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Application of DSO algorithm 
for estimating the parameters 
of triple diode model‑based solar 
PV system
P. Ashwini Kumari 1, C. H. Hussaian Basha 2, Rajendhar Puppala 3, Fini Fathima 4, 
C. Dhanamjayulu 5*, Ravikumar Chinthaginjala 6, Faruq Mohammad 7 & Baseem Khan 8*

Solar Photovoltaic (SPV) technology advancements are primarily aimed at decarbonizing and 
enhancing the resiliency of the energy grid. Incorporating SPV is one of the ways to achieve the 
goal of energy efficiency. Because of the nonlinearity, modeling of SPV is a very difficult process. 
Identification of variables in a lumped electric circuit model is required for accurate modeling of the 
SPV system. This paper presents a new state-of-the-art control technique based on human artefacts 
dubbed Drone Squadron Optimization for estimating 15 parameters of a three-diode equivalent model 
solar PV system. The suggested method simulates a nonlinear relationship between the P–V and I–V 
performance curves, lowering the difference between experimental and calculated data. To evaluate 
the adaptive performance in every climatic state, two different test cases with commercial PV cells, 
RTC France and photo watt-201, are used. The proposed method provides a more accurate parameter 
estimate. To validate the recommended approach’s performance, the data are compared to the 
results of the most recent and powerful methodologies in the literature. For the RTC and PWP Photo 
Watt Cell, the DSO technique has the lowest Root Mean Square Error (RMSE) of 6.7776 × 10–4 and 
0.002310324 × 10–4, respectively.

Reduced supply of conventional fuels evidenced by the depletion of petroleum resources has diverted researcher’s 
attention toward green energy sources (GES). Growing energy demands need an effective and robust technol-
ogy that can harvest untapped energy resources with minimal environmental impacts1. SPV being one of such 
promising sources, drives the research and development towards energy crisis in terms of cleaner, renewable, 
and maintenance-free power generation. SPV possesses a drastic surge due to technological developments. To 
obtain adept and precise control, the SPV cell has to be mathematically modeled2. Modeling involves deducing 
circuit equivalent equations that can trace the PV voltage and current characteristics. Researchers in the literature 
compromise in terms of complexity by excluding the effect of a few parameters during modeling.

Literature refers to three significant models namely one, two, and three diode models. Single and two-diode 
models are widely used as they can precisely estimate system behavior3–6. One diode model is a simple approach 
where 5 parameters of the SPV are obtained. This method yields less accuracy in estimating the parameters 
during varying climatic conditions7. To address these drawbacks two diode model consisting of 7 parameters 
that include the effect of recombination is considered8. Due to the increased no of parameters, this approach is 
complex and time-consuming. These models do not assure the accuracy of the estimated parameters as the effects 
of recombination are not considered. To overcome this demerit an extra diode is included in parallel which aids 
in accomplishing the flaws associated with earlier methods9.

The Fig. 1. Shows the classification of the modeling techniques and the corresponding estimated parameters. 
The performance of PV systems can be improved using precise and accurate modeling. P–V and I–V curves are 
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the basic performance indicators of the system. Precise and reliable estimation of intrinsic parameters are the 
prerequisites for implementing an accurate equivalent circuit model. The data provided by the manufacturer in 
the Datasheet do not reveal complete information of all the intrinsic variables. Estimating accurate information 
on all intrinsic variables under any climatic condition is the scope of this work. These intrinsic variables change 
with perturbation in radiation, temperature soiling effects, aging factor, and partial shading10.

