, SC, May 2020A

cam 1 cam 2

P. frontalis, SC, May 2020

0 1 2 3 4 5
Time (s)

B. wickershamorum, AZ, Jul. 2022

P. bethaniensis, DE, Jul. 2022

P. carolinus, TN, Jun. 2020

P. forresti, GA, Jun. 2022

P. knulli, AZ, Aug. 2021

P. obscurellus, MA, Jun. 2021

B C

B. wickershamorum

P. bethaniensis

P. carolinus

P. forresti

P. frontalis

P. knulli

P. obscurellus

-20 0 20 40

-20

-40

0

20

t-SNE dimension 1

t-S
N

E 
di

m
en

si
on

 2
40

Figure 1.  (A) Our standardized data collection method (top) films fireflies in their natural habitat with two 
cameras arranged in a stereoscopic vision  configuration22 (photo reproduced and modified with permission 
 from23). Flash streaks (center, colored by time) in the resulting videos are triangulated and concatenated 
into trajectories, based on proximity and velocity (bottom). Each trajectory is represented by a time series of 
individual flashes. (B) Four example five-second flash sequence time series for each of the seven species in 
our study, labeled with the location and date of the corresponding recording. Our recurrent neural network 
is used to classify flash sequence time series; time series shown were selected from the top 100 sequences 
per species with the highest classification probabilities following the filtration process outlined in Methods 
Section "Characterization". (C) Two-dimensional t-SNE embedding of the output of the last hidden layer of 
the network on the top 100 predictions, just before inference. Flash patterns are clustered by similarity, and the 
distinguishability of each species’ characteristic flash pattern can be detected by the colored clusters.
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Model performance
We trained a recurrent neural network (RNN), a type of neural network ideal for classifying time series and 
periodic signals, on the dataset in Ref.24 to predict the species that produced each sequence (see Methods Sec-
tion "Neural network architecture"). The accuracy of these predictions was compared to those obtained from 
several alternate classifiers utilizing signal processing metrics (Table 1 and Methods Section "Signal processing 
algorithms"). We present ensemble results evaluating the model’s performance on the test set for each method 
in Table 1. On the entire dataset, the RNN achieves the best performance in both categories, with an increase 
of approximately 6% and 17% in weighted precision and recall, respectively, over the second best classifier, and 
an overall accuracy of 69%.

We first attempt to utilize published, pictorially represented flash patterns (see Methods Section "Literature 
references") to classify sequences with signal processing methods. We constructed three different classifiers that 
use the Jaccard index, dot product, and dynamic time warping (see Methods Section "Signal processing methods") 
to compare our time series data to the literature references. We additionally constructed a support vector machine 
(SVM) that classified the time series data from the three flash pattern parameters (flash duration, inter-flash gap, 
and the number of flashes) (Fig. 1A, bottom). These literature-based classifiers perform poorly: while dynamic 
time warping achieves the highest precision with 0.73, it achieves very low recall of 0.12; dot product achieves 
the best recall of the literature-based classifiers, at 0.41 (Table 1).

We attribute the poor performance of the literature reference methods to the ineffectiveness of a single refer-
ence sequence per species at capturing the intra-species variability inherent to a large dataset. To address this, 
we create “population reference” sequences by aggregating sequences of each species in our dataset, aimed at 
capturing the intra-species variability while preserving species-specific characteristics of the flash signal. We 
split the data into 80% for training and 20% for testing: we generate population references from the training set, 
and classify the remaining test data. The performance of all four classifiers improves slightly by using population 
references, with dynamic time warping achieving the highest precision and recall of 0.77 and 0.47, respectively 
(see Table 1). Additionally, we note the literature are incomplete with regard to endangered species such as B. 
wickershamorum, one of the species most represented in our dataset.

In Fig. 2 we show confusion matrices for each ensemble to further illustrate the per-class capabilities and 
shortcomings of each method. While the dynamic time warping and dot product classification methods occa-
sionally produce a high scoring class (see Methods Fig. 6F), the RNN results reveal a balanced, highly accurate 
classifier regardless of species, and as such is our recommendation for the algorithm of choice moving forward 
in this space. Per-species precision and recall metrics can be found in Methods Fig. 6.
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Figure 2.  Confusion matrices for each classification method. (A–E) Ratios of true positives and false negatives 
along the horizontal, true positives and false positives along the vertical. Each square in the diagonal represents 
the recall for the class, and brighter colors indicate higher values as shown in the colorbar. A perfect classifier 
would consist of yellow squares at each diagonal position and dark purple off the diagonal.

Table 1.  Summary of signal classification methods and their weighted average performance on the firefly flash 
pattern dataset. ± values indicate standard error of the mean for each statistic.

