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Commodity‑specific triads 
in the Dutch inter‑industry 
production network
Marzio Di Vece 1,2,3*, Frank P. Pijpers 4,5 & Diego Garlaschelli 1,2,6

Triadic motifs are the smallest building blocks of higher‑order interactions in complex networks and 
can be detected as over‑occurrences with respect to null models with only pair‑wise interactions. 
Recently, the motif structure of production networks has attracted attention in light of its possible 
role in the propagation of economic shocks. However, its characterization at the level of individual 
commodities is still poorly understood. Here we analyze both binary and weighted triadic motifs in the 
Dutch inter‑industry production network disaggregated at the level of 187 commodity groups, which 
Statistics Netherlands reconstructed from National Accounts registers, surveys and known empirical 
data. We introduce appropriate null models that filter out node heterogeneity and the strong effects of 
link reciprocity and find that, while the aggregate network that overlays all products is characterized 
by a multitude of triadic motifs, most single‑product layers feature no significant motif, and roughly 
85% of the layers feature only two motifs or less. This result paves the way for identifying a simple 
‘triadic fingerprint’ of each commodity and for reconstructing most product‑specific networks from 
partial information in a pairwise fashion by controlling for their reciprocity structure. We discuss how 
these results can help statistical bureaus identify fine‑grained information in structural analyses of 
interest for policymakers.

In the last decade, the increasing availability of data at the industry and firm level led to a vast number of studies 
analyzing the system of customer-supplier trade relationships—the production network—among  industries1–6 
or  firms7–39 and their impact on country-level macroeconomic  statistics40.

The heterogeneity encoded in the production network structure plays an essential role in amplifying eco-
nomic  growth34 and in the propagation of  shocks1,12 related to exogenous events, such as Hurricane  Sandy29, the 
Great East Asian  Earthquake11,27, the Covid-19  pandemic6,17,28, or endogenous events such as the 2008 financial 
 crisis41,42.

Even in the time of globalization—characterized by highly interconnected global supply chains—domestic 
production networks are still relevant. In fact, it has been shown that for a small country as Belgium, while 
almost all firms directly or indirectly import and export to foreign firms, these exchanges represent the minority 
of domestic firms’ total  revenues16.

While aggregated information about single firms is contained in most National Statistical Institutes’ reposi-
tories, reliable data on input/output relationships is available only for a small number of countries. For instance, 
the Compustat dataset contains the major customers of the publicly listed firms in the  USA8. The FactSet Revere 
dataset contains major customers of publicly listed firms at a global level, with a focus on the USA, Europe, and 
 Asia30. Two datasets are commercially available in Japan, namely, the dataset collected by Tokyo Shoko Research 
Ltd. (TSR)11 and the one collected by Teikoku DataBank Inc. (TDB)35. They are characterized by a high coverage 
of Japanese firms but with a limited amount of commercial partners. Other domestic datasets contain transaction 
values among VAT-liable firms: this is the case for countries such as  Brazil14,  Belgium15,  Hungary17,  Ecuador7, 
 Kenya19,  Turkey20,  Spain21, Rwanda and  Uganda22, West  Bengal23; or contain transaction values among the totality 
of registered domestic firms such as in the case of Dominican  Republic18 and Costa  Rica43.
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However, in production networks, user firms connect to supplier firms to buy goods for their own pro-
duction. Customer-supplier relationships are, hence, characterized by an intrinsic product granularity that is 
usually neglected. The importance of product-specific information has been highlighted, for instance, in a rare 
study that utilizes surveys with limited data for Japanese automotive  firms44. Generally, in the economic theory 
of industries and firms, the problem of product granularity is ‘solved’ artificially, by assuming that industries/
firms supply a single  product1,4. This is an oversimplification that often conflicts with reality: indeed, a single 
firm can possess more than a production pipeline and is capable of supplying multiple products (e.g. Samsung, 
a Telecommunication company, sells also household appliances, and multinational companies such as Amazon 
and Google supply a large number of different products).

Recently, Statistics Netherlands (CBS) reconstructed from national statistics two multi-layer production 
network datasets for domestic intermediate trade of Dutch firms for  201225 and  201810, with each layer corre-
sponding to a different product exchanged by a firm for its own production process, as illustratively depicted in 
Fig. 1a. The 2012 dataset has been recently used to prove the complementarity structure of production  networks33 
by inspecting the number of cycles of order 3 and 4 compared to a null model taking into consideration the 
in-degree and out-degree distributions. We use the improved version for 2018 and construct an inter-industry 
network that will be presented in the next section.

In this study, we focus on triadic motifs and anti-motifs that are over-occurrences and under-occurrences 
of different patterns of directed triadic connections, respectively. They are represented in Fig. 1b. Triadic and 
tetradic connections are known as the building blocks of complex  networks45, playing the role of functional 
modules or evolutionary signs in biological  networks46,47, homophily-driven connections in social  networks48, 
complementarity-driven structures in production  networks33,36, their change in time being interpreted as self-
organizing processes in the World Trade Web (WTW)49,50, and early-warning signals of topological collapse 
in inter-bank  networks51,52 and stock market  networks42. It has been proven that for the majority of (available) 
real-world networks, the triadic structure is maximally  random53 and by fixing it their global structure is statisti-
cally  determined54.

In contrast, research on weighted motifs and anti-motifs is still underdeveloped. To our knowledge, only one 
study involves trade volumes circulating on triadic subgraphs, using a probabilistic model based on random 
walks on the WTW 55.

Motif detection strictly depends not only on the properties of the real network but also on the randomiza-
tion method used for the computation of random expectations. In network science literature, various methods 
have been advanced for network randomization, primarily edge-stub methods, edge-swapping methods, and 
maximum-entropy methods, we focus on the latter. Randomization methods based on Entropy  Maximization56–58 
build graph probability distributions that are maximally random by construction. Available global or node-
specific data are encoded as constraints in the optimization procedure, and their corresponding Lagrange 
Multipliers are computed by maximum likelihood estimation (MLE)59. This theoretical framework has been 
proven to successfully reconstruct economic and financial  systems60–63, statistically predicting both the topology 
and the weights of the WTW 64–66, in an  integrated67, or conditional  fashion68, with only structural constraints, 
or informing the models with economic  factors69–71, statistically predicting banks’ risk  exposures72, and most 
recently, statistically reconstructing payment flows among Dutch firms that were clients of ABN Amro Bank 
or ING Bank, constraining their industry-specific production  functions26. These methods have been proven to 
give the best insurance of unbiasedness with respect to missing data, as seen by independent  testing73–76. Two 
studies using maximum-entropy modeling are especially worthy of note for motif detection: a theoretical study 

Figure 1.  (a) Graphical representation of the Dutch multi-layer production network. For illustrative purposes, 
we represent three industries/firms i, j and k as nodes, all placed on three commodity group layers, namely 
(from top to bottom): cereals, beer/malt, bread and other bakery products. The connections between the same 
three nodes are different in the different layers. (b) The possible 13 types of connected triadic subgraphs. Each 
triple of industries/firms can trade different products by forming, on each commodity-specific layer, either 
one of the 13 possible connected subgraphs or one of the remaining subgraphs where at least one node is 
disconnected (not shown).
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where the authors develop null models for triadic motif detections and compute z-scores of triadic occurrences 
 analytically77, and an applied study where triadic motifs and their time evolution are used as early warnings of 
topological collapse during the 2008 financial  crisis51.