Most of the researchers in the literature diverted their focus to meta-heuristic methods due to promising 
results. The solution is obtained either by adopting naturally inspired algorithms, artifacts, or evolutionary tech-
niques. Nature-inspired algorithms generally mimic the phenomena occurring in the nature Wind driven opti-
mization (WDO), Flower Pollination Algorithm (FPA), Grasshopper Optimization Algorithm(GOA), Simulated 
Annealing (SA), Evaporation-based Water Cycle algorithm (ERWCA), Wind-driven optimization(WDO)11–16, 
while artifact mimics the human intelligence JAYA algorithm, Imperialistic competitive algorithm (ICA), Brain 
Storming Algorithm (BSA), Drone Squadron Optimization (DSO), Artificial Immune System (AIS), Bio geog-
raphy-based Optimization (BBO), Harmony Search (HS), Teaching Learning Based Optimization (TLBO) with 
modifications have evolved17–24. Recently Meta heuristic approaches have been used extensively for parameter 
extraction due to their accuracy and fast computing capability. Researchers have tried to improve the perfor-
mance by combining multiple algorithms to get the best optimal solution referred to as hybrid algorithms.

An effective parameter estimation method with a hybrid Whale Optimization Algorithm, combined with 
particle swarm optimization. To improve exploitation capability with reduced range. The error was found to 
be minimal. WOA adopts the behavior of humpback whales and the searching approach of birds involves PSO 
exponential function-based PSO with the inertial weight adopted to overcome the problems associated with 
premature convergence problems19. Bacterial foraging optimization involves a greater number of parameters 
with more computational time25. Lambert’s function with heuristic adopting differential evolution is proposed 
to achieve better convergence with a significant reduction in computation time26. Mimicking the reproduction 
behavior of bonobos an optimization algorithm named Bonobo Optimizer (BO) is proposed to demonstrate 
the efficiency of adopting fusion and fission mechanisms. Bonobos adopt various mating strategies to exploit 
multidimensional search space to avoid local trapping of the solution. Hence there is an adaptive change in 
population size27. Gradient-based optimization with Eagle Strategy is used to enhance efficiency and robustness.

This paper also evaluates dynamic PV models such as integral and fractional PV solar models. Both static 
and dynamic models are analyzed to obtain the optimal results28. GWO is inspired by food-searching behavior 
practiced by grasshoppers within the boundary with two different life stages, namely lava for slow exploitation 
and insect stage for dynamic exploration of the search space13. To improve accuracy and reliability, a new change 
with enhancement in the evolutionary operator is presented using an enhanced Roa-1 algorithm29. This approach 
achieves adaptive population size with a linear minimization strategy. Despite all these algorithms, no single 
method achieves the least root mean square error considering adaptive climatic conditions for three diode model.

Figure 1.   Parameter extraction methods and modeling approaches.
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Numerical modelling frame work
Three diode modelling by using fifteen parameters
There are various models available for performance analysis of solar cells. Modeling of solar cells can adopt single-
diode, two-diode, and three-diode approaches. The simplest one-diode model is easy to analyze with compromise 
in terms of accuracy. Two diode approach is widely used in the literature to extract the parameters it seeks the 
help of numerical techniques for a few variable extraction and the remaining parameters are estimated using 
optimization algorithms to reduce complexity. In this manuscript, 3-diode modeling of PV cells is discussed to 
extract 15 parameters using drone squadron optimization. Here, Fig. 2 presents the 3-diode model of a PV cell 
consisting of three diode currents ID1, ID2, and ID3. Rsh and Rs denote the shunt and series resistances respectively. 
The photo-generated current is represented by Iph, IPV is the output current available to the load and VPV is the 
voltage measured across the shunt resistance.

