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High spatiotemporal‑resolution 
mapping for a seasonal erosion 
flooding inundation using 
time‑series Landsat and MODIS 
images
Jingrong Zhu 1, Yihua Jin 1*, Weihong Zhu 2,3* & Dong‑Kun Lee 4

Seasonal erosion flooding events present a significant challenge for effective disaster monitoring 
and land degradation studies. This research addresses this challenge by harnessing the combined 
capabilities of time‑series Landsat and MODIS images to achieve high spatiotemporal‑resolution 
mapping of flooding during such events. The study underscores the critical importance of precise 
flood monitoring for disaster mitigation and informed land management. To overcome the limitations 
posed by the trade‑off between spatial and temporal resolution in current satellite sensors, we 
emplyedand theflexible spatiotemporal data fusion (FSDAF) methods to produce synthetic flood 
images with enhanced spatiotemporal resolutions for mapping by using MODIS and Landsat data 
from August 29 to September 3, 2016. A comparison was made between flood maps from several post‑
disaster forecasts based on ground‑obtained time‑series images of the Tumen River flood in China. 
According to the FSDAF approach, the input Landsat image of March 25, 2016, and the fused results 
had a root mean square error (RMSE) of 0.0301, average difference of 0.001, r of 0.941, and structure 
similarity indexof 0.939, indicating that temporal variation data had been effectively incorporated 
into a forecast on August 16, 2016. Results also indicated that the FSDAF forecast values are lower 
than those from the actual Landsat image. The results of the study also showed that the generated 
images could be effectively used for flood mapping. By using our newly developed simulation model, 
we were able to produce a comprehensive map of the inundated areas during the event from August 
29 to September 3, 2016. This shows that FSDAF holds great potential for flood prediction and study 
and has the potential to benefit further disaster‑related land degradation by combining multi‑source 
images to provide high temporal and spatial resolution remote sensing information.

The looming threat of floods in both rural and urban areas worldwide has become increasingly severe, posing 
significant challenges to communities and economies. Recent studies have shown that climate change is causing 
more intense rainstorms than previously  predicted1,2. This is particularly evident in areas with heavy precipitation, 
such as the Tumen River Basin. On August 20–31 2016, the region received a record 648 mm (25.5 inches) of rain, 
resulting in inland and river flooding as well as backwater flooding. According to the United Nations Office on 
Humanitarian Affairs (OCHA), the heavy rains and floods in North Hamkyung province in North Korea claimed 
133 lives and left 395 people missing. Over 35,500 families were affected, with 69% of their homes completely 
destroyed, and 8000 public infrastructures damaged. Accurate data on the extent of flood damage is crucial to 
evaluate the effectiveness of flood prevention and management  strategies3. Mapping  crops4,5,  water6,7 and flood 
with multi-source satellite data enhances agricultural precision and monitoring capabilities. The temporal vari-
ation and spatial extent of the affected regions must be understood to effectively mitigate the flood  hazard8,9. 
Landsat data was used to map annual spring floods in the St-John River region, New Brunswick, Canada, from 
1985 to 2016. The approach involves decision trees and image thresholding, producing seasonal time series of 
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spring and summer water extents. The study suggests improvements, including multi-sensor integration with 
 radar10. Sentinel-1 satellite radar imagery was employed to promptly detect riverbank erosion along the Jamuna 
River in Bangladesh. The approach involves land cover classification and identification of changes from vegeta-
tion to sand or water after the monsoon. Settlements on eroded land are identified as persistent scatters. The 
study highlights the capability of determining erosion locations just 1 month after the monsoon, providing an 
advantage over optical satellite images. Freihardt and  Othmar11. The Sentinel-1 SAR images and the bi-temporal 
image transformer (BiT) method were used to accurately map inundation extents in Poyang Lake during the 2020 
flood. BiT, utilizing ResNet and transformer mechanisms, achieves a high F1-score of 95.5% when compared 
to other CNN-based methods. The analysis highlights peak inundation on July 14th and significant decline by 
November, with approximately 600  km2 of cultivated land affected. Flood hazards in the Ngan Sau and Ngan 
Pho river basins in North-Central Vietnam were evaluated using GIS and AHP. Analyzing various factors, it 
identifies distance from rivers and topographic wetness index as the most influential. The flash flood hazard 
map, validated with 151 sites, shows 84.8% conformity with moderate to very high hazard areas, mainly along 
main rivers and streams. The study underscores the effectiveness of GIS, AHP, and Landsat-8 remote sensing 
for flash flood hazard mapping in the  region12

