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A convolutional neural network 
to identify mosquito species 
(Diptera: Culicidae) of the genus 
Aedes by wing images
Felix G. Sauer 1,7*, Moritz Werny 2,7, Kristopher Nolte 1,3, Carmen Villacañas de Castro 4, 
Norbert Becker 5,6, Ellen Kiel 4 & Renke Lühken 1

Accurate species identification is crucial to assess the medical relevance of a mosquito specimen, 
but requires intensive experience of the observers and well-equipped laboratories. In this proof-of-
concept study, we developed a convolutional neural network (CNN) to identify seven Aedes species 
by wing images, only. While previous studies used images of the whole mosquito body, the nearly 
two-dimensional wings may facilitate standardized image capture and reduce the complexity of the 
CNN implementation. Mosquitoes were sampled from different sites in Germany. Their wings were 
mounted and photographed with a professional stereomicroscope. The data set consisted of 1155 
wing images from seven Aedes species as well as 554 wings from different non-Aedes mosquitoes. A 
CNN was trained to differentiate between Aedes and non-Aedes mosquitoes and to classify the seven 
Aedes species based on grayscale and RGB images. Image processing, data augmentation, training, 
validation and testing were conducted in python using deep-learning framework PyTorch. Our best-
performing CNN configuration achieved a macro F1 score of 99% to discriminate Aedes from non-
Aedes mosquito species. The mean macro F1 score to predict the Aedes species was 90% for grayscale 
images and 91% for RGB images. In conclusion, wing images are sufficient to identify mosquito species 
by CNNs.

Mosquitoes (Diptera: Culicidae) are the most important arthropod vector group, causing approximately 350 mil-
lion human infections and 500 thousand deaths per  year1. Worldwide, more than 3500 extant mosquito species 
are  registered2. The medical relevance of the species varies greatly, as each mosquito species is characterized by 
a species-specific vector capacity, e.g. distribution, breeding site types, host preferences or vector competence. 
Therefore, correct species identification is a crucial prerequisite to assess the local risk for mosquito-borne disease 
outbreaks and to implement appropriate control measures. Mosquitoes are commonly identified by taxonomic 
keys based on different morphological  characters3. The morphological identification requires considerable ento-
mological experience. Image-based species identification by means of convolutional neural networks (CNNs) 
may represent a cost-effective and time-saving alternative. Several studies demonstrated that CNNs have a high 
potential to support the species identification of  mosquitoes4,5, even including the differentiation of cryptic spe-
cies, which cannot be differentiated by  morphology6.

A CNN is a specific type of artificial neural networks, which are particularly well suited for analysing visual 
data. Its development was inspired by the neural information processing of the visual  cortex7, which is character-
ized by cortical areas that are specialized to certain aspects of visual perception, e.g. shape, colour or movement. 
Similar to the cortical areas, each convolution layer extracts certain features of the input images. A detailed 
explanation of its operating principle is given by Rawat and  Wang8. Briefly, a CNN, when implemented as a 
supervised learning technique, uses a training data set of prior classified images. The CNN automatically learns 
to extract relevant features out of images and to classify the thereby resulting lower-dimensionality representa-
tion of the image by adjusting so called “neurons”. The neurons in a CNN are functionally similar to the synapses 
in the biological nervous system. During training, the CNN updates the biases of its neurons to minimize the 
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prediction  error9,10. Subsequently, a data set of out-of-sample (never-seen) images is used to test the classification 
capability of the trained network.

CNNs were demonstrated to have a high potential to support the accurate identification across various taxo-
nomic groups, e.g.  plants11,  carabids12,  chironomids13 or bumble bee  species14. Likewise, CNN studies on mos-
quito identification showed promising results with an accuracy of up to 97%4–6,15–19. These studies trained their 
CNN with images from the whole mosquito body. At first glance, the usage of images from the whole mosquito 
body seems to be the straight-forward approach. However, image input has to be selected with caution, since 
the conditions of the photographed specimens can strongly influence the classification accuracy. For example, 
Couret et al.6 demonstrated that a CNN can distinguish between dried and frozen mosquito specimens, indicating 
that differences in the storage methods of the specimens could lead to a biased CNN training. In addition, the 
fragile and slender mosquito body is often damaged in field-sampled specimens and the three-dimensional body 
shape can complicate standardized image acquisition. The CNN requires images from different points of view to 
provide reliable results, which further increases the effort to create the image dataset. Hence, the CNN training 
based on the whole mosquito bodies usually needs a high number of images and intensive data augmentation to 
optimize classification  accuracy15. This is, in turn, associated with a complex CNN implementation, including 
the use of deep neural network architectures and methods like Transfer learning, i.e. deep pre-trained networks, 
which requires expensive hardware and long training  time6,20.