Our contribution goes in this direction, using maximum-entropy methods constraining degree distributions 
and strength distributions—in their directed form and taking into account their reciprocal nature—to character-
ize triadic connections and the total money circulating on them for different product layers of the reconstructed 
Dutch production network. An analysis of this kind can give better insight into how much product-level granular-
ity is needed in production network datasets and how the links and weights of a production network are organ-
ized for different products. Once product layer patterns have been detected, National Bureau officials—having 
experience in the domestic trade of that single commodity—can infer if such motifs and anti-motifs are due to 
commodity-specific characteristics, market imbalances, or represent structures aided by laws. If unbalances and 
anomalies are detected, executive government agencies can use this as input to eventually advance policy laws 
to nudge a more convenient redistribution of connections and trade volumes.

Results
The CBS production network
The CBS production network for  201810 improves on the 2012 version by integrating more auxiliary micro and 
industry-level data. Before going into detail it is helpful to explain which are the industry classifications and 
product classifications used by Statistics Netherlands. Industries are classified using the Dutch Standard Industrial 
Classifications, in brief SBI, which are equivalent to the European Standard Classification NACE rev.2 in the first 
two digits, although the subsequent digits can differ. Statistics Netherlands has industry data on two different 
levels, the SBI4 level, containing 132 industries, and the SBI5 level, corresponding to 888 industries. Regarding the 
CPA product classification, Statistics Netherlands uses a modified version of the original European CPA, mainly 
at 4 and 6 digits. In the data, we retrieved 192 commodities for 4 digits and 623 commodities at the 6-digit level.

Firm-level data is obtained from the Statistical Business Register (SBR) for 2018 for over 1, 700, 000 firms. 
The SBR contains values about net turnover, geographical location, business id, and business sector at the SBI5 
classification level. After cleaning for micro-firms with annual net turnover below 10, 000 €, around 900, 000 
firms remain, accounting for 99.5% of the Dutch economy output in 2018. Details regarding the breakdown of 
output and input at the commodity level are primarily available at the industry level and for a limited number 
of firms. The Dutch National Supply-Use tables provide data on inter-industry and intra-industry intermediate 
input/output transactions for various commodities, classified at the Dutch CPA 4-digit level with industries 
categorized according to the SBI4 level.

While industry-wide transactions are validated, estimating output and input for individual firms per com-
modity and matching suppliers with users within commodity layers remains a challenge. To estimate supply 
per firm, domestic turnover, calculated as VAT turnover minus export turnover, is employed as a distributional 
key. Firms are assumed to supply in proportion to the ratio of their domestic turnover to the overall industry 
turnover. Additional adjustments are made for wholesale and retail trade firms to account only for domestic 
turnover associated with actual production.

Estimating use per firm from VAT turnover data involves determining the ratio between intermediate use 
and turnover. This ratio is estimated using SBS survey data. The breakdown of supply/use per firm at the com-
modity level is available for a relatively large number of firms through surveys conducted by structural business 
statistics (SBS) for commercial firms, Prodcom for manufacturing firms, and estimates generated by National 
Accounts for non-commercial firms.

Specifically, SBS provides a breakdown of sales and intermediate purchases into ten to twenty commodity 
categories for small firms and at the CPA-classification level for large firms. Prodcom conducts a similar survey. 
SBS categories are then mapped into CPA commodities by National Account experts.

For firms not covered by the aforementioned surveys, the breakdown in commodities of intermediate supply/
use is estimated using the distribution of the industries as a whole from the supply-use tables. This approximation 
can result in implausible values of annual supply and use. To address this issue, thresholds are imposed, setting 
supply values below 2000 € and also use values below 1000 € to zero. Finally, an iterative proportional fitting 
(IPF) procedure is implemented to ensure consistency with industry-level Tables.

Once supply and use per firm per commodity are obtained, their out-degree distribution is estimated using 
stylized facts from Japanese  firms39, connecting out-degrees with firm sizes through a power-law function, 
while their in-degree distribution is estimated assuming a power-law connection to firm-specific input at the 
commodity-level, an assumption that is consistent with recent studies on Dutch inter-firm  payments26.

Once in-degree and out-degree distributions per commodity are estimated for each firm, suppliers and 
users are matched according to a deterministic procedure that takes into account (1) a company score, encod-
ing their net turnover, (2) a distance score, that takes into account their mutual distance, (3) the presence of a 
link between respective industries in the supply-use tables, (4) the presence of the observed relationship in the 
Dun and Bradstreet dataset, i.e. a dataset containing the list of the users of the 500 largest suppliers in the Dutch 
Economy. After the computation of the related ‘link score’, users in each commodity layer are ordered accord-
ing to their purchase volumes. The top user, then, selects the best X suppliers and establish a connection with 
them, where X represents its commodity-specific in-degree. The procedure continues from the second-highest 
purchasing volume user to the last until no available links remain and degree distributions are reproduced. 
Network weights are then distributed across generated links according to a power-law distribution. Finally, the 
resulting weighted inter-firm network at the 650 commodity level (National CPA level 6) is compared to the 
Supply-Use tables (National CPA level 4) and consequent adjustments are made to weights and links. Further 
details can be found  in10.
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We aggregate the inter-firm network at the commodity level, passing from 623 commodities (CPA level 6) 
to 192 commodities (CPA level 4, compatible with supply-use tables). Then, we aggregate firms in industries 
at the SBI5 level, taking their business sector ids from the SBR. For the topic of interest, the self-loops implied 
by intra-industry trade are not important and can be removed from the dataset without adversely affecting the 
subsequent analysis. After cleaning for intra-industry trade, we obtain a multi-layer inter-industry production 
network containing linkages and weights for 862 industries (nodes) and 187 commodity groups (layers).