Remotely sensing information can provide a spatial consistent and continuous representation of the earth’s 
surface, making it a valuable tool for monitoring soil erosion, and seasonal water surface dynamics. This is par-
ticularly relevant for areas where streams and rivers cross international borders, as remote sensing can provide 
independently verifiable and consistent  data13–17. Significant efforts had been made to map flood events using 
coarse-spatial-resolution satellite observations of water dynamics in various regions  worldwide18–20. NASA has 
recently released the NASA Near Real Time Global Flood Mapping System, which automatically generates 
products for almost the entire world on a near real-time basis using MODIS data for reconstructing and deep 
estimation of High-Spatial-Resolution  images21–23. However, a significant proportion of water surface changes 
occur at resolutions lower than the 250/500 m MODIS resolution, making remote sensing information with 
coarse spatial resolution insufficient to capture detailed water surface variations.

The use of supervised deep learning and time series remote sensing  data24–27 with Landsat-like resolutions 
provides a valuable alternative for mapping soil water erosion and water surface dynamics, due to its 30-m spatial 
resolution on a global scale, long data record since 1972, reliable and consistently calibrated data, and continu-
ing mission with future data  availability28. Over many years, Landsat images have been used to map variations 
and seasonal changes at the continent and sub-continent scales. Despite these advantages, obtaining fine image 
super-resolution (cloud cover < 10%) for a specified period (e.g., a year or a season), can be challenging in many 
areas due to cloud contamination hazard effect of  underground29, the Landsat-7 scan line corrector error issue, 
and the incomplete spatial coverage of global receiving stations before the Landsat-8  launch28. This can fail to cap-
ture important short-term hydrologic events such as floods. Moreover, the backwaters of new dams can obscure 
seasonal flooding areas, while downstream fluvial mechanisms become increasingly dry and fragmented, effects 
that cannot be inferred from infrequent Landsat data. A study introduces an improved method for estimating 
the cover management factor (C-factor) in erosion modeling, using detailed monthly land use/land cover maps 
in Central Greece. Leveraging a biophysical index from Sentinel-2 imagery at a 10-m resolution enhances preci-
sion. Monthly C-factor computations reveal basin-scale fluctuations, emphasizing the importance of vegetation 
density seasonality. The findings are reproducible and applicable to all European Union Member States with 
similar datasets, providing a harmonized continental approach to erosion  modelling30.

In this study, we implemented a sophisticated time-series approach that capitalizes on coarse-resolution data 
to achieve precise mapping of rare hydrological events at a heightened resolution. Our innovative method seam-
lessly integrates Landsat data with time-series information from MODIS, thereby overcoming the traditional 
limitations associated with the trade-off between spatial and temporal resolutions. By synergizing the strengths 
of Landsat’s high spatial resolution and MODIS’s frequent temporal coverage, our approach enables the map-
ping of water surfaces on significantly shorter time scales compared to conventional methods. To rigorously 
test the effectiveness of our proposed approach, we chose the downstream region of the Tumen River basin as 
our research area. This particular choice presented unique challenges related to data collection, primarily due 
to the region’s geopolitical complexity, as it borders three countries. Additionally, the lack of readily available 
comprehensive measurement data from multiple national agencies heightened the intricacy of the study. Over-
coming these challenges underscores the robustness and applicability of our approach in scenarios where data 
accessibility is constrained, emphasizing its potential for addressing critical gaps in hydrological monitoring in 
transboundary regions.