Equations to compute output current and photo-generated current under specified irradiation and tempera-
ture are given in Eq. (1) and (2). From Eq. (3), T is the temperature K is Boltzmann constant, G is irradiation 
Where a is the ideality factor, Gref and Tref is the temperature and Irradiance at Standard Test Condition (STC) 
respectively, Eg is the band gap and q is charge of the electron. From (1), it is evident that there are 15 parameters 
which are identified as I01ref, I02ref, I03ref, Iphref , a1, a2, a3, LRp, LRs, KRs, KRp, Ki,   , R1pRef, Rs1Ref and Rs2Ref  . These 
intrinsic variables exactly determine the performance characteristics of the PV module. Under varying climatic 
conditions, the open circuit voltage and short circuit current can be determined using the following equation. 
These intrinsic variables exactly determine the performance characteristics of the PV module. Under varying 
climatic conditions, the open circuit voltage and short circuit current can be determined using the following Eq’s,
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Figure 2.   Three diode equivalent model.
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where N is the experimental data, Ii is the experimental value and Iiext denotes the estimated value from 15 
parameter extraction. Estimating the parameters for one set of climatic conditions enables the user to predict 
the power versus voltage (P–V) and current versus voltage (I–V) curves for all weather conditions. This detailed 
model adapts, despite any variation in radiation and temperature as the intrinsic variables are free to change. 
This flexibility is not accounted for in classical models available in the literature. On modeling SPV, the precise 
value obtained by this approach aids in deducing the P–V and I–V curves at varying weather conditions. This 
enables the industrialist to design a reliable and efficient inverter for any specified location30.

Problem formulation
Global optimization problems are generally derivative-free approaches with no assumptions. A global, auto-
adaptive hyper-heuristic algorithm inspired by human Invented drones that can evolve on their own partially. 
The firmware inside these drones enables the researcher to change the mechanism rather than depending on 
the bio-inspiration20. Despite natural behavior mimicking procedures such as particle swarm optimization. This 
method inculcates the recombination by varying the solution with a unique procedure to act as a revolution-
ary approach. In the vast search space, the drones are free to move to explore and exploit the search space. This 
technique does not inculcate the pre-coded algorithm during its movement, it synthesizes its code to move in a 
search space. DSO optimization algorithm consists of four major components where the complete task of esti-
mation is carried out. The command center is the most intelligent part where the orders to execute and return 
drone to the destiny are done by modifying and updating the codes inside the firmware. The perturbation is 
denoted by P which is the sum of departure and offset. The firmware only produces a trial coordinate (TC) by 
a perturbation process called biased random walk. This TC is obtained by calculating P. Two arrays are formed, 
namely current Best and Global Best.

where C1 is the constant defined by the user, G the Gaussian distribution, U is the uniform distribution, and D is 
one of the variables in the objective function which is defined as 15 in this modeling CBC and GBC are current 
best coordinates and global best coordinates respectively. Offset generally returns the amount of perturbation, 
thus updation of trial coordinates are computed based on this perturbation function which is denoted by (P). 
Search space can be shrinked based on departure coordinates which helps to locate the neighboring points. 
Reference perturbation initializes perturbation to optimize and improve the search performance.

Drone movement stage, the target positions are computed automatically by exploring and exploiting search 
space using various mechanisms Depending on the choice of recombination trial coordinates, the direction of 
the drone is fixed to one particular direction. To avoid biasing a correction factor is introduced and the violation 
limits are perturbed. Firmware update, here, team quality is computed for each iteration to update the rank and 
violation. The Command Center updates firmware by considering the best and worst by following the rules20.

Here, UB and LB are upper and lower-bound objective function arrays, and TmC is an array of 2D team 
coordinates. This violation limit for each team of drones is given in Eq. (15). This violation in each case, for all 
the drones are considered with the updation of the firmware at the command center accordingly. The stagnation 
detection and next iteration procedures are repeated until the optimal results are achieved. The flow chart mim-
icking the pseudo-code is represented in Figs. 3 and 4. It is evident that the root mean squared error estimated 
for these two cells are 6.7776 × 10–4 and estimated for these two cells are 6.7776 × 10–4 and 0.231032 × 10–3 
respectively, which is the least on par with results available in the literature39.

Results analysis
This manuscript proposes a novel DSO-based adaptive algorithm to validate the performance and accuracy of 
three diode PV model. Two different cases are analyzed to demonstrate accuracy and reliability. In case one, the 
validation of the proposed approach is carried out considering two commercial PV cells, namely RTC France cell 
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Figure 3.   Squadron of drones with central command center for data exchange.

Figure 4.   Flow chart depicting process flow diagram of DSO.

Table 1.   Data-sheet values of commercial solar cells.