The firm-level reconstructed dataset is not without limitations. One source of error arises from the break-
down provided by SBS and Prodcom surveys, particularly regarding the documented intermediate purchases 
and sales. The purchases may include imports, and the sales may also include sales for final consumptive use. 
Another source of error stems from the distributions and assumptions made for firm out-degree and in-degree 
distributions. While these assumptions are supported by stylized facts from Japanese firms (for out-degrees) 
and payment data from a large sample of Dutch firms (for in-degrees), it cannot be assumed that the parameters 
used in the reconstruction are universally applicable or representative of ‘true values’. Finally, the matching 
procedure results in a deterministic network where the ‘best’ users have priority in connecting with their more 
closely aligned suppliers. This algorithm cannot account for noisy behavior or real-world uncertainties. In fact, 
for the 2012 version, with similar assumptions on degree distributions and the same matching algorithm, it has 
been demonstrated that these assumptions lead to biases in core network statistics such as the number of links 
in commodity  layers37, when compared with the ground-truth provided by a known sample of firm-to-firm 
connections collected by Dun and Bradstreet (for 2012). While aggregation at the SBI5 level is bound to reduce 
the biases that arose at the firm-level, it is still not clear how much the results are impacted by the propagation 
of these errors. Further discussion on limitations is provided at the beginning of “Discussion” section.

Network randomization methods
The main goal of network randomization methods is the generation of a statistical ensemble of networks, which 
are maximally random given available data. In our case, we randomize each product layer of our industry-
multilayer network separately using maximum-entropy methods. The available data—encoded as constraints 
in the entropy maximization—consists of the supplier’s (user’s) tendency to supply(use) a specific commodity 
and its output(input). The obtained statistical ensemble of networks represents the possible realizations of the 
system taking into account suppliers’ and users’ tendencies. After the generation of the synthetic ensemble of 
networks it is possible to extract metrics of interest as ensemble averages.

The null models we take into account are the directed binary configuration model (DBCM)65 and the recipro-
cal binary configuration model (RBCM)77 for the estimation of network links, and the conditional reconstruction 
method A (CReMA)68 and the newly developed conditionally reciprocal weighted configuration model (CRWCM) 
for the conditional estimation of network weights. The DBCM corresponds to the model that maximizes the 
Shannon entropy attached to the distribution of possible binary adjacency matrices, given that in-degree and out-
degree distributions are constrained on average. The RBCM is also used for estimation of links by maximizing the 
Shannon entropy attached to the distribution of possible binary adjacency matrices, but makes use of additional 
information, namely the non-reciprocated out-degree, in-degree and the reciprocated degree distributions. These 
metrics are originated distinguishing links that are reciprocated from the ones that are not and summing on 
them. Turning our attention to weighted networks, the CReMA is the maximum-entropy model that maximizes 
the conditional Shannon entropy attached to the distribution of weighted networks, given the realization of the 
adjacency matrix A. The constraints used in the conditional optimization are the out-strength and in-strength 
distributions, corresponding to sum of weights going from and to a node, respectively. The CRWCM, instead, 
is an augmented version of CReMA , which can take better account of reciprocation by constraining the out-
strength and in-strength distributions for reciprocated and non-reciprocated links. Both CReMA and CRWCM 
are estimated using an annealed approach, following the  articles68,80, and consequently coupled with the relative 
binary model. Specifically directionality is encoded in the DBCM+CReMA model, also denoted as the directed 
model, while directional and reciprocal information is encoded in the RBCM+CRWCM model, denoted as the 
reciprocated model. For further information and the mathematical generation of link and weight distributions, 
please refer to “Methods” section.

Measuring empirical reciprocity statistics

The presence of data on product granularity gives us the opportunity to study heterogeneity across commodity 
layers. Let us consider in Table 1 the number of layer-active industries N, the number of links L, the total weight 
Wtot , and reciprocity measures such as the topological reciprocity rt , defined as the ratio of reciprocated links to 
L, i.e.

and its weighted counterpart rw , defined as the ratio of total weight on reciprocated links to W, i.e.

(1)rt =
L↔

L
=

∑

i,j �=i

a↔ij

∑

i,j �=i

aij
.

(2)rw =
W↔

tot

Wtot
=

∑
i,j �=i w

↔,out
ij

∑
i,j �=i wij

.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3625  | https://doi.org/10.1038/s41598-024-53655-3

www.nature.com/scientificreports/

The median for N is 149, meaning that for around 50% of commodity layers there are less than 149 active 
industries (as suppliers or users). At the same time, 25% of commodity layers have less than 62 industries, and 
another 25% have more than 544 industries. Consequently, industries are specialized among a small number of 
business activities for half of the commodity groups but, a small, and not negligible, number of layers is charac-
terized by a high number of active industries and hence of industry heterogeneity. Some examples are suppliers 
of plastic goods that are sold to users with heterogeneous specializations, for instance, bread, beer, cereals, fish, 
etc. Also the distributions regarding the number of commodity-specific links L and the related total weight 
Wtot have wide distributions, with a minimum with few digits, respectively 3 and 0.95 (in millions of euro), and 
a maximum in 5 digits, respectively 15, 198 and 23, 767, implying a high degree of heterogeneity in network 
structure across commodity layers.

Passing from the commodity global statistics to rt and rw , we see a high degree of heterogeneity also in 
this case, namely a minimum value of 0 stands for layers where no link is reciprocated, i.e. users and suppliers 
represent two distinct sets of nodes (bipartite graph). Instead, in the majority of the commodities (above 75% ) 
there is a not-null reciprocity. In fact, the median is respectively 0.05 and 0.08. There is also the presence of a 
small number of commodities (below 10% ) which are characterized by a large reciprocity, with a maximum of 
0.78 for both rt and rw.

Reciprocity can arise for different reasons: (1) the aggregation from firms to industries or (2) the aggrega-
tion of products. To mention the first case, consider two firms A and B in the industry i and other two firms C 
and D in industry j. Suppose firm A supplies to firm D, while firm C supplies to firm B, in the same commodity 
layer. Once the firms are aggregated in the related industries, a reciprocated link emerges between them, even if 
reciprocity is not present at the firm level.

The second case follows from the fact that if each commodity layer represents a unique product, that could 
be represented by the finest CPA product classification (with around 5000 products), and we take into account 
only intermediate supply and use, it is not reasonable to think that firms are at the same time suppliers and users 
(of that specific product). Instead, in case of product aggregation, firms may be suppliers of a product inside that 
commodity group and also users of another product inside that same commodity group.