Materials and methods
Study area
The study area (Fig. 1) is in the mid-western Tumen River Basin in China (42° 30′ N–130° 40′ E). This river basin 
borders China, Russia, and North Korea along the western coast of the Japanese Sea. The 900 × 900  km2 study 
area encompasses the majority of the city of Hunchun and contains a variety of landscapes, including urban land, 
water bodies, and vegetation. As previously mentioned, this region experienced a severe flood event in August 
2016. It has a typical marine climate with an average annual temperature of 5–6 °C. Along the Tumen River water-
shed, there are countless man-made and natural oases, many of which have been converted into agricultural land.

Satellite images and data processing
In this work, the FSDAF was used to create 30-m Landsat-like pictures using a variety of Landsat and MODIS 
data as inputs. Flexible spatiotemporal data fusion (FSDAF) is an advanced method for improving the spatiotem-
poral resolution of satellite imagery, particularly beneficial in addressing the inherent trade-off between spatial 
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and temporal resolutions. By integrating data from multiple sources, such as high-spatial-resolution Landsat 
images and high-temporal-resolution MODIS images, FSDAF captures temporal variations through adaptive 
weighting techniques and a sophisticated fusion algorithm. This allows the method to intelligently prioritize 
information based on its relevance to specific temporal and spatial contexts. To provide the necessary results, the 
FSDAF needs several pairings of Landsat and MODIS photos. To evaluate the use of FSDAF in this study, two 
cloud-free Landsat pictures and associated MODIS surface reflectance data were acquired. Tow Landsat images 
taken on July 6 and August 16 were downloaded from USGS database websites (https:// earth explo rer. usgs. gov/). 
Each image’s reflectance was altered to make it similar to MODIS data. The data are of good general quality. The 
NASA Land Processes Distributed Active Archive Center provided daily 500 m resolution MODIS nadir BRDF 
(bidirectional reflectance distribution function) calibrated reflectance data groups (MCD43A4) for the same time 
period. Due to the Tumen River’s constant cloud pollution, the research employed 16-day composite MODIS 
data rather than common MODIS data. The 16-day composite MODIS data offered a clearer view of the research 
region and was shown to produce higher-quality synthetic images through mixing  approaches31. MCD43A4 is a 
16-day rolling composite and presents the optimal BRDF reflectance data feasible. Unlike in previous data col-
lections, the information related to the daily data group is centered on the moving 16-day window of the input, 
rather than its first day.

In total, the maximum inundation border and the Tumen River flood inundation period were tested using 
six MODIS data sets that were gathered during the flooding event from August 29 to September 3, 2016. The 
FSDAF model was built using the two Landsat data pictures taken on July 6, 2015, while the image received on 
August 16, 2016 served as a reference for calculating the model’s accuracy. The research used 2016 Landsat-8 OLI 
photos of the study area with no clouds (less than 10% cloud cover). This research used the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) to calibrate and correct each picture for air disturbance 
since MODIS utilizes the same radiative transfer technique.

Forecasting flooding images by FSDAF and accuracy evaluation
By integrating two Landsat pictures, several MODIS images captured on the same day (Tb), and upcoming data, 
FSDAF created a synthetic image (Tn). There were six major phases in the procedure: dividing the residuals based 
on the Thin Plate Spline prediction, categorizing the Landsat image at Tb, assessing the temporal variation of 
each class in the MODIS image from Tb to Tn, forecasting the Landsat image at Tn using the class-level temporal 
variation, computing the residuals at each MODIS pixel, predicting the Landsat image from the MODIS image at 
Tn using a Thin Plate Spline interpolator, and obtaining the final Lands Surface data from Landsat and MODIS 
are very  consistent32, although there are variances because of variations in solar geometry and bandwidth. A bias 
element (), which reflects the overall disagreement between the sensors brought on by variations in solar geom-
etry and bandwidth, is added to the total of all Landsat pixels included in a MODIS pixel to determine its value.