Metric

Precision Recall

Literature Population reference Literature Population reference

SVM 0.67 0.75± 0.0046 0.10 0.38± 0.015

Jaccard index 0.57 0.79± 0.0056 0.27 0.29± 0.021

Dot product 0.57 0.53± 0.017 0.41 0.31± 0.027

Dynamic time warping 0.73 0.77± 0.0040 0.12 0.47± 0.0052

RNN 0.83± 0.0014 0.64± 0.0020
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Artificial sympatry
While the species in our dataset generally do not overlap in space and time, we recognize that there can be sympa-
tric species that share the same breeding grounds, leading to the potential for recordings that contain flashes from 
multiple species. However, there are challenges in obtaining experimental data with mixed recordings of firefly 
species exacerbated by the scarcity of isolated species in nature, the difficulty in creating controlled mixtures, 
and the absence of accurate data on species numbers in these recordings. Therefore, we construct an experiment 
to test the ability of the model to distinguish between two species in a hypothetical sympatric swarm, provided 
that the model has been trained on data from each of these species recorded in isolation.

First, a single recording (i.e. one night of data) for five — B. wickershamorum, P. carolinus, P. frontalis, P. knulli, 
and P. obscurellus — of the seven species in our dataset is held out from training the model (Methods Section 
"Sympatric species experiments"). The remaining two species only contain data from 2 recordings, and therefore 
are not included in this experiment due to a lack of sufficient data. Then, the model is trained on the remaining 
time series, with the data preprocessed as discussed in Methods Section "Data preprocessing". Mixed-species 
datasets are constructed from 400 total sequences obtained from varying proportions of two species, ranging 
from 0.5% of the minority species and 99.5% of the majority species (i.e. two time series from the minority class 
and 398 time series of the majority class), to equal proportions of each (200 time series each).

We perform 500 iterations, wherein we randomly sample one of these test datasets from the held-out data 
and evaluate the average true response rate for both species. We repeat this for all possible pairs of species (20 
pairs total). The identification rate as a function of species proportion is shown in Fig. 3 for each pair (panel 
A), as well as the aggregate result (panel B). We observe that some species are more distinguishable, with P. 
frontalis and P. carolinus achieving a high identification rate even when represented in very low proportions. 
Meanwhile, P. knulli is more readily confused with other species, achieving an identification rate of 50% only 
when present in at least a 20% proportion if together with any other species except P. obscurellus. P. obscurellus 
and P. knulli are frequently confused for one another – possibly as these species have similar numbers of flashes 
in their flash patterns (Fig. 1B) – with P. obscurellus barely achieving 50% identification even when it is present 
in a high proportion with P. knulli. Altogether, the aggregate results show that when two species are present in 
equal proportion, the model can differentiate between the two with nearly 80% accuracy. This indicates that the 
classifier has the potential to be successful in differentiating sympatric species, which we expect to be a likely 
future application of the model.

Flash characteristics
By combining our extensive data set and effective RNN classification system, we provide deeper insights into 
firefly behavior with a data-driven characterization of the signaling patterns of firefly populations. For each 
swarm recording, we aggregate the one hundred most confidently classified flash patterns (see Methods Section 
"Characterization") to produce empirical distributions for several trajectory-level statistics. These are the number 
of flashes in an individual’s flash pattern; the flash duration, or the amount of time for which a flash is detected; 
and the inter-flash gap, defined as the amount of time from the end of a flash to the start of another flash (i.e. 
the dark period within a flash pattern).
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Figure 3.  Experiments with artificial sympatric swarms reveal that the model can identify both species. (A) 
We constructed test datasets consisting of trajectories from a pair of species combined in varying proportions. 
For each pair of species, the identification rate is shown as a function of the species proportion for the colored 
species. Each colored line represents a species in varying density with another species. Legend key: bw: B. 
wickershamorum; ic: P. carolinus; ik: P. knulli; io: P. obscurellus; uf: P. frontalis. (B) The identification rate 
aggregated across all sympatric swarms decreases as a function of species proportion. On average, when two 
species are combined in equal amounts, the neural network classifies each species with an accuracy of close to 
80%. Even with as few as two trajectories present in a sympatric swarm, the model will still detect the presence 
of that species more than half the time across all pairs.
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We note that we measure inter-flash gap, defined as the duration of the dark (quiet) period between flashes, 
rather than the more commonly used inter-flash interval, which corresponds to the time period measured from 
the start of one flash to the start of the subsequent flash and thus includes one flash duration. We measure the gap 
rather than the inter-flash interval in order to examine variability in flash duration and pauses independently, 
whereas examining flash duration and inter-flash interval would not easily allow us to separate whether variation 
stems from the duration spent flashing or the time spent waiting between flashes. Additionally, the inter-flash gap 
as a quantity is only well-defined for flash patterns that exhibit two or more flashes in relatively quick succession, 
because measuring this quantity for an individual trajectory requires that flashes are close enough in space and 
time to be concatenated (see Methods Section "Acquisition of flash sequence data"). Our methodology cannot 
be well applied to species that flash only once in a pattern with long dark periods between flashes (see Discussion 
Section "Data acquisition methodology").