Let us now move to the analysis of triads. We define triadic occurrences Nm , the number of times a specific 
m-subgraph appears and triadic fluxes Fm , the total amount of money circulating on each m-subgraph. In Fig. 2, 
we depict their values normalizing by their sum across the m-types. The normalized Nm and Fm can be considered 
as the relative importance of a specific type of triadic subgraph in the network. The aggregated network (depicted 
in blue), where the weights of all commodity groups are summed, and three commodity layers, namely ‘cere-
als’ (in green), ‘gas/hot water/city heating (in orange) and ‘agricultural services’ (in pink) are displayed. In the 
aggregated network, the structures that occur relatively more are m = 1 , represented by a supplier connected to 
two users and m = 13 , the totally reciprocated cyclical triad. While m = 13 is probably due to product aggrega-
tion, the predominance of m = 1 is a signal of structural dependency on a limited number of suppliers. However, 
when normalized Fm are investigated, m = 13 still contain the majority of the volumes. A similar profile, in the 
binary case, is given by the agricultural services, with the predominance of m = 1 and m = 13 . At the same 
time a relatively smaller amount of money is concentrated on m = 13 with respect to the aggregated case, while 
m = 1 and m = 11 carry a greater amount of money. During the product disaggregation weights on m = 13 in 
the aggregated network are redistributed on other subgraphs, especially m = 1 . In ‘cereals’ and ‘gas/hot water/
city heating’ these differences are even larger, with a relevant increase of triadic occurrences and fluxes on m = 1 , 
further increasing the dependency of the network on a limited amount of suppliers. Note that when counting 
the different triads in Fig. 2 they are not nested, i.e. a subgraph of type m = 8 requires two reciprocated links and 
hence does not contain two subgraphs of type m = 1 , which contain only non-reciprocated links. Consequently, 
the number and fluxes over all triadic subgraphs are structurally independent across different types.

Binary motif analysis
We analyze the number of occurrences Nm of all the possible triadic connected subgraphs, depicted in Fig. 1b. 
To quantify their deviations to randomized expectations, we define the binary z-score of subgraph m

(3)z[Nm] =
Nm(A

∗)− �Nm�

σ [Nm]

Table 1.  Description of the distribution of statistics such as the number of active industries N, the number of 
links L, the total weight Wtot , the topological reciprocity rt and the weighted reciprocity rw across commodity 
layers of the inter-industry network.

Layer-statistics Min Lower quartile Median Upper quartile Max

N 4 62 149 544 822

L 3 203 678 2076 15,198

Wtot 0.95 239 768 2027 23,767

rt 0 0.01 0.05 0.14 0.78

rw 0 0.01 0.08 0.28 0.78
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where Nm(A
∗) is the number of occurrences of the m-type subgraph in the empirical adjacency matrix, 〈Nm〉 

is its model-induced expected number of occurrences, and σ [Nm] is the model-induced standard deviation.
An analytical  procedure77 has been developed to compute the binary z-scores for the binary case. However, 

the assumption on the confidence intervals—represented as the interval (−3, 3)—holds true only if the ensemble 
distribution of Nm is Normal for each m. For all the commodities, m-types, and binary null models, we test the 
assumption using a Shapiro  Test79. According to the test, Nm ensemble distributions are in a large proportion 
not normal at the 5% confidence level. Consequently, we must use a numeric approach. Networks are sampled 
according to the DBCM recipe by (1) computing the induced connection probability pij;DBCM and (2) establish-
ing a link between industry i and j if and only if a uniformly distributed random number uij ∈ U(0, 1) is below 
pij;DBCM . The analogous recipe for RBCM requires (1) computing the set of connection probabilities for non-
reciprocated connection between i and j, namely p→ij  , p←ij  and p  ↔

ij
 , and reciprocated connection p↔ij  , generate a 

uniform random variable uij ∈ (0, 1) and (2) establishing the appropriate links in the dyad in the following way:

• a non-reciprocated link from i to j if uij ≤ p→ij ;
• a non-reciprocated link from j to i if uij ∈ (p→ij , p

→
ij + p←ij ];

• a reciprocated link from i to j (and from j to i) if uij ∈ (p→ij + p←ij , p
→
ij + p←ij + p↔ij ];

• no links from i to j and from j to i otherwise.

In both cases, we generate a realization of A and extract the Nm statistic. 〈Nm〉 and σ [Nm] , are the average and 
standard deviation of Nm extracted from the ensemble distribution of 500 realizations of A. After having com-
puted z[Nm] , we also extract the 2.5-th and 97-th percentiles from the ensemble distribution of Nm over all 
models and we standardize them using Eq. (3) by replacing the empirical Nm with the percentile. Such measures 
will serve as the 95% CI for the z-score.

The results for the aggregated inter-industry network are in Fig. 3a. The z-scores computed with respect to 
the DBCM are depicted in blue on the left panel, while the z-scores computed with respect to the RBCM are 
depicted in orange on the right panel. The corresponding confidence intervals at the 5% percent are depicted 
with the same color (blue or orange) but in slight transparency. The majority of Nm are not reproduced by the 
randomized methods, i.e. the z-scores are outside the confidence intervals. Specifically, only N8 is reproduced by 
the DBCM, while both N1 and N9 are reproduced by the RBCM. Discounting reciprocal information does not 
only increase the number of triads that are statistically well described, but potentially changes their type, implying 
a qualitatively different z-score profile. At the same time, in the aggregated picture, m = 1 and m = 9 are seen 
as described by a null model implementing reciprocity, i.e. neither high dependency on suppliers ( m = 1 ), nor 

Figure 2.  Normalized triadic occurrences (a) and fluxes (b): the aggregated network (blue color) presents a 
high occurrence of subgraphs m = 1 and m = 13 , representing open-Vs and completely reciprocated triads, 
respectively. The latter covers most of the total amount of money traded. The cereals commodity layer (green 
color), with a high occurrence of subgraph m = 1 . A relatively high amount of money is distributed across 
m = 1 , m = 4 and m = 6 . Gas/hot water/city heating layer (orange color) with a predominant occurrence 
and flux in subgraph m = 1 . Agricultural services layer (pink color), with a highly heterogenous spectrum of 
occurrences and fluxes. Completely cyclical triads have a high occurrence in the aggregated network, but break 
apart when passing to single commodity layers as G.H.C and cereals, if not for rare cases such as agricultural 
services. In single commodity layers m = 1 receives the highest concentration of money, signalling a large 
amount of money flows over structures that greatly depend on a limited number of suppliers, which control the 
market..
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Figure 3.  Triadic binary motif analysis: DBCM (blue circle) vs RBCM (orange  circle). (a) Analysis of the 
aggregated network with a single representative commodity. Numerous motifs and anti-motifs are present using 
DBCM and RBCM as null models. (b,d) Commodity groups where RBCM reproduces all the triadic structures, 
and they are, respectively, cereals, electrical components, and the construction of tunnels, waterways, and roads. 
(e,f) Commodity groups with one network motif, namely bread and gasoline. (g) Commodity group with two 
network motifs, namely beer/malt. The CIs are computed by extracting the 2.5-th and 97.5-th percentile from 
an ensemble distribution of 500 graphs. The numerous motifs and anti-motifs in the aggregated network can be 
seen as the aggregation of commodity groups presenting very few characteristic patterns.
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unstable feedback loops ( m = 9 ), where industries supply to each other in a cyclical fashion, are revealed. The 
aggregated network, is hence, characterized by a multitude of structures that are not well described by the null 
model and are due to additional three-node correlations but is relatively resilient to supply shocks and cyclical 
input/output. By disaggregating from the aggregated monolayer to the multi-commodity network, the majority 
of commodity-layers have triadic structures which are statistically reproduced by the reciprocal null model. Only 
1 or 2 motifs or anti-motifs are present for the majority of the remaining commodities, a result indicating that 
beneath the aggregated picture, commodity groups are characterized by a small number of commodity-specific 
motifs and anti-motifs.