Flood mapping and accuracy assessment
The remote sensing categorization of the region based on single-data images is highly uncertain due to the com-
plex nature of flood inundation and the continuous blending of classes Dronova et al.33. The intricate surface 

Figure 1.  The study area in the Tumen River Basin and the sampling locations are highlighted on the Landsat 8 
OLI image captured on March 25, 2016 (displayed in RGB format). The figure was extracted from the Landsat 8 
OLI image provided by Geological Survey (https:// www. usgs. gov/).

https://earthexplorer.usgs.gov/
https://www.usgs.gov/
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composition and dynamics resulted in numerous potential single-variable paths, some of which may not be 
practically  feasible34, leading to noise and  error35.

With minor adjustments, the method given by Sakamoto et al.18 served as the foundation for the one utilized 
in this study. A review of the original method was done, and important components were left out for this study. 
This research excluded the wavelet-based filter, which was included in the original technique to smooth data by 
eliminating noise and interpolating missing data. Instead, a decision tree was used in the study to group each 
pixel into one of four categories: water, flood, mixed, or not connected to floods. Figure 1 depicts the decision 
tree, which may be summed up as follows: Finding cloud cover pixels in a picture is the first stage. If the blue 
reflectance (band 3 of MODIS) was below 40.2, pixels were considered to be  foggy36,37. The photos were then 
cleaned of the information related to these hazy pixels. The MNDWI, DVEL, LSWI, and the differential value of 
MNDWI for each land class group were then assessed. To distinguish between pixels that were connected to water 
and those that weren’t, our study used the technique outlined by Xiao et al.36. MNDWI, DVEL, and LSWI were 
used to differentiate between flood, mixed-flood, and non-flood pixels. The variance in MNDVI, DVEL, and LSI 
for various land types in 2007 is shown in Fig. 1. A pixel was categorized as not being connected to a flood if it 
had an MNDWI of 40.3. The MNDWI of permanent water bodies such as “Sea” and “River” land-use categories 
was > 0.05, and the DVEL of these land categories was > 0.05, indicating that water-related pixels need to have a 
DVEL of > 0.05. The DVEL value wasn’t always > 0.05 for the land-use category “Lake,” however. To address this 
problem, a different criterion was employed to determine which pixels were associated to water. If the LSWI was 
0 and the MNDWI was − 0.05, the pixel was deemed to be related to water. It was crucial to identify whether 
water-related pixels were flooding pixels, mixed pixels, or long-term water body pixels after water-related pixels 
had been located. The Landsat satellite sensor’s modest resolution (30 m) made it impossible to discern between 
vegetation that was partially submerged and vegetation that was completely submerged. Figure 2 demonstrates 
that MNDWI values for the land categories “River,” “Sea,” or “Lake” were 0.1, indicating that this standard may 
be used to classify pixels connected to water. If a water-related pixel had an MNDWI > 0.1, it was considered a 
flooding pixel. If the MNDWI was 40.1 but > 0.3, it was considered to be a mixed pixel. Finally, regions that were 
submerged for the entire year needed to be separated from mixed and flooding pixels. For example, many water 
bodies in the Tumen River, such as large wetlands known as “Haors” and small wetlands known as “Beels” were 
considered submerged.

In order to maximize the distance between the closest points in each class, a Decision Tree (DT) was employed 
to determine the optimal hyperplane for dividing the flooding and non-flooding  classes38. DT has been shown to 
be competitive with other well-known learning  algorithms39 and is often used in categorization. As training exam-
ples, pixels that could be reliably categorized as submerged or not by this approach were chosen. A submersion 
map was created from each forecast picture using these training samples, combined with the actual image taken 
at the projected time that served as the flood reference map. Despite not being a genuine depiction, the flood 
reference map was nonetheless classified using the same training samples as the actual Landsat data. The classi-
fier might be used as a benchmark to assess how well various mixing strategies performed in the flooded map.