Quantitatively derived distributions for these characteristic statistics are shown in Fig. 4. These distributions 
represent the first known quantification of firefly behavioral variability from data. Table 2 compares the mean 
and standard deviation of flash parameters from our data with the published literature values, where available.

Encouragingly, previously published  values2,6,19 for the number of flashes in each individual flash pattern were 
statistically indistinguishable from our distributions (Fig. 4A and Table 2). However, half of the published inter-
flash gaps and all the published flash durations differed significantly from our distributions. These differences 
may be due to improved measurement accuracy (see below) or could represent behavioral differences between 
swarms, perhaps caused by a changing climate or other environmental factors.

These data-driven distributions have several advantages over manual timekeeping. Firstly, representing a 
species’ flash-based communication as distributions of signal parameters rather than a single pattern allows 
us to explore the extent of the temporal variability present in a population or across populations. We observe, 
for example, high variability in the number of flashes emitted by P. frontalis, while the flash patterns of P. knulli 
exhibit very low variability in the number of flashes (Fig. 4A). Meanwhile, both of these species display relatively 
tight distributions of inter-flash gap (Fig. 4B), suggesting that these species require precise timing of flashes for 
communication.

Our results reveal that the flash length duration distributions for five species are shifted considerably toward 
shorter flash durations than the published literature results (see Fig. 4C). This discrepancy may potentially be a 
consequence of the lower temporal resolution inherent in manual timekeeping due to system lag. However, this 
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Figure 4.  Data-driven characterization of flash patterns for each filmed population, encompassing 7 different 
species. P. carolinus and P. frontalis data were each collected from two populations filmed in different locations 
and years, each of which is separately characterized here. For each population, the 100 sequences with the 
highest classification probabilities are used to characterize flash signals. This represents a data filtering procedure 
that extracts the most salient properties of each population’s flash behavior while retaining inherent intraspecies 
behavioral variability. Probability distributions of the (A) number of flashes, (B) inter-flash gap in seconds, and 
(C) flash duration in seconds are shown for each species, normalized to sum to 1 under the interval, for both the 
raw (transparent bars) and filtered (opaque bars) data. The corresponding values obtained from the literature 
references (see Methods Section "Literature references"), if they exist, are shown as dashed lines.
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may also be a limitation of our study (see Discussion Section "Data acquisition methodology"), due to the light 
sensitivity of the GoPro cameras employed for data acquisition.

Overall, the filtering process that produces data-driven characterizations of flash patterns in Fig. 4 preserves 
the most salient characteristics of each species’ signaling behavior while also illustrating the intraspecies behav-
ioral variability. This variability may be substantial in only some of the 3 parameters: for example, P. obscurellus 
demonstrates low variability in the number of flashes but the largest variability in flash duration out of the 7 
species studied. In comparison, the flash durations of P. frontalis sequences are all extremely similar, but the 
number of flashes in a trajectory can vary greatly.

We note that these characterizations only represent the locations and conditions where the underlying data 
were recorded; these probability distributions may be different for data taken in different habitats, at different 
temperatures, or at different times (see Sect. "Temperature variation"). By deploying our data acquisition pro-
cedure to more sites, we will be able to better characterize the rich extent of a firefly species’ communication.

Discussion
In this paper, we present the first use of artificial intelligence as a tool to empower firefly conservation by auto-
matically classifying firefly species from their flash patterns. By integrating an inexpensive data-gathering proce-
dure with this method, we now have the core components of an automated swarm monitoring system that aligns 
with biodiversity outcomes suggested  in17  and21. There are 171 known firefly species in North  America6, many of 
which are endangered and/or lack quantitative data on their flash behavior; these knowledge gaps significantly 
limit our ability to comprehend and respond to environmental pressures. Our work takes substantial steps toward 
filling these gaps by presenting a quantitative framework for characterizing behavioral variability, including in 
two species that lack an existing description of their behavior in the literature. In addition, we show that our 
classification method is applicable to groups of fireflies containing at least two species, a likely scenario in future 
acquired data. Ultimately, our results have significant ecological and conservation applications for Lampyridae 
insects; however, as we indicate below, there remain some limitations that should be responsibly addressed in 
future work in order to leverage our model at a large scale.