In order to overcome the described potential problems with images of the whole mosquito body, we here 
focussed on the use of mosquito wings for CNN-based species identification. Since wing beat frequency influ-
ence the assortative mating behaviour of mosquitoes, wings are considered to be under particular evolutionary 
selection pressure leading to species-specific wing  morphology21,22. Studies analysing the wing shape by geo-
metric morphometrics confirmed wings as sufficient anatomical feature to differentiate mosquito  species23,24 
including cryptic mosquito  species25. For CNN-based species identification, the use of wing images provides 
certain advantages. The near two-dimensionality simplifies the capture of standardized images, reducing the 
image variety necessary for a robust CNN training. Thereby, one wing would allow species identification, even 
if the remaining body is damaged. Particularly, legs and scales are often damaged in field-sampled mosquitoes, 
while one well preserved wing is usually still available. In addition, mosquito wings can be easily mounted in an 
embedding medium and stably stored over a long period of time. This has a considerable advantage compared 
to the whole mosquito body, e.g. if interested in the integration of historic material. However, despite these 
potential advantages, we found no CNN-study focussing on wings for the identification of mosquito species.

Herein, we conducted a proof-of-concept study to analyse the potential of a CNN to identify mosquito species 
based on wing images. While previous studies with images from the whole mosquito body used deep pre-trained 
neural networks, we developed a CNN with a rather shallow architecture and therefore lower hardware require-
ments. Two CNNs of the same architecture were trained, differing only in the number of neurons of the last fully 
connected layer. The first was trained to differentiate between Aedes and non-Aedes mosquitoes and the second to 
distinguish seven Aedes species, including the exotic Aedes albopictus (Skuse, 1894) and the native species Aedes 
communis (De Geer, 1776), Aedes cinereus Meigen, 1818, Aedes punctor (Kirby, 1837), Aedes rusticus (Rossi, 1790), 
Aedes sticticus (Meigen, 1838) and Aedes vexans (Meigen, 1830) collected from different sites in Germany. We 
trained the CNNs to differentiate the classes based on RGB and grayscale images, respectively. We hypothesized 
that grayscale images may not result in the loss of important information for species identification, since wing 
scales of native mosquitoes are pale or black and never colourful. In addition, the conversion of grayscale images 
increases the contrasts between wing veins and background. At the same time, it reduces the file size per image, 
and thus the computing effort and the requirements for the CNN complexity.

Aedes is the most divers genus in Central  Europe26. Females of the genus are difficult to identify by classical 
taxonomic keys, since their differentiation predominantly relies on scale patterns, which are fragile and often 
damaged in field-sampled  mosquitoes2. This underlines the demand on complementary tools for fast and reliable 
species identification of Aedes species.

