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Innovative approaches in soil 
carbon sequestration modelling 
for better prediction with limited 
data
Mohammad Javad Davoudabadi 1,2,3,4*, Daniel Pagendam 4, Christopher Drovandi 1,2,3, 
Jeff Baldock 5 & Gentry White 1,2,3

Soil carbon accounting and prediction play a key role in building decision support systems for land 
managers selling carbon credits, in the spirit of the Paris and Kyoto protocol agreements. Land 
managers typically rely on computationally complex models fit using sparse datasets to make these 
accounts and predictions. The model complexity and sparsity of the data can lead to over-fitting, 
leading to inaccurate results when making predictions with new data. Modellers address over-fitting 
by simplifying their models and reducing the number of parameters, and in the current context this 
could involve neglecting some soil organic carbon (SOC) components. In this study, we introduce 
two novel SOC models and a new RothC-like model and investigate how the SOC components and 
complexity of the SOC models affect the SOC prediction in the presence of small and sparse time 
series data. We develop model selection methods that can identify the soil carbon model with the best 
predictive performance, in light of the available data. Through this analysis we reveal that commonly 
used complex soil carbon models can over-fit in the presence of sparse time series data, and our 
simpler models can produce more accurate predictions.

Large-scale carbon emission from soil, one of the planet’s major carbon reservoirs, into the atmosphere has 
deleterious impacts on global climate change, soil quality, and crop  productivity1,2. Soil organic carbon (SOC) 
could be used as a significant global sink for atmospheric carbon through land-management practices, helping 
to reduce the atmospheric concentration of greenhouse gases and improving agricultural productivity.

International bodies and agreements such as the Intergovernmental Panel on Climate Change (IPCC) and the 
Paris and Kyoto Protocol agreements mitigate global warming by assessing the science related to climate change 
and reduce greenhouse gas emissions, especially CO2 . These agreements adopted systems of carbon accounting 
and trading markets. A part of these carbon markets (tracking and trading) is related to selling carbon credits by 
farmers, organisations certifying the credits, or providing government support for the scheme, and land-holders 
who apply land-management practices to sequester carbon and track the change of soil carbon sequestration 
in their farmlands. They usually have small datasets for tracking the changes in soil carbon as SOC sampling is 
time-consuming and costly.

Models can quantify changes in soil carbon stocks where there is accurate understanding of processes that 
govern soil carbon turnover and sequestration. Such models can also help develop a deeper understanding of 
the sequestration process and forecast future changes and trends in SOC. Researchers have developed computer-
simulation models such as  RothC3,4, and  Century5 to help make inferences about trends in carbon stocks using 
time series of measurements collected over many years. For example, to improve the accounting of field emis-
sions in the carbon footprint of agricultural products, Peter et al.6 assess the change of SOC based on simulations 
with the RothC model in one of the IPCC methodological approaches (Tier 3) and compare it with other default 
IPCC methods. Clifford et al.15 developed a statistical soil carbon model to estimate and forecast the amount of 
carbon sequestered on farmland.
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All models have their limitations and it is commonplace for modellers to make modifications that better suit 
specific scenarios of interest. For instance, Farina et al.7 modified the RothC model with the aim of improving 
the prediction of soil carbon dynamics in semi-arid regions. At their core, models such as RothC partition the 
total SOC mass into specific pools. These pools are decomposable plant material (DPM), resistant plant matter 
(RPM), humified organic matter (HUM), microbial biomass (BIO), and inert organic matter (IOM)1,8. Modellers 
are, however, free to explore alternative means of partitioning soil carbon to suit different objectives.