In Fig. 3b–d, z-score profiles for three commodity layers are displayed, namely cereals, electrical components, 
and the construction of tunnels, waterways, and roads. RBCM well describes all subgraph occurrences ( zNm is 
within CI), while the DBCM signals the presence of anti-motifs for m = 10 , m = 11 and m = 12 for cereals, and 
anti-motif m = 12 and motif m = 13 for the construction layer. In Fig. 3e,f, two z-score profiles are displayed—
namely for bread and other bakery products and gasoline—for which RBCM signals the presence of at least a 
motif or anti-motif. A motif m = 12 is present for the former layer while an anti-motif for m = 4 is present for 
the latter. Notice that for bread the DBCM does not signal any motif or anti-motif, implying that deviations can 
emerge by introducing information on the reciprocal structure. Moreover, subgraph m = 9 in bread and the 
majority of subgraphs in the gasoline commodity layer are characterized by a degenerate confidence interval: 
in all of the generated synthetic networks Nm=9 correspond to the empirical N∗

9  with null variance, i.e. the con-
straints imposed on the ensemble totally describe the specific m-type motif, a matter which can arise regardless 
of the lack of statistics in the related Nm . Finally, in Fig. 3g, the z-profile for the commodity layer beer/malt is 
considered. The DBCM signals a large number of motifs, specifically for m = 2 , m = 10 , and m = 11 , and anti-
motifs for m = 3 and m = 8 . In contrast, the RBCM signals a lone motif m = 3 and an anti-motif m = 6.

In Fig. 4a, the empirical counter cumulative distribution for the number of deviating binary triads is shown. 
Introducing reciprocal structure information reduces the number of motifs and anti-motifs present across com-
modities. For instance, the percentage of commodities with at least a motif or anti-motif is 61% when compared 
to the DBCM, and 48% when compared to the RBCM, while the percentage of commodities having at least two 
motifs or anti-motifs is 46% when compared to the DBCM and 27% when compared to the RBCM.

Lastly, we identify the occurrence of m-type of motifs and anti-motifs across commodities by introducing 
two quantities, ch(m) and cl(m) . ch(m) represents the number of commodities having a motif of type m while 
cl(m) represents the same measure for anti-motifs. The addition of the reciprocal structure reduces the number 
of commodity-specific motifs for each subgraph type, with the exception of motif m = 6 as depicted in Fig. 4b, 
and the number of anti-motifs for each type, with the exception of anti-motif m = 8 as depicted in Fig. 4c. The 
reciprocal null model, hence, reveals a higher number of commodities that are relatively more vulnerable to 
demand shock due to bankruptcy of industries of type k in triadic formations m = 6 , while it reveals an increased 
resilience to supply/demand shocks originating from bankruptcy of industries of type j in formations m = 8.

Weighted motif analysis
While the bankruptcy of an entire industry is unrealistic, a shock due to a decrease in the flow of goods among 
industries can propagate along the supply chain, with side effects on the real economy. This implies that not only 

Figure 4.  Comparison DBCM (blue circle) vs. RBCM (orange  circle): (a) empirical counter cumulative 
distribution function ECCDF of the number of deviating binary triadic motifs and anti-motifs across 
commodity layers. (b) Number of commodities ch(m) having a m-type motif (overoccurrence). (c) Number 
of commodities cl(m) having a m-type anti-motif (underoccurrence). RBCM explains more triadic structures 
than DBCM, as shown in the difference of their ECCDF. Passing from DBCM to RBCM reduces the number 
of m motifs across commodities, with the exception of m = 6 , and anti-motifs, with the exception of m = 8 . 
The deviation of those triads is, hence, due to three-node correlations that go beyond directional and reciprocal 
tendencies of supply/use among industries. RBCM, hence, signals an increased vulnerability to demand shocks 
originating from the bankrupcty of industries of type k in sub-types m = 6 and an increased resiliency to 
supply/demand shocks of industries of type j in triadic formations m = 8..
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binary information is important for shock propagation but also weighted information, namely the amount of 
money circulating on connected structures.

Consider the triadic flux Fm on motif m, defined as the total money circulating on triadic subgraphs of type 
m. We characterize the deviation of empirical Fm to null models by defining the weighted z-scores as

where 〈Fm〉 is the model-induced average amount of money circulating on motif m and σ [Fm] represents the 
model-induced standard deviation over the ensemble of network realizations.

The theoretical benchmark (or null model) is built by using a combination of binary and conditional weighted 
models, depending on the wanted constraints. If we deem reciprocal information of negligible importance we 
should use the combination of models given by DBCM, for the sampling of the binary adjacency matrix, and the 
CReMA , constraining the out-strength and in-strength sequences. If we deem reciprocal information necessary, 
a combination of the RBCM and CRWCM should be used. We compare here the two to establish the importance 
of the addition of reciprocity information for the detection of weighted motifs.

In operative terms, using a two-step model such as the DBCM+CReMA reduces to (1) establishing a link 
between industries i and j when a uniform random number uij ∈ U(0, 1) is such that uij ≤ pij;DBCM , (2) if i and 
j are connected, sampling wij by using the inverse transform sampling method technique, i.e., we generate a 
uniformly distributed random variable ηij ∈ U(0, 1) such that

then we invert the relationship finding the weight vij to load on the link (i, j).
The network sampling for the RBCM+CRWCM follows the same concepts with two major differences: (1) a 

link is established using the RBCM recipe and (2) the dyadic conditional weight probability qCReMA(wij|aij = 1) 
is substituted with qCRWCM(wij|aij = 1) in the inverse transform sampling.

In Fig. 5a, the z-score profile for the aggregated network with a single representative commodity is depicted 
using the directed (in blue on the left panel) or the reciprocal models (in orange on the right panel). There 
is a large number of motifs and anti-motifs when the benchmark model is directed, only F3 does not deviate 
significantly.