Material and methods
Data collection
The study was based on 1,155 wing photos from female Aedes specimens, including 165 Ae. albopictus, 165 Ae. 
cinereus, 165 Ae. communis, 165 Ae. punctor, 165 Ae. rusticus, 165 Ae. sticticus and 165 Ae. vexans. As unknown-
class we integrated further 554 wing photos from common non-Aedes mosquito species in Germany, including 
61 Anopheles claviger (Meigen, 1804), 196 Anopheles maculipennis s.l., 11 Anopheles plumbeus Stephens, 1828, 
214 Culex pipiens s.s./Cx. torrentium and 72 Coquillettidia richiardii (Ficalbi, 1889). The native mosquito spe-
cies originated from at least three different sampling locations for each species and were collected with carbon 
dioxide baited BG sentinel traps (Biogents, Regensburg, Germany). The field-sampled mosquitoes were directly 
killed and stored at − 20 °C until further preparation. All specimens were identified by  morphology3,27. After the 
morphological species identification, the right wing of each specimen was removed and mounted with euparal 
(Carl Roth, Karlsruhe, Germany) on microscopic slides. Subsequently, the mounted wings were photographed 
with a stereomicroscope (Leica M205 C, Leica Microsystems, Wetzlar, Germany) under 20 × magnification using 
standardized illumination under and exposure time (279 ms). A CNN uses any distinctive character in the images 
to optimize for more accurate class predictions. For example, differences in the illumination of the background 
between the images of the different species could be exploited by the CNN during training. This would lead 
to predictions that seem correct for the specific data set, but are based on irrelevant, non-generalized features, 
leading to a reduced transferability of the network predictions. Therefore, we used dome illumination (MEB 
111, Leica Microsystems, Wetzlar, Germany), which largely shields the samples from ambient light during image 
collection.
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Data split for training, validation and testing
Before training, the data sets were randomly split into data for training (75% of the images), for validation (15% 
of the images) and for testing (15% of the images). Thereby, the validation images are used as in-training refer-
ence to track classification accuracy during training process, while the testing images are out-of-training and 
will only be used to check the accuracy of the CNNs after the training progress is completed. The macro-average 
metrics precision, recall (i.e. sensitivity), and F1 scores were calculated to quantify the testing results for each 
CNN training.

Image pre-processing and data augmentation
Wing photos were cropped in the centre and resized to 256 × 256 pixels before being used in the CNN. Each image 
of training data sets was augmented 32 times. We used a randomized rotation in the range of − 15° to + 15° as well 
as a randomized horizontal and vertical shift in a range of − 20 to + 20% to generate random alterations of the 
original images. Moreover, we incorporated zoom and crop of the input images as additional augmentation tech-
niques. The maximum values for the zoom and crop augmentation were identified in a preliminary test. Thereby, 
we systematically evaluated the CNN performance across a range of maximum zoom levels from 1 × and 2 × and 
for an image crop between 10 to 90%. The best performance was reached with a maximum zoom of 1.5 × and a 
crop limit of 40% of the resized input images. Data augmentation increases and generalizes the pool of training 
samples. It is commonly applied, when dealing with rather small data sets for a CNN training and was already 
demonstrated to distinctly increase the final accuracy in entomological studies on species  identification5,6,13,15.

CNN configuration and training
Several iterations with different input image sizes and CNN-architectures were tested to find a compromise 
between level of image resolution, computation expense and classification accuracy. The final CNN used input 
images with 256 × 256 pixels and consisted of four convolutional layers and one fully-connected layer. For the 
different trials, we used the same CNN architecture. The only changes implemented in the CNN for RGB images 
are adjustments allowing to work with three-channel input. The difference between the CNN to differentiate 
Aedes from non-Aedes and the seven Aedes species is the last fully connected layer, either consisting of two or 
seven neurons. The rather shallow architecture was chosen to match the small sample size and to avoid extensive 
computing time during training. After the basic CNN architecture was set, the learning parameters were fine-
tuned by trial and error. The setting of the hyperparameters is a crucial step, as it can strongly influence training 
time and prediction performance. There exists no general gold standard in the adjustment of hyperparameters. 
Instead, these parameters must be optimized for each dataset and CNN  architecture28. During hyperparameter-
tuning, we optimized the number of epochs, the batch size and the learning rate. Number of epochs controls how 
often the CNN goes through the in-sample training data. The training accuracy commonly reaches an optimum 
after a certain number of epochs. Further epochs can lead to over-fitted models and unnecessarily increases 
the computing time. In this study, we used 20 epochs as a compromise between training time and performance 
(Figs. 1 and 2).

Batch size defines the number of images after the CNN updates its learning process. After each batch, the 
algorithm calculates a misclassification error and updates its model to optimize training accuracy. Batching 
reduces computing time, as the samples in one batch can be processed in parallel. In addition, it avoids adjusting 
of the CNN to individual samples rather than to the entirety of the data set, which otherwise could lead to biased 
interpretations based on individual samples. Our best-performing trainings used a batch size of 100. Learning 
rate defines how strong the CNN responds to misidentifications after each batch. A high learning rate can result 
in unstable training, since the CNN overcompensate errors of the preceding batch, whereby a too small learning 
rate prolong or even negate the optimisation process. The optimal learning rate in our most successful training 
session was 0.00015. We utilized the Adam optimizers for model  training29. To address overfitting during CNN 
training, weight decay regularization with a coefficient of 0.0005 was employed. In order to check the consistency 
of the accuracy results, the training with the most successful CNN configuration was repeated and tested four 
times for each set-up, i.e. using grayscale or RGB images to differentiate Aedes from non-Aedes and to differenti-
ate the seven Aedes species, respectively.