The vast majority of SOC models are deterministic, yielding a single possible trajectory of soil carbon dynam-
ics for a given set of parameters and an initial condition. On the other hand, statistical SOC models can yield 
ensembles of possible soil carbon trajectories. One of the main advantages of a statistical SOC model over 
deterministic SOC models such as RothC is introducing this randomness and providing a probabilistic method 
for quantifying uncertainty around model outputs. Uncertainties in SOC models arise in many ways such as 
around the parameters, model inputs, dynamics, and subsequently model predictions. Statistical models help 
to quantify uncertainties in a SOC model by modelling the different sources of randomness. Research using 
statistical models and sensitivity analysis (running models for different sets of parameter values) attempts to 
quantify uncertainties in soil carbon model  outputs9–14. Clifford et al.15 quantified uncertainties in model inputs, 
dynamics, and uncertainties in model parameters for a one pool soil carbon in a comprehensive manner using 
a physical-statistical model for carbon dynamics within a framework known as Bayesian hierarchical modelling 
(BHM). The statistical methods used by Clifford et al.15 can be computationally burdensome, especially for more 
complex models such as some of the models we consider in this study. In addition, differences between the vari-
ous soil carbon pools (DPM, RPM, HUM, BIO and IOM) are ignored in Clifford et al.15. Gurung et al.16 identify 
the most important DayCent model parameters through a global sensitivity analysis for parameterization and 
implement a Bayesian approach using the sampling importance resampling method to calibrate the model and 
produce posterior distributions for the most sensitive parameters.

Microbial biomass carbon (MBC) is an important labile soil carbon fraction and the most active component 
of the SOC, regulating bio-geochemical processes in terrestrial  ecosystems17. Consequently, this has drawn the 
attention of modellers when considering how the MBC should be treated and how it should interact with other 
pools of carbon. The importance of MBC in soil carbon decomposition has led to the development of a number 
of microbially-explicit SOC models in recent  years18–22. Several microbial models with a similar basic structure 
and key bio-geochemical processes have been developed to simulate warming effects on soil organic matter 
(SOM)  decomposition23–25. These models differ in model complexity and reference temperature and there have 
been few efforts to compare model structures. For example, Li et al.26 have compared these models to address 
this question of how microbial model predictions change with increasing model complexity, and whether these 
predictions differ fundamentally from models with a conventional structure. More recent studies consider the 
interactions of microbes in a microbially-based SOC model (SOMic version 1.0)27. Other studies compare the fit 
of linear and non-linear soil bio-geochemical models (SBMs) using data assimilation with soil respiration data 
sourced from a meta-analysis of soil warming  studies28.

In this study, we explore the effect of relaxing some of the bio-geochemical realism of models such as RothC 
with respect to predicting soil carbon stocks. Bio-geochemical refers to the degree to which a model accurately 
represents the biological, geological, and chemical processes that govern the cycling of carbon in soil ecosystems. 
Our focus is using these models with the temporally sparse datasets typically available for assessing trends in 
soil carbon on farms, making use of two datasets from Tarlee in South Australia and Brigalow in Queensland, 
 Australia15,29. These two sites are in different climatic regions, and it shows we can apply our approaches to a range 
of climatic regions. A pertinent scientific question is whether multi-pool models such as RothC are too complex 
relative to the limited data that is often available to fit them on a specific parcel of land. Therefore, we attempt to 
understand how model predictive performance varies when we amalgamate some of these conceptual pools in 
the underlying process dynamics. Specifically, we consider: (i) a single pool model considering soil carbon as a 
homogeneous pool that can decay and release carbon into the  atmosphere15; (ii) a two-pool model in which we 
consider a single homogeneous pool of decomposable SOC and an IOM pool that does not decompose; (iii) a 
three-pool model which considers two pools of decomposable SOC (one of them represents the biological pool) 
and the IOM pool; and (iv) a five-pool model considering all pools mentioned above that are present in RothC. 
The two and three-pool models are novel soil carbon models that we introduce in this study. Also, the five-pool 
model used herein is somewhat novel in terms of the statistical modelling framework it is embedded in and its 
simplification in terms of time-step and reduced set of parameters compared to RothC.