Limitations
Sympatric firefly species
While this work can be immediately useful to the firefly conservation community in areas with known popula-
tions of specific species, there are some crucial limitations. First, adding new species to the dataset requires clean, 
labeled data obtained from video recordings of that species in isolation from any other confounding light signals. 
For example, some of the recordings in the previously published  dataset24 potentially contain flash signals from 
multiple species in the same location. It would only be possible for these sympatric species to be successfully 
classified once clean data for each species in isolation has been incorporated into the training set. Should this be 
the case, the model could be used to classify signals between sympatric species, as we show in Fig. 3. However, 
our current model has been trained on the flash patterns from seven species that primarily occur in their own 
space and time during their nightly flashing performances, so we can only speculate with simulation whether 
this kind of sympatric differentiation is possible on the data at hand. Despite these limitations, the results we 
showed in Results Section "Artificial sympatry" enable us to have confidence in the model’s classification deci-
sions regarding presence and absence data for the species in the dataset when they appear in recordings alongside 
other sympatric species. We also note that character displacement has resulted in increased differentiation of 
sequences of sympatric  species8 and thus sympatric data may be easier to classify. As we continue to train and 

Table 2.  Mean and standard deviation of the number of flashes, inter-flash gap, and flash duration from 
the filtered data for each filmed population, along with the corresponding literature values (where available) 
extracted via methodology shown in Fig. 5.

Species

Number of flashes Inter-flash gap (s) Flash duration (s)

Data Literature Data Literature Data Literature

B. wickershamorum, AZ, Jul. 2022 5.9± 2.5 n/a 0.82± 0.07 n/a 0.17± 0.03 n/a

P. bethaniensis, DE, Jul. 2022 2.3± 0.6 2 0.22± 0.04 0.53 0.07± 0.03 0.27

P. carolinus, TN, Jun. 2020 7.2± 1.9 9 0.42± 0.04 0.37 0.14± 0.03 0.23

P. carolinus, OH, Jun. 2022 5.7± 1.1 9 0.42± 0.04 0.37 0.10± 0.02 0.23

P. carolinus, PA, Jun. 2022 5.9± 1.4 9 0.43± 0.03 0.37 0.11± 0.03 0.23

P. forresti, GA, Jun. 2022 4.7± 2.3 5 0.51± 0.20 0.10 0.08± 0.04 0.16

P. frontalis, SC, May 2020 15.7± 4.3 10 0.63± 0.07 0.87 0.04± 0.003 0.13

P. frontalis, TN, Jun. 2021 12.2± 4.1 10 0.69± 0.09 0.87 0.04± 0.005 0.13

P. knulli, AZ, Aug. 2021 2.7± 0.4 3 0.34± 0.01 0.32 0.10± 0.03 0.20

P. knulli, AZ, Aug. 2022 2.4± 0.6 3 0.33± 0.02 0.32 0.06± 0.02 0.20

P. obscurellus, MA, Jun. 2021 2.4± 0.6 3 0.39± 0.05 0.28 0.21± 0.05 0.22

P. obscurellus, MA, Jun. 2022 2.2± 0.4 3 0.42± 0.07 0.28 0.23± 0.12 0.22
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evaluate the model in the future, adding new populations of existing species and updating the model’s knowledge 
should not be a problem.

Temperature variation
Using temperature as a feature in classification was not attempted for several reasons, even though it is potentially 
informative. First, it can be seen as a proxy for location, and since our species geographically isolated from each 
other, it could result in the model learning locations more than timeseries, which we tried to avoid. Second, 
temperature measurements were not obtained for all recordings used in our  dataset24. However, temperature can 
play an important role in firefly flash behavior. Past work has generally standardized each species’ flash patterns 
(at a particular temperature, usually 20 degrees  Celsius8, and across  locations7), resulting in single, discrete meas-
urements for the relevant statistics that are used as references for species identification in tandem with physical 
observation of captured specimens. We know from our own field observations, outside consultation, and the 
literature that for some species, firefly behavior varies dramatically with  temperature25,26. Our work here attempts 
to establish a new norm for representing firefly characteristics by accounting for the variability intrinsic within 
species and exacerbated by temperature. We show distributions for the flash pattern characteristics in Fig. 4, 
including representations for geographically distinct populations of the same species, but this is not a perfect 
encapsulation of the differences that can occur due to temperature. We include in the data files in our Github 
repository (see Section "Data availability") a column for the known temperatures so that this can be explored in 
future work, and note that ideal data gathering would always include temperature measurements throughout 
the duration of future recordings.

Data acquisition methodology
Our data acquisition procedure relies on a calibration-free stereoscopic reconstruction that is not without  error24. 
We employed GoPro cameras for data acquisition, which are highly portable and achieve good temporal resolu-
tion (30 fps) for capturing flash behavior. However, we also observe that recorded flash durations can appear gen-
erally shorter than those measured through other techniques, possibly due to frame rate, as well as the cameras’ 
limited light sensitivity, which might trim the beginning and ending of a flash and hence decrease its effective 
duration by one or two frames. This effect can be seen in Fig. 4C. In addition, a given trajectory might not capture 
the entire flash pattern of an individual, due to overlapping signals from nearby fireflies, prolonged dark periods 
between series of successive flashes, and possible visual obstruction of flashes from the environment. Hence, it 
can be difficult to estimate the total count of flashes in a firefly’s signal, and the dark period between flash phrases 
is fully lost in most trajectories. Combining our method with continued observations by human experts for the 
most complete characterization of any given species’ flashing behavior may be the optimal approach in the short 
term, especially in species known to have dark periods that exceed one second in length between flash phrases, 
or species that produce a single flash, since these species are difficult to trajectorize. The advancements presented 
in this paper will indisputably accelerate this process and should only improve in effectiveness over time.