Guided gradient-weighted class activation mapping
Guided Gradient-weighted Class Activation Mapping (Grad-CAM) was applied to investigate the underlying 
cause for the decision-making of the  CNN30. Guided Grad-CAM helps to get insights into the decision-making 
process and to detect misbehaviour of neural networks, by visualising image regions that are decisive for a clas-
sification. Therefore, it combines two components, Grad-CAM and Guided Backpropagation. Briefly, Grad-CAM 
aims to visualize class-discriminative image regions by assigning importance values to each neuron in a network 
layer for a certain  decision30. It is usually applied to the last convolutional layer, creating a low-resolution output. 
It is a compromise between high-level semantics and spatial information, but it is impossible to match importance 
values of neurons to specific pixels in the input  image30. Guided Backpropagation can then further increase the 
resolution of the visualization of discriminate image regions. It computes the gradient of the target class with 
respect to the input image by considering only non-negative neuron activations and can thus capture pixels in 
the input image detected by the neurons of the last convolutional layer. When testing the accuracy of the trained 
CNNs, Guided Grad-CAM was applied to the last  (4th) convolutional layer for each image of the out-of-sample 
data. For visualization, the resulting heat maps, showing the discriminative image regions, were superimposed 
with the original wing images. The consistency of the heat map patterns was inspected visually.
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Hardware and programming language
The programming was done in Python (version 3.9.6). For the neural network aspects, the deep learning frame-
work Pytorch (version 1.10.2)31 was used, while image pre- and post-processing as well as visualization were 
done with the Python libraries OpenCV2 (version 3.4.5) and Matplotlib (version 3.5.1). All calculations were 
conducted with a notebook (Intel Core 7-6700HQ 260 GHz, 16 GB RAM) on a graphic card (NIVIDIA GeForce 
GTX 1060). The computing time was approximately 80 min when using RGB images and approximately 60 min 
when using grayscale images (Supplementary Material S1: log file).

Results
For the differentiation between Aedes and non-Aedes species based on grayscale images, the mean macro-aver-
aged scores were 97% (min–max: 95–99%) for the precision, 97% (95–99%) for the sensitivity and 97% (95–99%) 
for the F1-score (Fig. 3). The differentiation between Aedes and non-Aedes species based on RGB images achieved 
99% (98–99%), for the precision, sensitivity and F1-score, respectively (Fig. 3). For the differentiation of the seven 
Aedes species, the mean scores based on grayscale images were 90% (88–92%), 91% (89–93%) and 90% (88–92%) 
for the precision, sensitivity and F1-score, respectively (Fig. 3). When using RGB images to differentiate the seven 
Aedes species, the precision achieved 91% (87–96%), the sensitivity was 94% (91–96%) and F1-score was 91% 
(84–96%) (Fig. 3).  Aedes albopictus was detected with an accuracy of 100% for both grayscale and RGB images 
(Tables 1 and 2). Misidentifications were only found among the native Aedes species, particularly between Ae. 
communis and Ae. punctor (Tables 1 and 2). The most relevant image areas for decision making were visualised 

Figure 1.  Evolution of the accuracy and loss during the training (blue) and validation (orange) process 
along the epochs. The figures refer to the best-performing CNN model to distinguish Aedes and non-Aedes 
mosquitoes based on RGB (left) or grayscale (right) images.
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by Guided Grad-CAM. The resulting pictures indicated that the neurons were usually most active on the wing 
veins (Fig. 4).