When reciprocity information is considered, the picture changes: only three motifs, namely m = 6 , m = 11 , 
and m = 13 , are identified, and four anti-motifs, namely m = 3 , m = 8 , m = 10 , and m = 12 , are found when 
the reciprocal null model is employed. This model’s enhanced accuracy unveils a higher-than-expected volume 
of financial activity on sub-types characterized by a single exclusive user and two suppliers utilizing each other’s 
products ( m = 6 ), two users supplying to each other while employing a product from the same supplier ( m = 11 ), 
and entirely cyclical triads ( m = 13 ). In contrast, a lower-than-expected level of financial activity transpires 
in open triads with two reciprocated ties ( m = 8 ), one reciprocated link and one exclusive user ( m = 3 ), or in 
closed triads of type m = 10 and m = 12 . While it might be contended that the heightened concentration of 
funds on m = 13 is attributable to aggregation bias, it is crucial to recognize that aggregation solely accounts for 
the increased monetary worth of the particular sub-type in absolute terms, not for the weighted motif obtained 
after adjusting for the statistical null model. It should be noticed that the emergence of these specific motifs can-
not be easily explained without delving into greater detail, given the representative commodity scheme, while 
the picture cannot be merely reduced to a higher activity on open triads and a lower activity on closed triads.

Similarly to the binary case, passing from the aggregated network to the disaggregated product-level layers, 
it is possible to identify a small number of commodity-specific weighted motifs and anti-motifs.

In Fig. 5b–d, three commodity layers are depicted for which no motifs and anti-motifs are present when 
z-scores are computed using the reciprocal model. They are ‘seeds’, ‘metal components for doors and windows’ 
and ‘airline services’. In the ‘seeds’ layer, the directed model signals the presence of an anti-motif for m = 5 . In 
the second layer, no deviations are registered by both null models but CIs are of different nature, in fact, the 
reciprocal model allows a more restricted range of z-scores with respect to the directed model for m = 9 . In the 
‘airline services’ layer, for both models, no deviations are present and three CIs are degenerate for m = 5 , m = 9 , 
and m = 10 . In Fig. 5e,f, the z-scores relative to the commodity groups ‘coffee/tea’ and ‘textile raw materials and 
products’ are depicted, for which 1 motif is present by using the reciprocal model. For both the directed and 
reciprocal models there is a weighted motif m = 2 in the ‘coffee/tea’ layer. In contrast, in the textile products 
layer the directed model signals an anti-motif for m = 2 , while the reciprocal model signals a motif for m = 1 . 
If Fig. 5g, the z-score profile for the commodity layer ‘shipping services’ is shown: the directed model signals a 
large number of anti-motifs, specifically for m = 5 , m = 7 and m = 12 , while it registers a motif for m = 11 . The 
reciprocal model, instead, registers a motif for m = 4 and anti-motifs for m = 5 and m = 12 . Different commod-
ity layers call for different motifs and anti-motifs which are due to their specific characteristics. In this paper, 
we refrain from characterizing every single commodity layer, but a specific and thorough analysis is possible by 
visualizing the number of triadic sub-types, the z-score profile for Nm and their weighted analogs.

The empirical counter cumulative distribution ECCDF(# deviating W �) for the number of deviating weighted 
triads is depicted in Fig. 6a. The number of deviating triadic fluxes is steadily lower using the reciprocal model. 
Fm are maximally random for 49% when the directed model benchmark is used and for 55% according to the 
reciprocal model. The reduction of the number of motifs is however not as significant as in the binary case.

In Fig. 6b,c, we plot the weighted analogous of ch(m) and cl(m) . Reciprocal information decreases the occur-
rence of all types of anti-motifs across commodities, with the exception of m = 8 . Instead, the profile induced 

(4)z[Fm] =
Fm(W

∗)− �Fm�

σ [Fm]

(5)F(vij) =

∫ vij

0

qCReMA(wij|aij = 1)dwij = ηij ,
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Figure 5.  Triadic weighted motif analysis: DBCM+CReMA (blue circle) vs RBCM+CRWCM (orange circle). 
(a) Analysis of the aggregated network with a single representative commodity. A large number of motifs 
and anti-motifs are present when using DBCM+CReMA , while three motifs are present when using the 
RBCM+CRWCM. (b–d) Commodity groups where RBCM+CRWCM reproduces all the triadic structures, and 
they are, respectively, seeds, metal components for doors and windows, and airline services. (e,f) Commodity 
groups with one network motif, namely Coffee/tea and textile raw materials and products. (g) Commodity 
group with two network motifs, namely shipping services. The CIs are computed by extracting the 2.5-th and 
97.5-th percentile from an ensemble distribution of 500 graphs. Passing from the aggregated network to the 
disaggregated product layers unveils the presence of a few commodity-specific motifs and anti-motifs.
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by ch(m) is significantly different using the two null models. For instance, according to the directed model, F1 is 
almost always well predicted, instead, it is the most occurring motif according to the reciprocal model. At the 
same time, reciprocity unveils the dependency of more than 40 commodity layers on the supply of a limited 
amount of suppliers, which in this case control the market. In fact, the high presence of m = 1 weighted motif 
signals the vulnerability of the industry-industry network to supply shocks provoked by a reduction of supply 
volumes.

Discussion
The study of triadic motifs on production networks is still in its infancy due to a scarcity of reliable data. In the 
existing literature, only binary triadic motifs on one production network, the Japanese one, have been charac-
terized for a single representative  commodity36, while the Hungarian dataset has been analyzed only for triadic 
occurrences without recurring to a null  model81. The Japanese study revealed a simple but significant pattern: 
open triadic subgraphs are over-represented while closed triadic subgraphs are under-represented. This phenom-
enon was attributed to complementarity, where economic actors connect in tetradic structures—better explained 
by open triads—due to complementary  needs33.

Our findings corroborate the notion that an analysis based on a single representative commodity is insuf-
ficient to fully characterize a production network. Product-level data is essential for disaggregating the network 
into layers that are characterized by commodity-specific binary motifs and anti-motifs. Moreover, we found that 
the majority of layers exhibit maximally random triadic structures when the reciprocal structure is considered.

At the level of binary motifs, we detected that cyclical reciprocated triadic subgraphs, which are dominant in 
the aggregated network, break up in the disaggregated product layers, where open triangles become dominant, 
especially m = 1 . However, using the RBCM as a benchmark, we proved that m = 1 is always well described. 
Conversely, the completely cyclical triads, even if partially broken in the disaggregated layers, are often over-
represented compared to the benchmark estimate. In general, constraining the reciprocation capacity of indus-
tries—by constraining the reciprocated degrees—is of the foremost importance when characterizing triadic 
motifs, as explained by the better accuracy and the decrease in binary triadic motifs and anti-motifs when using 
RBCM as a benchmark compared to DBCM.