Cell RTC France PWP-201

Isc 0.76 1.03

Voc 0.5728 16.778

Vmp 0.45 12.6

Imp 0.691 0.898

Pm 0.311 11.315

T 33 45

Ns 36 1
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at 33 °C and PWP-201 with 36 cells at Irradiation of 1000 w/m2 and temperature of 45 °C using Datasheet values. 
The Data sheet values specified by the manufacturer are presented in the Table 1. The 15 parameters estimated 
for the 3-diode model using DSO for two commercial PV cells algorithms are tabulated in Table 2. It is evident 
that the root mean squared error estimated for these two cells are 6.7776 × 10–4 and 0.231032 × 10–3 respectively, 
which is the least on par with results available in the literature39.

The graphical analysis of RTC France and Photo Watt PWP-201 for PV and IV curves using the DSO algo-
rithm are presented in Figs. 5, 6, 8, and 9. The estimated values coincide with the practical experimental values 
and hence it exhibits minimum deviation accounting for low RMSE. Figures 7 and 10 show the best objective 
function with various statistical analysis metrics such as current best, global best, current mean, median, and 
average for different no of iterations. For each run, the best solution is estimated which is illustrated in Fig. 11. 
For the RTC France cell the least RMSE of 6.8 × 10–4 is obtained with minimal iteration as depicted in the Fig. 8.

Table.2..   Data-sheet values of commercial solar cells.

Parameters RTC France Photowatt-PWP-201

a1 2.499932 0.5

a2 1.36085097 1.326345746

a3 0.500000125 1.326344874

Iph_ref 0.02534768 0.395757676

Ioref1 8.86e-07 7.88e-23

Ioref2 1.33e-09 7.9806e-09

Ioref3 1.09e-25 3.08e-09

Rsref1 0.015035688 1.209706934

Rsref2 0.02305394 0.060448118

Rpref 28.06111293 519.3645624

Krs 0.005503801 0.013655225

Krp 0.036423602 0.013050909

Lrs 2.5853434 3.473191096

Lrp 4.548846404 0.706157287

ki 0.022289382 0.014138913
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Figure 5.   The IV performance characteristics of RTC France Cell with experimental curves overlapping with 
estimated values.

Figure 6.   The PV performance characteristics of Photo-watt PWP-201 Cell with experimental curves 
overlapping with estimated values.
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Figure 11 presents the best solution of the objective function for two different PV Cells. It is clear from the 
figure that the solution with the least error is achieved with a minimum no of runs. Table 3 demonstrates the 
results obtained from the DSO algorithm for the 3-diode model in comparison with eight recent competitive 
Fig. 11. Presents the best solution of the objective function for two different PV Cells. It is clear from the figure 
that the solution with the least error is achieved with a minimum no of runs. Table 3 demonstrates the results 
obtained from the DSO algorithm for the 3-diode model in comparison with eight recent competitive algorithms. 
In literature31–36 parameters are extracted for single and double diode models only. The proposed work estimates 
15 parameters of three diode model and comparison is done considering 2 diodes, and 9- parameters. It’s worth 

Figure 7.   Best run with least RMSE for RTC France Cell.

Figure 8.   The IV performance characteristics of Photo-watt PWP-201 Cell with experimental curves 
overlapping with estimated values.

Figure 9.   The PV performance characteristics of Photo-watt PWP-201 Cell with experimental curves 
overlapping with estimated values.

Figure 10.   Best run with least RMSE for Photo-watt PWP-201 Cell.
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noting that DSO outperformed all other optimization approaches in terms of attaining the lowest RMSE and 
fastest execution time while maintaining a strong convergence response. The last row of the table clearly reports 
the superiority of DSO over other techniques. The low value of RMSE at different temperatures is made bold in 
Table 3, along with 15 Parameters five other parameters of the module are also estimated to improve the accuracy 
of the modelling.