Figure 2.  Simulated flood inundation map from August 29 to 3 September 3, 2016. The figure was extracted 
from the Landsat 8 OLI image provided by Geological Survey (https:// www. usgs. gov/).

https://www.usgs.gov/
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Tumen river flood inundation simulation
The flood event occurred from August 29 to 31, 2016. Thus, the study used August 29, 2016, to September 3, 
2016, as the time frame to simulate the flood event and its inundation region. Firstly, the study predicted flooding 
images through FSDAF during this time frame. Secondly, DT mapping was used to identify both flood inundation 
and non-inundation areas. To verify the accuracy of the simulation results, the study also utilized flood statistics 
obtained from the United Nations OCHA. Finally, the study captured the time frame of the flood event, the date, 
and the region of maximum inundation.

During the flood, the resulting map depicted the flooded areas, which were generally consistent with the 
actual scenario. Additionally, the maximum inundation area and the most severely flooded spots were analyzed. 
The dates when the flood started and ended were also recorded.

Results and discussion
Test with satellite images in a heterogeneous landscape
The capacity of the FSDAF technique to anticipate Landsat-like pictures has been tested using satellite photo-
graphs in different settings, as shown on March 25, 2016. A zoomed-in area was chosen to highlight the differ-
ences between the prediction and the actual photographs. The visual comparison reveals that the FSDAF pictures 
are comparable to the original Landsat image, demonstrating that the method is capable of capturing the temporal 
changes in croplands from March 25, 2016, to August 16, 2016. As can be seen in the zoomed-in photos, the 
FSDAF-predicted image is more precise than the images predicted by spatial details. In a single paddy field, a 
comparison of two source Landsat photos in the zoomed-in area demonstrates a transition from non-vegetation 
to vegetation. Indicating that the FSDAF technique successfully included temporal variation data to provide a 
prediction on August 16, 2016, the quantitative index computed from the input Landsat picture of March 25, 
2016, and the fused results showed an RMSE of 0.0301, AD of 0.001, r of 0.941, and SSIM of 0.939. A visual 
comparison between the actual image and the predicted results using the FSDAF method for March 25, 2016, 
shows that the built-up details remain unchanged with no variation in land overlay categories. In contrast, the 
paddy and forest forecast by FSDAF are similar in shape to the actual image, demonstrating the ability of FSDAF 
to generate a realistic imitation of seasonal changes in objects that have undergone land overlay category variance.

Time series flood inundation
The innovative DT categorization method employed Landsat OLI and combined spectral bands with time 
sequences from MODIS to simulate the flooding of the Tumen River basin on August 29, 2016. The utilization 
of two pairs of MODIS and Landsat images facilitated a comprehensive assessment of flood mapping accuracy. 
Flood maps generated from Landsat images, along with the corresponding predicted (forecast) images using 
the decision tree method, were analyzed. In these maps, the flood class is visually represented by the color blue, 
while the non-flooding class is depicted in gray. Discrepancies between the reference map and the flooding map 
were observed, suggesting potential overestimation of the flood extent.

The temporal analysis of flood inundation revealed intriguing patterns. The red color, indicative of under-
estimation, was predominantly observed along the peripheries of flooded areas. In contrast, the blue color, 
representing overestimation, was concentrated near the shores of lakes and riverbanks. Post-flood event forecast 
maps exhibited larger gray regions compared to the reference map, indicating a substantial disparity between 
forecasted and observed conditions. This aligns with the earlier analysis of superficial reflectance values.

The assessment of the fusion matrix provided valuable insights into the performance of the mixing techniques 
employed for generating flooding maps. Table 3 presents key metrics such as overall precision, kappa coefficient, 
and producer and user accuracy for the flood zone across seven prediction flood maps. The “ua” metric signi-
fies the percentage of pixels on the prediction map correctly identified as flood pixels, while “1-ua” denotes the 
commission error, revealing instances of overestimation in the forecast maps. On the other hand, “pa” represents 
the percentage of flood pixels correctly classified in the reference maps, and “1-pa” indicates the omission error, 
highlighting instances where the flooding zone was underestimated in the prediction maps.