Model methodology
We estimate that at least one hundred trajectories per species are required before the model can robustly dis-
tinguish their patterns, which typically requires a few days of filming. The model classification relies only on 
the temporal information present in each sequence, and ignores metadata such as temperature, location, and 
spatial components of the flash pattern. This is intentional to allow this work to serve as a proof of concept that 
classification via temporal variation is possible, and to avoid confounding factors that may bias the model. In 
particular, given the limited size of our dataset, we expect that including the temperature and location data as 
features for the model would only serve as to teach the model to differentiate by those factors, and thus result in 
a model that would not generalize well to unseen data. Long-term, it may become prudent for these factors to 
be included, especially as we gather more consistent year-over-year data for each species.

Advancing firefly conservation
The affordability and portability of the filming system makes it ideal for deployment by researchers and citizen 
science volunteers across the continent, and beyond. Our automated trajectory detection method enables meas-
urement of the flash durations and inter-flash gaps (Fig 4, Table 2) of firefly signals, aggregated from thousands 
of precise observations of the same species across multiple nights of filming.

Our flash sequence characterization of B. wickershamorum and P. forresti represent the first known quan-
titative description of the flash pattern for these vulnerable  species6. Additionally, all the characterizations as 
presented here, temperature-based or otherwise, can immediately be used to inform field scientists about the 
range of behavior they should expect to see in the flash parameters of these species. We also may be able to deploy 
this model on other flash sequence recordings in new areas and determine whether species that are already in 
the dataset are present in those new areas. Perhaps most impactfully, species living in known locations can be 
automatically monitored for behavioral or population density changes; this is especially valuable for threatened 
species (B. wickershamorum, P. bethaniensis, P. forresti, and P. knulli). It is also possible to detect changes in 
behavior or activity at a known site by comparing new observations to historical data. For example, despite the 
variability in inter-flash gaps, our model produced accurate classifications for P. frontalis swarms collected at 
different sites, by different individuals, and under different conditions (Supplementary Section 1).

Previous studies have examined the effect of environmental factors such as ALAN on firefly signaling by quan-
tifying the reduction in flash rate or the number of flashing  individuals10. Our method of generating data-driven 
characterizations will enable a more acute investigation of how ALAN and other factors affect firefly flash pattern 
parameters down to an individual level. In addition, we can investigate whether responses to environmental 
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factors are encoded in behavioral variability: it is unknown whether the variability in flash behavior changes with 
light pollution and the resulting implications for firefly signal processing and mating success. Going forward, all 
species should be targeted for future deployments to establish their flash dynamics baseline and continue with 
periodic monitoring, with priority given to data-deficient species and species at current conservation risk. Long-
term, it will be possible to differentiate between signals from footage of swarms that contain multiple species.

As the capabilities increase, the classifier can be integrated into community-facing applications like 
 iNaturalist27, which in turn will enable faster data-training-classification loops and a widespread expansion of 
the model’s reach. Integration within community science is a vital component of the next steps: as discussed  in28, 
community monitoring programs have the potential to raise the public’s awareness and understanding about 
firefly endangerment and promote successful integration of policy and practice moving forwards. Our standard-
ized, user-friendly data acquisition procedure can be adopted by volunteers and researchers to grow the dataset, 
with an eye toward recording flash sequences from data-deficient species. We intend for this work to illuminate 
the way forward for increased data-gathering, population monitoring, and analysis efforts surrounding Lampy-
ridae insects. Our software is open-source and the dataset is freely available, so anyone who shares our goal of 
empowering firefly conservation efforts is welcome to contribute.

Methods
Acquisition of flash sequence data
To extract flash sequence data, we perform 3D reconstruction of firefly swarms based on stereoscopic video 
recordings. Recordings were conducted at specific locations across the country where certain species were known 
to  emerge24. Field researchers placed two spherical (360) GoPro Max cameras at known distances from each 
other on a level surface (Fig. 1A). Recordings started at dusk when the first flashes were seen, and filmographers 
performed a simultaneous catch-and-release identification process to acquire ground-truth labels from visual 
inspection of the individuals present in the swarm. All recordings are made at a frame rate of 30 frames per 
second. The movies were subsequently processed as described in a previous  work22,24 to extract the 3D locations 
of flash occurrences. From these locations, we apply a simple distance-based linkage method to concatenate 
flashes into streaks and streaks into trajectories. We consider flashes at consecutive timesteps within a small 
radius to be part of the same streak; streaks occurring within both 1s and 1m of each other are assumed to come 
from the same individual and placed in a set of transitively connected streaks called a trajectory. To eliminate 
noise effects from the trajectory extraction, we threshold the trajectories to eliminate those that only contain one 
flash. The  dataset24 includes ten total species before the application of the thresholding process. Following the 
thresholding, we also remove any species from the dataset that have fewer than one hundred total trajectories, 
leaving us with seven species total. Finally, from the trajectories, we extract a binary time sequence by consider-
ing the time coordinates of flashes, i.e. a sequence of ones and zeroes where ones represent flashing and zeroes 
represent interflash gaps. Each element (or bit) of the time series represents a single frame of a video, such that 
30 bits represents 1 full second of recording. We further clean the dataset by recognizing that any interflash gaps 
1 or 2 bits in length (less than 0.07s) are likely caused by an error in the tracking or trajectorization process, 
or the firefly briefly being obscured by brush as it moves. These short gaps are replaced by ones to connect the 
interrupted flash.