Our modelling framework predicts changes in soil carbon stocks and accounts for epistemic uncertainty, 
uncertainty in the bio-geochemical process dynamics, in a statistically defensible manner. This is particularly 
important in the present context. We explore structural differences in the systems of equations used to describe 
soil carbon process dynamics which is one of the major differences between our statistical approach and that 
used in the simpler regression studies (e.g. Xie et al.28). We develop a state-space modelling framework used 
for a one-pool model  by15,30 to the two, three, and RothC-like five-pool models. We develop a Bayesian model 
selection method known as leave-future-out cross-validation (LFO-CV)31 to choose, for a given dataset, the best 
soil carbon model in terms of its out-of-sample predictive accuracy. Our approach optimally adapts to the data 
at hand. Fitting overly complex soil carbon models might increase the uncertainty of predictions in the presence 
of sparse data, and it is important when making predictions about soil carbon stocks; otherwise, a land-owner 
might unwittingly enter into a contract to sequester carbon that has a higher risk than anticipated. Conversely, 
when data are sufficiently informative, our approach supports more complexity. In addition, we explore the 
effect of microbes and inert organic matter on the carbon cycle decomposition by adding microbial biomass and 
IOM pools in the one-pool model to answer this question that by adding these pools whether we obtain better 
soil carbon prediction than the one-pool model in Clifford et al.15. Although there are a number of studies in 
the literature that consider the impact of microbial biomass on soil carbon sequestration and how this affects 
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 modelling18,19,27,32, our process of modelling the dynamics of microbial biomass in the SOC model, along with 
applying advanced Bayesian methods to estimate its model parameters, are the main differences between our 
study and aforementioned papers.

We organise the rest of the paper as follows. The datasets used in this study are described in Section “Back-
ground and description of datasets”. We introduce our model framework and the LFO-CV criterion in Section 
“Methods”. In Section “Model structure” the structure of the models is described. In Section “Results”, we com-
pare the models based on their out-of-sample predictive accuracy and quantify the uncertainty of our estimate. 
Section “Discussion” presents a discussion of this study and our results.

Background and description of datasets
Our model selection method is motivated by two datasets that are collected from two locations in Australia. The 
details of these sites are presented in the following.

Tarlee dataset
An agricultural research experiment site known as Tarlee situated 80 km north of Adelaide, South Australia was 
established in 1977 to examine the impact of management practices on agricultural productivity as a long-term 
field  experiment33. The soil of this site is classified as a hard-setting red-brown earth with sandy loam texture. 
This site has a Mediterranean climate and is dominated by winter rainfall with an average of 355 mm from April 
to  October15,29,34. Soil properties of that site were monitored over a 20-year period in three fields under different 
management practices, and soil samples covering the entire top 30 cm of the profile were obtained for the years 
1979, 1985, and 1996 from all 3 rotations. Table 1 presents the time period of management treatments that were 
implemented in three trial fields in Tarlee.

Brigalow dataset
Brigalow is a research station in Queensland, Australia. This site is situated in a semi-arid, and subtropical climate, 
and consists of three forested catchments of 12–17  ha29. Three monitoring sites were established within each of the 
catchments in recognition of three soil types (a duplex soil and two clays). One catchment was planted to wheat 
and occasional sorghum and the other to buffel pasture and the last one was left under native Brigalow forest. At 
this site, on one catchment, after clearing land under Brigalow (Acacia harpophylla) in 1982, continuous wheat 
with some sorghum was established over a 18-year period. Samples were collected from the field in two distinct 
categories: surface samples, acquired from a depth of 0–10 cm, and profile samples, retrieved down to a depth of 
200 cm. In the profile category, samples were taken at three specific intervals within the upper layers: 0–10 cm, 
10–20 cm, and 20–30 cm. Table 2 shows the duration of management practices in Brigalow.

Table 1.  The duration of management treatments in three fields in Tarlee.

Management treatments Field 1 Field 2 Field 3

Wheat for grain
(1979–1987) and – –

(1990–1996)

Wheat for hay 1988 and 1989 1989 –

Fallow 1997 1997 1997

Wheat for grain and fallow –
(1979–1988) and –

(1990–1996)

Wheat and pasture – – (1979–1987)

Wheat and pasture for hay – – 1988 and 1989

Wheat for grain and pasture – – (1990–1996)

Table 2.  The duration of management treatments in Brigalow.