By calculating the averaged difference (Diff) and root mean square error, Table 1 compares the predicted 
values from FSDAF with the actual Landsat data in the green, red, and NIR bands (RMSE). The important find-
ings of the forecast results are highlighted in the table. First off, there are modest but negative Diffs between 
the whole Landsat picture and the anticipated image on August 29, 2016, showing that the prediction values 
produced by FSDAF are lower than those from the actual Landsat image. The fused findings of FSDAF, however, 

Table 1.  Accuracy assessment of FSDAF fusion approaches employed in the research area with varying land 
cover categories. The units displayed below are reflectance values (SSIM structure similarity, AD average 
difference from true reflectance, RMSE root mean square error, r correlation coefficient).

RMSE R AD SSIM

Band 1 0.014 0.812 0.000 0.891

Band 2 1.022 0.833 0.000 0.900

Band 3 0.034 0.888 0.000 0.802

Band 4 0.066 0.781 0.000 0.731

Band 5 0.044 0.900 0.000 0.911

Band 7 0.035 0.876 0.000 0.893
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exhibit decreased RMSE values and greater correlation coefficients (r) and structural similarity (SSIM) among 
the six bands (as seen in Table 1). This conclusion is further supported by scatter plots of actual versus predicted 
values for the NIR band utilizing FSDAF methods, where the predicted values are almost identical to the actual 
values. As two Landsat photos were captured throughout the growth season of crops, the NIR band had more 
reflectance variation than the other bands. FSDAF techniques were able to provide almost unbiased outcomes 
for each band in terms of overall forecast bias (|AD|b0.000).

Predicted surface reflectance on flood date
The levels of agreement between the categorized predicted pictures and the categorized source Landsat image 
with the same resolution are shown in Table 2. A stronger connection between the classification map of a chosen 
prediction picture and the source image is indicated by higher values of kappa and oa. The greatest kappa and 
oa values are seen in the classification of the FSDAF prediction picture. Additionally, for all four classes, FSDAF 
has a higher agreement. The FSDAF forecast picture has enhanced pixels that have experienced the land cover 
category fluctuation during the flood event, namely the drowned area and water. Varied methods are now being 
developed to combine optical and SAR pictures in order to benefit from SAR images in bad weather and enhance 
their interpretation in various  locations40,41. For monitoring floods, several researchers have also employed hybrid 
fusion  techniques42,43. Our further research will thus concentrate on integrating SAR pictures into the image 
fusion framework for the study of urban floods.

Figure 2 shows forecast reflectance images generated by FSDAF. The first image (Fig. 2a) is a Landsat image, 
followed by three real-time predictions (Fig. 2b–e). A forecast information image (Fig. 2c) is provided as a 
reference at the bottom. One of the input MODIS images from August 2016 shows a small patch of inundation. 
However, compared to other forecasts, Fig. 2d is the most affected. To demonstrate the different performances 
of all trials in flooding regions, two sub-areas, a community in Hunchun and a freeway intersection, are high-
lighted (as indicated in Fig. 2a) The total real-time forecasts show a sudden drop in reflectance in green spaces 
and at the junction but fail to precisely detail the exact flood edge. Figure 2c displays a larger flood region than 
the actual image. In the city center, the forecasts almost entirely capture the flood region, and linear features like 
roads are clearly visible. Figure 2d covers a slightly larger area, including more of the flood region as shown in 
the actual images.

Despite underestimating the flood zone at the freeway junction, the second picture in the post-flood predic-
tion demonstrates that the hue and extent in the city center nearly resemble the reference image. This may be the 
result of the post-event photograph from August 2016 which depicts a tiny quantity of floodwater still present 
in the city despite the fact that the flood level has greatly subsided, leaving only the remains of devastated trees 
and structures.