This process enables the capture of individual behavior from simple footage of firefly swarms of any species, 
provided individuals of that species flash frequently enough to meet the threshold standards of the trajectory 
generation. Our data acquisition procedure highlights the presence of intraspecies behavioral variability, and 
characterizes this variability by representing flash patterns as distributions (Fig. 4A–C).

The result of this process is 124,503 flash trajectories from the seven species before thresholding, and 65,389 
after those with only one flash have been removed. More than half of these are P. carolinus sequences - the major-
ity class. About 1 percent of these are P. forresti and P. bethaniensis sequences - the minority classes. The rest of 
the classes range between 4 and 14 percent of the total distribution. The dataset comprises binary sequences of 
between 6 and 1366 bits (0.2s to 45.5s) in duration, each labeled with the corresponding firefly class.

Modeling
We implemented a bespoke neural network architecture with PyTorch to solve our classification problem. For 
the curious, technical details about the implementation and data-wrangling practices follow. Additionally, all 
code is open source and available as mentioned in Section "Data availability".

Neural network architecture
RNNs are a class of neural networks suitable for sequence learning tasks. They are characterized by feedback 
connectivity and the consequent ability to encode long-range temporal dependencies, such as those intrinsic to 
firefly flash patterns. The defining computational step of an RNN is the hidden state update, which is a function 
of the input at the current timestep, x(t) , and the hidden state at the previous timestep, h(t−1):

where f is a non-linear activation function, such as hyperbolic tangent, Whh and Wxh are weight matrices that 
map hidden-to-hidden (i.e. the feedback connectivity) and input-to-hidden, respectively, and b is a bias term.

Importantly, Eq. (1) enables a recurrent neural network to ingest variable length input sequences, as the 
update rule can be applied recurrently, which is suitable for firefly flash sequences that are of variable tem-
poral duration. However, if the input duration is sufficiently large–as is the case with some of flash pattern 

(1)h(t) = f (Whhh
(t−1)

+Wxhx
(t)

+ b),
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sequences–vanishing gradients will arise when computing weight updates via backpropagation through time 
(BPTT)29 due to the non-linearity in f, ultimately prohibiting learning.

To address this issue, we leverage an extension to RNNs–gated recurrent units (GRUs)–that introduces gat-
ing mechanisms that regulate which information is stored to and retrieved from the hidden  state30. These gating 
mechanisms enable the model to more effectively regulate the temporal context encoded in the hidden state 
and enables the encoding of longer-range temporal dependencies. Additionally, GRU RNNs are computation-
ally more efficient than other kinds of RNNs like long short-term memory networks (LSTMs), and use fewer 
parameters, which was a consideration due to our plans for eventual downstream application of the model in 
real-time population monitoring. Consequently, we implement the model in  PyTorch31 as a 2-layer GRU with 
128-dimension hidden layers, no dropout, and LeakyReLU activation layers with a negative slope of 0.1.

Data preprocessing
To evaluate our model’s predictive ability on unseen data, we perform 60-fold stratified cross validation to 
ensure that each sequence in the dataset is used at least once in training and at least once in testing, but never 
simultaneously. Each fold divides the data into ninety percent training, and ten percent testing, preserving the 
same class ratios as the original dataset. Due to the severe class imbalance (e.g. some species only comprise 1% 
of the dataset, whereas others comprise close to 50% of the dataset), we perform random undersampling on the 
training set of each fold to equalize the class count in the training and validation sets for each fold. This takes 
the form of a secondary k-fold cross validation procedure to sample from each class until classes are equalized. 
All the remaining data are used for testing. The reported results are thus the ensemble precision, recall, and 
accuracy of each model on its respective test set of approximately 30,000 sequences, averaged over the 60 model 
folds. The ground truth targets are species names; we performed label encoding to transform the targets into 
machine-readable integers representing each class.