Discussion
In this study, we developed a CNN to differentiate mosquito species by wing images. Previous CNN studies 
used images from the whole mosquito body from varying postures and different image  quality5,32. Motta et al.32 
even included images from a mobile phone camera. Using images from the whole mosquito body is less time-
consuming, but the CNN implementation is more labour-intensive, as the higher complexity of the images require 
deeper neural network architectures and methods like transferred learning, i.e. the use of deep pre-trained net-
works, which requires more expensive hardware and longer training  time6,20. In comparison, wing images need 
some lab preparation, but images of the mounted wings are much easier to standardize. This favours the use of 
a relatively simple CNN architecture and can reduce the image variety, i.e. less images from different postures, 
and reduce the quantity of images necessary for a robust CNN training. Motta et al.32 and Park et al.5 reported a 
validation accuracy of 75% and 97%, respectively. From an entomological point of view, the chosen species/taxa 
Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus by Motta et al.32 and Ae. albopictus, Ae. vexans, Anopheles 
spp., Cx. pipiens and Cx. tritaeniorhynchus by Park et al.5 are taxonomically distant. The seven Aedes species 
in the present study are more closely related and at least partly more difficult to discriminate by morphology. 
However, no misclassification was found for the invasive Ae. albopictus. Misclassified individuals were merely 

Figure 2.  Evolution of the accuracy and loss during the training (blue) and validation (orange) process along 
the epochs. The figures refer to the best-performing CNN model to distinguish the seven Aedes species based on 
RGB (left) or grayscale (right) images.
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observed between the more closely related native Aedes species. This is, in turn, a further indication that the 
CNN actually learned morphological wing patterns for species identification as a close evolutionary relationship 
is often reflected in a similar wing  geometry23,33. The output of the guided Grad-CAM supports this assumption, 
as the neurons were usually most active on the wing veins. Similarly, the wing vein patterns are also a relevant 
anatomical wing feature for entomologists to identify mosquito  species3.

Lowest accuracies were obtained for Ae. punctor and Ae. communis, which were misclassified with each 
other. These two species are very similar to each other. They are commonly distinguished by the postprocoxal 
scales at the thorax, i.e. a small patch of scales, which is present in Ae. punctor and absent in Ae. communis3,27. 
Wing patterns are not described as important morphological  characters3,27 and a study using landmark-based 
geometric wing morphometrics showed a rather low accuracy (app. 75% for the differentiation of Ae. communis 
and Ae. punctor)23. Similarly, the CNN had a lower accuracy for the closely related Ae. sticticus and Ae. vexans. 
Hence, the low CNN accuracy to distinguish the two species pairs probably reflect their close morphological 
and phylogenetic relationship.

As demonstrated previously, high quality body images could be used to distinguish cryptic Anopheles6 and 
cryptic Culex19 species via CNN. Thereby, Couret, et al.6 also showed that the storage method of the mosquitoes 
(here: flash freezing vs. dried) can influence the network training. This might be less problematic for wing images, 
which can be easily stored in an embedding medium for permanent storage. Thus, future research should analyse 
the potential of CNN to distinguish cryptic species by means of wing images.

The current CNN training relies on a rather low number of images, e.g. the widely used ImageNet data set 
provides at least 500 images per  class34. While the number of samples was sufficient for a first case study, it is 
expected that the CNN performance will increase with a larger amount of training data. Further wing images 
would probably increase the accuracy and robustness of the developed CNN. In addition, it would allow a 
greater variety within the image quality. This should also include different camera systems to enhance the prac-
tical orientation, e.g. mobile phone camera. Moreover, a systematic comparison of the performance of different 
CNNs based on the same datasets including a comparison of mosquito bodies and wings would be desirable. 
Both image types might have specific advantages for the CNN performance. The use of mosquito wings might 
also complement future CNNs, if the mosquito body alone is not sufficient for an accurate species identification. 
The increasing amount of available data in combination with an increase in computing capacity will probably 
improve the performance of future CNNs and can complement the mosquito species identification. However, 
data input must be chosen carefully. The quality of training remains dependent on the correct classification by 
entomologists, since misidentified species lead to wrongly trained neural networks.

Figure 3.  Mean macro-averaged metrics (F1-score, precision and sensitivity) with maximum and minimum 
values of the four CNN trainings conducted with grayscale (red) and RGB (blue) images to differentiate the 
seven Aedes species (left) and Aedes from non-Aedes species (right), respectively.
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Data availability
Supplementary Material S1: log file. The source codes will be provided through the GitHub repository: https:// 
github. com/ mwdev hub/ Mosqu ito_ Speci es_ Class ifica tion_ CNN. All wing images are provided via Dryad: https:// 
doi. org/ 10. 5061/ dryad. vx0k6 djz9.
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