In the green, red, and NIR bands, Table 3 displays the RMSE and variance between actual and predicted 
Landsat readings. The projected findings’ noteworthy characteristics are shown in the table. First off, the August 
29, 2016, Landsat and projected photos are all biased negatively. The predicted values produced by FSDAF seem 
to be inferior to those in the actual Landsat picture, despite the average discrepancies being tiny. As a result, the 
flood level or result determined by the prediction pictures may be exaggerated. Second, although the methods’ 
performance fluctuates in the red and green bands, it is consistent in the NIR band, with the RMSE of the NIR 
band in the FSDAF findings being constant at 0.04–0.07. (less than half of the RMSE in the green and red bands). 
Because most surface items (i.e., plants) reflect more light in the NIR band than in the visible bands, with the 

Table 2.  Agreement indexes between predicted image categorizations and categorization of the source Landsat 
image using the same information.

2016.08.16 2016.08.29 2016.08.30 2016.08.31 2016.09.01 2016.09.02 2016.09.03

User’s accuracy 0.884 0.840 0.832 0.858 0.932 0.922 0.917

Producers’ accuracy 0.887 0.871 0.889 0.862 0.912 0.901 0.900

Overall accuracy 0.878 0.838 0.864 0.854 0.901 0.921 0.898

Kappa 0.803 0.791 0.805 0.808 0.840 0.833 0.821

Table 3.  RMSE and Diff of the forecast value in the green, red, and NIR bands. *Diff: the mean difference 
between the predicted and observed values, RMSE root mean square error.

2016.08.16 2016.08.30 2016.08.31 2016.09.01 2016.09.02 2016.09.03

Green RMSE 0.026 0.025 0.023 0.024 0.020 0.023

Green Diff* − 0.016 − 0.013 − 0.013 − 0.009 − 0.004 − 0.007

Red RMSE 0.029 0.030 0.026 0.030 0.051 0.022

Red Diff* − 0.014 − 0.014 − 0.011 − 0.013 − 0.001 − 0.005

NIR RMSE 0.128 0.171 0.110 0.048 0.090 − 0.082

NIR Diff* − 0.060 − 0.002 − 0.031 − 0.016 − 0.003 − 0.010
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exception of water, which has a reflectance of almost zero, the increased prediction inaccuracy in the NIR band 
makes sense in floods. As a result, during a flood, the NIR band value may see a considerable decrease, which 
may occasionally result in a prediction mistake that is exaggerated in comparison to the other bands. In certain 
flooding mapping techniques, like NDWI, where the NIR band is employed as a crucial indicator to extract the 
flood zone, FSDAF findings may perform better in this respect. In agricultural areas, the Landsat pixel invariably 
blended agriculture with a small proportion of other vegetation categories or soil due to its medium spatial resolu-
tion. The blended pixel phenomenon was also observed in a few small parcels in agricultural areas. Additionally, 
the impact of shadows, terrain, and small clouds on flood inundation mapping was weak when data from the 
fused time sequence was added. Single Landsat spectral information may not provide enough data to accurately 
identify flood inundation boundaries and misclassifications in these regions, making it uncertain where the extent 
of flood damage lies. However, the fused time sequence information, which includes more flood information, 
is useful in identifying the extent of flood damage. By overcoming the spatial–temporal resolution trade-offs 
inherent in current satellite sensors, FSDAF contributes to the precision and effectiveness of flood monitoring 
systems. The ability to generate synthetic flood images with improved spatiotemporal resolutions allows for more 
accurate mapping of inundated areas during seasonal erosion flooding events.

Tumen river flood event simulation
The study involved simulating the Tumen River flood to determine the maximum submerged area, locations of 
drowned spots, and the time when the flood events occurred and stopped. To verify the accuracy of the simula-
tion, a comparison was made with statistics obtained from the United Nations OCHA. Figure 2 shows several key 
findings: (1) the flood event occurred between August 29, 2016, and September 1, 2016; (2) the flood inundation 
had a similar cumulative pattern, with the maximum distribution on August 31, 2016, and the cumulative size 
increasing with the rainfall duration on the same underlying surface until September 1, 2016; (3) from September 
2, 2016, the flood inundation surface distribution area began to decrease compared to the previous day.