Training and evaluation
We trained the model with the Adam  optimizer32 and evaluated performance via cross-entropy loss. During 
training, we set an early stopping callback that monitored the validation loss with a patience of 50 epochs to pre-
vent overfitting on the training set. Additionally, to alleviate exploding gradients, we applied a gradient clipping 
of 0.1 to the gradient norms following the procedure recommended in Ref.33. We conducted a hyperparameter 
sweep over the batch size and learning rate, testing all combinations of batch size ∈ {8, 16, 32} and learning rate 
∈ {10−3, 10−4, 10−5

} . We selected the combination that had the highest validation set accuracy on a four-species 
subset of the data, which resulted in the choice of a batch size of 8 and a learning rate of 10−5 . No data augmenta-
tion was applied during training.

We evaluate the performance of the RNN, along with the signal processing methods described in the follow-
ing section, on the test data by examining the receiver-operating characteristic (ROC) curves for each species 
(Fig. 6A–E). Per-species precision and recall are tabulated in Fig. 6F.

Sympatric species experiments
To explore the capabilities of the model when faced with sympatric swarms, we first gave the model a different 
training regimen. All of the data except for sequences from five days – one day each for B. wickershamorum, P. 
carolinus, P. frontalis, P. knulli, and P. obscurellus – serve as the training and validation set, and sequences from 
the five held-out days enter the test set. The five held out days and their codes as referenced  in24 are as listed in 
Table 3. Holding out single days like this ensures that a) the sequences being tested do not occur in the test set 
and b) the model can identify new sequences on a new day for a species it has already seen before.

We note that P. bethaniensis and P. forresti are excluded from these experiments. This is because for both of 
these species, holding out one day of data would reduce the total number of sequences in the training set to 
below one hundred, which is against our recommendation for sufficiency. However, these species remain in the 
training set, as none of their dates are held out, and thus the model can still predict them during these sympatry 
experiments.

The goal of these experiments is to vary the different densities of each possible pair of species to test whether 
the model as trained can capture the presence of each species. This tests whether the model is applicable in future 
hypothetical scenarios where more than one species may be present in a recording, but each of the species present 
are already part of the training set in some form. For each experiment, we generated a test set of 400 sequences 
comprising two species from the holdout days, mixed together at a particular density ratio to create an articifial 
instance of sympatry. This means that for each iteration of the experiment, the number of sequences for each 

Table 3.  Metadata of held-out sequences for sympatry experiments.

Day Species Dataset code

May 20, 2020 P. frontalis s0524uf

June 13, 2020 P. carolinus s0613ic

June 2, 2021 P. obscurellus s1602io

August 9, 2021 P. knulli s1809ik

June 24, 2022 B. wickershamorum s2624bw
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species ranged from two to 398. We ran 500 iterations of each density ratio for each pair, where each iteration 
was randomly sampled from the set of sequences corresponding with the held out date. We recorded the true 
positive rate for each class at each density reported by the model. The results are shown in Fig 3.

Signal processing methods
For the purposes of comparison with the RNN, we implemented four alternative classifiers which use stand-
ard signal processing algorithms to compare our dataset against ground truth references for each species. We 
implement these classifiers using two types of ground truth references: “literature references”, which use flash 
patterns as previously published in the literature, and “population references”, which are generated by aggregat-
ing sequences in our own dataset.

Literature references
“Characteristic” flash patterns for six out of the seven species analyzed in this paper, excluding B. wickershamo-
rum, have been previously recorded and published in the literature. These recorded flash patterns hence served 
as the primary reference for researchers in identifying signals observed in the field. These reference flash patterns 
are typically reported pictorially; thus, we convert images to binary-valued time series by computing the relative 
sizes of flashes and gaps, in pixels. We determine the pixel-to-second conversion to then convert the sequence 
to a 30 frames per second time series, matching the sampling frequency of our data. We have quantified these 
variables from published works to underscore the prevalent tendency toward qualitative approximations over 
quantitative analyses. Flash signals are commonly documented in scholarly articles and monographs through 
visual representations, frequently drawing from multiple, and occasionally ambiguous, primary and secondary 
information sources for individual species.

These six reference time series then form the ground-truth comparisons against which our dataset is com-
pared, using the four signal processing techniques described below in Methods Section Signal processing meth-
ods. We omit B. wickershamorum as there is currently no published reference pattern.

Population references
We also generate “population references” by aggregating sequences in our own dataset. For each species, we 
first perform an 80:20 train:test split, similar to the preprocessing procedure performed for the RNN (see above 
in Methods Section"Data preprocessing"). The population references are obtained by averaging the sequences 
in each training set. The remaining test data is then classified using the signal processing algorithms described 
below in Methods Section "Signal processing algorithms". As with the RNN, we perform N = 100 iterations and 
take the ensemble average of the performance across all iterations.