We also characterized weighted motifs and anti-motifs, defined as the amount of money circulating on triadic 
subgraphs, with a novel model which constrains strengths, decomposing them according to the character of the 
corresponding links. This type of analysis is totally novel in the context of production networks, and rarely seen 
with benchmark  models55. We find a non-trivial result already when analyzing the aggregated network, subgraphs 
that are well explained in binary terms—their occurrence is well described by the statistical ensemble induced 
by the DBCM or RBCM—can be not well described in weighted terms, meaning that even if a binary triadic 
subgraph has the expected occurrence it can accommodate an unexpected concentration of money. Furthermore, 
we identified a high presence of m = 1 weighted motifs across commodity layers, a signal of commodity-specific 
dependency on a limited number of suppliers, which control the market. This implies that a large number of 
layers are vulnerable to supply shocks, which can arise due to a decrease in supplied volumes (and not only to 
the supplier’s bankruptcy as in the binary case).

Figure 6.  Comparison DBCM+CReMA (blue circle) vs. RBCM+CRWCM (orange circle): (a) empirical counter 
cumulative distribution function ECCDF of the number of deviating binary triadic motifs and anti-motifs 
across commodity layers. (b) The number of commodities ch(m) having a m-type motif. (c) The number of 
commodities cl(m) having a m-type anti-motif. RBCM+CRWCM explains slightly more triadic fluxes than 
DBCM+CReMA , as shown in the difference of their ECCDF. Passing from the directed to the reciprocal model 
reduces the number of anti-motifs, with the exception of m = 8 . In contrast, it changes qualitatively the motif 
profile, with a slight dominance of m = 11-type motifs when the directed model is used and a clear dominance 
of m = 1-type motifs when the reciprocal model is used. The reciprocated model unveils a vulnerability to 
supply shocks originating from a decrease in supply volumes of industries of type j in formations m = 1.
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Changing the benchmark from a directed to a reciprocal model significantly changes the identity of motifs 
and anti-motifs across commodities. Hence, it is essential to take into account the type of the corresponding link 
in which weights are sampled by constraining reciprocated and non-reciprocated strengths.

Overall, our results indicate that product-level information is strictly necessary to identify triadic structures 
and fluxes in production networks. We hope that our study can encourage Statistics Bureaus around the world 
to implement policies and techniques to reveal or reconstruct a reliable product heterogeneity for firm-level 
transaction data. Our analysis also shows that most commodity-specific layers can be reconstructed via null 
models that incorporate reciprocity while maintaining dyads independent. For these layers, network reconstruc-
tion methods of the type introduced  in26, if extended to incorporate reciprocity, are likely to perform well in 
replicating the properties of the entire layers starting from partial, node-specific information. Most other layers 
show at most one or a couple of deviating triadic motifs that are unexplained by the null model. For these layers, 
additional information is needed to achieve a good reconstruction. Once a rigorous product analysis has been 
performed, experts in the single commodity can interpret why such triadic formations over-occur or under-
occur, accommodating an excessive or insufficient amount of trade volume, unveiling the detailed structure of 
the commodity-specific production networks.

In order to suggest improvements for further research, we conclude by noticing that our study is subject to 
two main limitations. First, an industry-level analysis inherently yields results that differ from those obtained 
from firm-level studies and underestimates the risk associated with exogenous and endogenous  shocks40. Sec-
ond, the dataset analyzed pertains to industries at the SBI5 level, a classification intermediate between firms and 
SBI4-level industries. Analyzing the dataset at the firm level was not feasible due to potential biases arising from 
the deterministic imputation and degree distribution assumptions, which are exacerbated when dealing with 
highly granular data. Conversely, analyzing industries at the SBI4 level, which encompasses a maximum of 132 
industries, would imply that for a substantial number of commodities, very few industries are active. Conse-
quently, the null model would trivially replicate, in a statistical sense, the triadic structures for the majority of 
commodity layers due to a lack of relevant observations. However, the same biases anticipated at the firm level 
can arise, even if mitigated, by selecting SBI5-level industries. This could potentially lead to biases in our analysis, 
especially in the type of motifs and anti-motifs found for each commodity. However, in order to validate all of our 
‘fingerprints’ we would need fully empirical data for industries at the SBI5 level for each of the 187 commodities, 
an information that is not available in any country until now, to the best of our knowledge.

Methods
Binary null models
For binary-directed graphs, the maximum entropy formalism prescribes the maximization of the graph entropy 
functional S[P(A)]

subject to the normalization of the graph probability P(A) and to the constraints on network properties C∗
α , i.e.

hence maximizing the unbiasedness of the resulting P(A) given available data. Solving the optimization problem, 
we obtain the canonical P(A)

where H(A) is denoted as the Graph Hamiltonian and is defined as

In this section, we focus on the binary reconstruction methods taking into account local properties.

The directed binary configuration model
In the directed binary configuration model (DBCM), we choose as local properties the the out-degree (kouti ) and 
the in-degree (kini ) representing the number of industries industry i sells to and the number of industries industry 
i buys from respectively.

Out-degrees and in-degrees can be defined mathematically in terms of the adjacency matrix A = (aij) as

Solving the constrained entropy maximization we obtain the graph probability P(A) in Eq. (8) where

(6)S[P(A)] = −
∑

A∈A

P(A) ln P(A)

(7)
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α , ∀α,
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The graph probability P(A) can be re-written as the product of Bernoulli trials

where pij = P(aij = 1) denotes the probability of connection of supplier i with user j and is equal to

with xouti ≡ e−αouti  and xini ≡ e−αini  . By maximum log-likelihood estimation (MLE) on the log-likelihood 
L = ln(P(A)) we obtain the Lagrange parameters αout

i  and αin
i  ∀i , a procedure equivalent to solving a system of 

2N coupled equations

where N is the number of industries in the network and 〈kouti 〉 and 〈kini 〉 denote the ensemble averages of out-
degrees and in-degrees respectively.