The simulation model captured the submerged regions in places where the produced river network changed 
from the actual flow path, particularly where floods largely occurred due to river overflows. The simulated 
submersion regions in the upper part of the basin corresponded well with the investigated data, indicating that 
the imitation result was stable. Although the simulated submersion regions were similar to the practical flood 
as presented by the investigated data, there were still some inaccuracies in capturing the submersion regions 
in places where the produced river network deviated from the actual flow path. Despite FSDAF’s remarkable 
performance in creating synthetic pictures for flood mapping, the geographical and temporal resolution of the 
input observation information may have a big influence on the outcomes. The resultant picture blending may 
be of low quality when there are few or no cloud-free remote-sensing photographs of the floods. Due to their 
independence from light and weather conditions, synthetic aperture radar (SAR) pictures have the potential 
to provide more accurate flooding assessment and  monitoring44. Furthermore, the research demonstrates the 
potential of FSDAF in providing comprehensive information for studying land degradation and its correlation 
with flooding for sensitivity improvement in the  measurement45. The insights gained from this research have 
broader implications for environmental monitoring for Transport of intensity  diffraction27,46, sustainable land 
management, and disaster-related decision-making processes, emphasizing the importance of advanced remote 
sensing techniques in addressing complex challenges associated with dynamic environmental events.

The proposed Decision Tree categorization method, integrating Landsat OLI and MODIS spectral bands, 
brings both advantages and limitations to flood mapping. Its multi-sensor integration offers a comprehensive 
understanding of flood dynamics, but the model is sensitive to input quality and assumes homogeneity in flood 
characteristics. While it excels in temporal analysis, providing insights into post-flood impacts in urban settings, 
it may fall short in capturing dynamic changes and variations in water depth. Suggestions for improvement 
include incorporating high-resolution data, developing a dynamic modeling approach, validating with ground 
truth data, and utilizing additional sources for a more thorough post-flood analysis. These enhancements would 
bolster the model’s accuracy and broaden its applicability in advancing flood mapping technologies.

Conclusion
The research on flexible spatiotemporal data fusion (FSDAF) for high-resolution flood mapping using Landsat 
and MODIS data holds significant implications for various fields, particularly in enhancing flood monitoring 
and disaster management. The forecasts may be enhanced by using the extra spectral data of flooding, resulting 
in better accuracy for post-flooding predictions. This is done by using post-flooding photos. The reflectance dif-
ference between flooded and non-flooded pixels is high enough to be distinguished by a DT classifier even if the 
FSDAF forecasts are inaccurate. In other words, when paired with post-event imagery, the inaccuracies in FSDAF 
predictions are too tiny to significantly misclassify flood inundation maps. As a consequence, when paired with 
post-flood photos, FSDAF projections may increase the accuracy of flood mapping. There are certain shortcom-
ings in this study that will need to be addressed in the future. FSDAF may not be able to anticipate fast changes in 
urban floods adequately due to the spectral characteristics of flooding in urban areas and the complexity of the 
surface, which might lead to an under- or overestimation of the flooding area close to the flooding border. The 
mixing pattern may be altered to offer better forecasts of unexpected occurrences, leading to more precise flood 
mapping. More data, such as kinds of land cover, rainfall, elevation, sewage systems, the location of dams, and 
data on the city’s river gauge, may also be included to the classification process to increase the accuracy of flood 
mapping findings. This data may be used with hydrologic models to investigate surface damage and precisely 
map floods. Even though the studied data showed that the simulated inundation model was equivalent to the 
real flood, certain inundated areas were recorded in locations where the simulated river network diverged from 
the actual flow direction. A consequence map of the flooding submersion region is created during floods. The 
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maximum submersion area and the seriously flooded regions are tested, and the start and end dates of the flood 
occurrence are also looked at.

Data availability
All data generated or analysed during this study are included in this published article.
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