Signal processing algorithms
Jaccard index.  The Jaccard index compares the similarity between two sets by taking the ratio of the size of the 
intersection of the sets with the size of the  union34 and has found broad application, for example in  genomics35. 
For two binary-valued sequences (am)Mm=1 and (bn)Nn=1 of lengths M and N, respectively, with am, bn ∈ {0, 1} for 
all m and n, we define the size of the intersection as 

∑min(M,N)
i=1 aibi , the number of ‘on’ (flashing) bits that occur 

simultaneously in both sequences. We define the union as 
∑M

m=1 am +
∑N

n=1 bn , the number of on bits for both 
sequences combined. The Jaccard index can also be evaluated in the same manner for two sequences that are 
binary-valued. Generally speaking, the intersection can also be thought of as the dot product between the two 
sequences. To classify a sequence using the Jaccard index, the Jaccard index between a sequence and each spe-
cies reference is computed, and the softmax of the vector of Jaccard index values is computed to determine a 
probability of the sequence being from each species. The predicted species is then the argument maximum (arg 
max) of the softmax vector.

Figure 5.  Reference sequences for the firefly species examined in this paper, as previously published in the 
literature, with the exception of B. wickershamorum. (A) Reference pattern for P. frontalis from Barber,  195141. 
(B) Reference patterns for P. obscurellus and P. bethaniensis from Faust,  20177. (C) Reference patterns for P. 
carolinus and P. knulli from Stanger-Hall and Lloyd,  20158. ( D) Reference pattern for P. forresti from Fallon 
et al.,  20226. (E) Illustration of extracting P. frontalis sequence from literature pattern (top) and converting to 
time series (bottom).
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Dot product.  The dot product between two sequences is given by the sum of the product of the sequences, 
i.e. 

∑min(M,N)
i=1 aibi for two sequences (am)Mm=1 and (bn)Nn=1 of lengths M and N, respectively. Sequences are then 

classified by taking the arg max of the softmax of the dot product with each reference.

Dynamic time warping.  Dynamic time warping (DTW) is an algorithm that computes the distance between 
two time series by locally stretching or compressing the sequences to optimize the match. DTW is useful for 
comparing time series that are qualitatively similar but vary locally in speed and has found significant applica-
tion in speech  recognition36–39. We implement DTW in  MATLAB40 to compute the distance between sequences 
and species references. Similarly to the other metrics, the predicted species is taken to be the arg max of the 
softmax of the distances, which is a vector of probabilities that maps to the probability of each label.

Species

SVM Jaccard Dot product DTW RNN

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

B. wickershamorum

P. bethaniensis

P. carolinus

P. forresti

0.46 0.79

0.029 0.79

0.97 0.18

0.004 0.31

0.71 0.33

0.013 0.83

0.93 0.12
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0.54 0.75

0.14 0.46

0.72 0.23

0.011 0.055
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0.11 0.73

0.95 0.53
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Figure 6.  Per-species ensemble of classification results. (A–E) Receiver operating characteristic (ROC) curves 
representing the true positive rate (TPR) as a function of the false positive rate (FPR) across all model thresholds 
of classification, labeled by method. All non-RNN classification methods are conducted using population 
references. (F) Table of per-species precision and recall across all surveyed methods (N=100). Bold statistics in 
the table represent the highest performer for each metric and species. Precision values for P. bethaniensis and 
P. forresti are low because these two species represent the classes with the fewest number of samples, and so 
there is a very small amount of true positive values. However, these still greatly exceed what would be expected 
by chance (0.001 and 0.006, respectively). The high recall for these classes indicates that the true positives are 
correctly captured.
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SVM.  Each flash sequence can be parametrized by 3 values (Fig. 1A): the number of flashes in the sequence, 
the average duration of each flash, and the average time between flashes (inter-flash gap). We perform support 
vector machine (SVM) classification in this 3-dimensional space, using a radial basis kernel function.

Characterization
The data acquisition procedure is not without noise, so we perform filtering to produce accurate quantitative 
characterization of flash phrases that falls in alignment with previous literature observations. We leveraged the 
ability of the RNN to distinguish between sequences by choosing the sequences which the RNN scored highest 
as the top one hundred most confident classifications for each species. This subset acts as the dataset on which 
characterization exercises are performed for Fig. 1B and Fig. 4. The procedure is as follows: 

1. Initialize the empty list c
2. for each i sequence in the test set D: 

(a) Run a forward model step
(b) Let p = the maximum probability in the resulting vector of softmax predictions
(c) If the index of p corresponds with the correct label, add the pair (p, index) to the list c

3. Sort c by probability p and choose the top 100
4. Index into the dataset D using the associated indices of the top 100 probabilities to produce the subset

Characterizing in this way leverages the variability in the entire dataset by training the predictive classifier, then 
asks the predictive classifier only for what it is most confident about in order to filter out sequences that may be 
missing flashes or exhibiting patterns that are far from the statistical norms of the species.

Data availibility
The associated code and data files for this project can be found here: https:// github. com/ peleg- lab/ Firefl yCla ssifi 
cation. Following instructions in the associated README.md should allow easy regeneration of the figures and 
replication of the workflows described in this paper. All data needed to evaluate the conclusions in the paper are 
present in the github repository, the Supplementary Information, and/or the associated dataset  paper24.
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