The reciprocal binary configuration model
 In the reciprocal binary configuration model (RBCM), we decompose the degree according to the reciprocal 
nature of the connection at hand, namely in non-reciprocated out-degree k→i  , non-reciprocated in-degree k←i  
and reciprocated degree k↔i  . Those measures can be defined mathematically in terms of the adjacency matrix 
A = (aij) as

Solving the constrained maximization entropy problem, we obtain the graph probability P(A) as in Eq. (8) 
with graph Hamiltonian given by

The model-induced graph probability P(A) is the product of Bernoulli trials of mutually exclusive events

with

where x→i ≡ e−α→i  , x←i ≡ e−α←i  and x↔i ≡ e−α↔i  are the exponentiated Lagrange multipliers tuning for the 
non-reciprocated out-degree, non-reciprocated in-degree and reciprocated degree respectively. The Lagrange 
multipliers α→

i  , α←
i  and α↔

i  are found using MLE on the Log-likelihood L = ln(P(A)) , a procedure equivalent 
to solving the system of 3N coupled equations reading

i.e., equating the reciprocated and non-reciprocated degrees to their ensemble averages.
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Conditional weighted null models
When inspecting network weights, the numeric character of the involved trade volumes restricts the basket of 
available models. If the weights are discrete-valued, the constrained entropy maximization leads to a family of 
geometric  distributions66,70,78. In contrast, continuous values lead to a family of exponential probability distribu-
tions when the constraints arise from node-specific  properties68,71. We treat the conditional problem, which is 
well defined only after deciding the form of the binary adjacency matrix A.

The conditional graph entropy S[Q(W|A)], measuring the uncertainty attached to the probability of having a 
weighted adjacency matrix W compatible with a given realization of the binary adjacency matrix A, i.e.

is maximized given the normalization of the conditional weighted probability density function Q(W|A) and the 
constraints Cα(W)

where the set of C∗
α represent known node-specific properties. From this constrained conditional maximization 

we obtain Q(W|A), as

where WA stands for the ensemble of realizations of W compatible with A (with weights sampled only on con-
nected dyads aij = 1 ) and the graph Hamiltonian H(W) is defined as

Parameters βα are estimated using MLE on the log-likelihood function LW reading

where Zβ ,A is the conditional partition function and its computation is possible only if total information about A 
is available. However, estimating parameters on the empirical topology A neglects its intrinsic random variability 
when it is sampled using a binary model, such as DBCM or RBCM. This problem is solved in network science 
literature by defining the generalized log-likelihood Gβ

68,80

where P(A) is the graph probability induced by the binary model. In the following, we mainly deploy the esti-
mation based on Gβ for weighted models. Using the framework mentioned above, we can solve the conditional 
maximum entropy problem taking into account weighted local properties.

The CReMA When randomizing the weighted adjacency matrix W, trade marginals such as the out-strength 
souti  and the in-strength sini —representing the total output or total input of industry i—are usually  constrained66,67. 
The out-strength souti  and the in-strength sini  sequences are defined as the marginals of the weighted adjacency 
matrix W, namely

Solving the constrained conditional entropy maximization leads to a conditional cumulative function Q(W|A) 
as in Eq. (22) where

with a conditional graph distribution

i.e. the product of dyadic exponential distributions in wij conditional on the establishment of the link aij and regu-
lated by the node-specific Lagrange parameters βout

i  and β in
i  ∀i . By using generalized log-likelihood estimation 

(GLE), we find the Lagrange parameters—a procedure that equates to slightly changing the dyadic conditional 
probability by substituting aij with a dyadic term fij such that fij = �aij� , i.e., fij is the ensemble average of aij and
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=
∏

i,j �=i;aij=1

[(
βout
i + β in

j

)
e
−(βout

i +β in
j )wij

]aij
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Maximizing Gβ we obtain a system of 2N coupled equations reading

and find {β in
i ,βout

i } for each industry.

The CRWCM model
In order to take into account reciprocity, we develop a novel model denoted as Conditionally reciprocal weighted 
configuration model (CRWCM), that considers the different nature of links on which weights are sampled, namely 
reciprocated and non-reciprocated links. This choice leads to the definition of four trade marginals for each 
supplier/user, namely

• the non-reciprocated out-strength s→i  which measures the output of supplier i to users from which it does 
not buy, defined in terms of W as 

• the non-reciprocated in-strength s←i  , which measures the input of industry i from suppliers to which it does 
not itself supply, defined as 

• the reciprocated out-strength s↔,out
i  , measuring the output of supplier i to users from which it also purchases, 

reading 

• and the reciprocated in-strength s↔,in
i  , measuring the input of user i from suppliers to which it also supplies, 

defined as 

Solving the constrained conditional maximum entropy problem, we obtain the conditional weighted graph 
probability in Eq. (22) where the graph Hamiltonian is given by

leading to

where qij(w|aij) for the single dyad depends on the possible states of wij , namely

Rephrasing the vector {a→ij , a
←
ij , a

↔
ij , a

�

ij } of aij-states into the vector of their ensemble averages 
{f→ij , f←ij , f↔ij , f�ij } , where f (·)ij = �a

(·)
ij � depends on the binary model of choice, we can use GLE for the estima-

tion of the 4N parameters. The resulting generalized log-likelihood is separable in a reciprocal and non-reciprocal 
component, i.e., Gβ = G→

β + G↔
β  (see Appendix B for details). The Lagrange parameters β are retrieved by 

maximizing Gβ , which equates to solving two uncoupled systems of 2N coupled equations reading

(29)qij(wij|aij = 1) =

[(
βout
i + β in

j

)
e
−(βout

i +β in
j )
]fij

.

(30)






souti =
�

j �=i

fij

βout
i + β in

j

= �souti �

sini =
�

j �=i

fji

β in
i + βout

j

= �sini �

(31)s→i =
∑

j �=i

a→ij wij =
∑

j �=i

w→
ij

(32)s←i =
∑

j �=i

a←ij wji =
∑

j �=i

w←
ij

(33)s↔,out
i =

∑

j �=i

a↔ij wij =
∑

j �=i

w↔,out
ij

(34)s↔,in
i =

∑

j �=i

a↔ij wji =
∑

j �=i

w↔,in
ij

(35)H(W) =
∑

i

β→
i s→i + β←

i s←i + β
↔,out
i s↔,out

i + β
↔,in
i s↔,in

i

(36)Q(W |A) =
∏

j �=i,aij=1

qij(w|aij = 1) =

(37)






(β→
i + β←

j )e
−(β→

i +β←
j )w→

ij forw→
ij > 0

(β
↔,out
i + β

↔,in
j )e

−(β
↔,out
i +β

↔,in
j )w↔,out

ij forw↔,out
ij > 0

0 for wij = 0.
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for the non-reciprocated sub-problem and

for the reciprocated sub-problem (Supplementary Information).

Data availability
The data analyzed in this study is under licence by Statistics Netherlands (CBS). Requests to access data should 
be directed to FPP, f.pijpers@cbs.nl.

Code availability
The code is available as a Python package named ‘NuMeTriS-Null Models for Triadic Structures’ and containing 
solvers and routines for triadic motif analysis for the mentioned models, namely the DBCM, the RBCM and the 
mixture models DBCM+CReMA and RBCM+CRWCM. The package is available at the following URL: https:// 
github. com/ MarsM DK/ NuMeT riS.
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