In case two, the DSO approach has been implemented on a large-scale system to investigate the performance 
using a 3-diode model under different irradiation and temperature. The experimental data from the PV array is 
used in this case study. Three strings are linked in parallel with six strings in the section of the PV array that is 
being used per string, there are PV modules. The PV module’s identifier is a mono-crystalline GL-M100 made 
up of 36 cells in a single crystal series. Temperature and irradiance are the I–V characteristics. The PROVA1011 
I–V tester was used to measure the results. The PV module’s electrical properties are accessible in37.

To demonstrate, a single-diode model was used. To investigate the performance of the suggested algorithm, 
the approach has been put into practice on a wide scale. The experimental values of PROVA1011 are also taken 
into consideration to evaluate the iv characteristics under real-time changes in irradiation and temperature. The 
graph in Fig. 11. demonstrates the accuracy of estimated values using the DSO optimization technique with the 
experimental curves. A comparison with the literature38 is carried out to demonstrate the effectiveness of the DSO 
algorithm. RMSE estimated using the DSO approach shows superior results as compared with recent literature. 
This work aims for reliable estimation of parameters since it accounts for all the changes concerning irradiation 
and temperature. The detailed parameters estimation of the 3-diode model solar system is given in Table 4.

Figure 11.   Best results for different runs in terms of RMSE for Photo-watt PWP-201 Cell.

Table 3.   Comparison of estimated parameter of Three diode model of Photo Watt PWP-201 with literature31.

Parameters DSO
AEO
31

SSA
32

RCGA​
31

BHCS
34

GA
33

PSO
34

SFO
35

CSA
36

a1 0.5 2.08135 1.9256 1.7945 1.71197 1.7597 1.9848 1 1.4032

a2 1.326345746 2.08135 1.7103 1.7162 1.16255 1.398 1.3887 1.4494 1.6116

a3 1.326344874 1.36458 1.8094 1.6501 1.28954 1.472 1.8615 2 1.0016

Iph 0.862341808 1.03051 1.0388 1.0321 1.0309 1.0267 1.0304 1.0959 1.0297

Io1 2.89e-18 0.0023 44.5979 5.222 9.94764 3.1593 1E-12 0.00182 4.981

Io2 5.19e-07 0.065 2.06046 34.478 0.000015 5.0722 4.8769 4.4985 2.6813

Io3 2.00e-07 1.1893 56.048 8.6879 1.51074 4.1141 1.1269 9.9896 8.2227

Rs 1.297 1.0154 0.917 0.86 1.4149 1.163 1.1638 3.1469 1.1308

Rp 743.044 1.91858 85.67 180 1.0214 16.479 1.2483 14.653 1.809

RMSEx10–4 0.002310324 0.00248 0.0135 0.0153 0.003679 0.0037 0.0027 0.0825 0.0032
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Conclusion
Three-diode modeling poses a complexity due to the inclusion of various parameters. Single and double-diode 
models are most commonly used to estimate the five and seven parameters due to simplicity. An attempt towards 
addressing the complex Two cases with three different commercial solar cells/modules were considered to test 
the accuracy of the result. Real-time experimental data under changing irradiation and temperature conditions 
are also considered to check the effectiveness of the proposed DSO algorithm. Two cases with three different 
commercial solar cells/modules were considered to test the accuracy of the result. Real-time experimental data 
under changing irradiation and temperature conditions are also considered to check the effectiveness of the 
proposed DSO algorithm.

A comprehensive comparison of recent Meta-heuristic algorithms with recent literature is illustrated to 
prove the accuracy and reliability of the proposed work. Despite modeling complexities, this work ensures 
optimal results with good precision. This DSO can further be used to solve complex multi-objective optimiza-
tion problems in fields of renewable energy, power systems, and smart grids. This research work enables bud-
ding researchers who study the impact of partial shading and charming, as it accounts for various parameters 
and constraints. A high level of precision between the estimated values and experimental values indicates the 
robustness of modeling and its adaptation to the DSO algorithm. The obtained result proves the superiority of 
the algorithm in extracting the PV parameters accurately.

Data availability
The data used to support the findings of this study are included in the article.
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