Management treatments Soil type 1 Soil type 2 Soil type 3

Cleared 1982 1982 1982

Wheat for grain
(1985–1992) and (1985–1992) (1985–1992)

(1994, 1996, 1998) (1994, 1996, 1998) (1994, 1996, 1998)

Sorghum for grain
1984, 1995, 1984, 1995, 1984, 1995,

1997 and 1999 1997 and 1999 1997 and 1999

Fallow 1983 and 1993 1983 and 1993 1983 and 1993
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Methods
Soil carbon model
We can consider uncertainties in a dynamical SOC model as arising from three sources: errors in the observa-
tions, randomness or uncertainty inherent in the underlying physical processes, and uncertainties in model 
 parameters15. These uncertainties are modelled through the observation model p(Y|X, θ) , the process model 
p(X|θ) , and the prior p(θ) . Here θ , Y , and X denote unknown parameters, observations, and unobserved state 
process, respectively. Furthermore, the probability density function of the enclosed random variable, and the con-
ditional probability density function given the event E are denoted by p(.), and p(.|E), respectively. For example, 
the mass of SOC, XC , is one of the elements of X , or the measured value of total SOC, YTOC , is one of the elements 
of Y , furthermore, the decay rate of total SOC, KC , is an example of a model parameter in a soil carbon model.

These three models form a hierarchical framework known as a Bayesian Hierarchical Model (BHM). The top 
level of the hierarchy contains the observation model which includes noisy observational data that depend on 
the state variables. This model is followed by the process model, located at the second level. At this level, latent 
state variables, which cannot be measured directly but can be estimated based on measurement data that depend 
on the latent state variables, are modelled. These two models typically rely on some unknown parameters. The 
third level underneath these two levels contains the parameter  model35–37. A BHM is represented mathemati-
cally as follows:

Note that the joint distribution p(Y,X, θ) captures all the uncertainty in the model. The advantage of analysing 
a model within the BHM framework is that it incorporates prior knowledge related to the parameters into the 
analysis by updating the distributions of these parameters with observed data. The latent state of the SOC, X , 
evolves as a dynamical process and given noisy, sparse data. Inferences about soil carbon dynamics, parameters, 
and functions of them can be made through the posterior distribution p(X, θ |Y) . We can write the posterior 
distribution based on (1) as follows:

where p(Y) depends only on data and may be difficult to calculate analytically or numerically, thus the posterior 
itself may be difficult to evaluate. Fortunately, one can draw samples from the posterior if it is not analytically 
tractable.

As in other recent statistical  analyses15,30 we use a state-space modelling framework, the first and second levels 
of the BHM, to predict changes in soil carbon stocks. State-space models are more challenging to fit in practice 
than simpler regression models used  in28 because they acknowledge uncertainty in the latent process dynam-
ics. The prior information of the parameter model in the third level of the BHM is described in the following.

Prior information
As mentioned earlier, the process model and the observation model typically depend on unknown parameters, 
and the parameter model captures the uncertainty around these parameters. A Bayesian approach for model fit-
ting is applied to quantify the uncertainty in parameters and predictions. This approach places a prior distribution 
on the unknown parameter vector θ , which is the advantage of using the Bayesian analysis since we implement 
our prior knowledge of parameters as part of the inferential process.

In general, the prior knowledge about parameters includes three categories: informative, weakly informative, 
and uninformative priors. When we have a small dataset or the dataset is sparse, the prior distribution becomes 
more influential and informative priors can become more useful. In this study, we obtain priors from previous 
 studies15,29,30 and expert opinion. The model parameters and their prior probability density functions are listed 
in Supplementary Tables S2 and S3 (Section B of the supplementary material).

Posterior distribution inference
To estimate the changes in SOC over time as a result of the various management practices, and to estimate 
the parameters driving the sequestration of carbon, we sample from the posterior distribution p(XTOC , θ |Y) , 
where XTOC is the mass of total SOC. To this end, we draw samples from the posterior distribution p(X, θ |Y) in 
(2) which can be decomposed into two components p(X|θ ,Y)p(θ |Y) and we preserve the components related 
to the SOC process XTOC and its parameters θ . Davoudabadi et al.30 used advanced Bayesian methods, e.g. 
correlated pseudo-marginal (CPM) method and the Rao-Blackwellised particle filters (RBPF) for state-space 
models, to reduce the computational cost of estimating uncertainties in the one-pool model presented  by15. The 
CPM method, one of several particle Markov chain Monte Carlo (PMCMC) methods, is applied to the model 
to draw samples from p(θ |Y) as the resulting likelihood is not  tractable30,38. The CPM method in Davoudabadi 
et al.30 outperforms other state of the art PMCMC methods in terms of computation time. The advantage of 
using this method is that it reduces the computational cost of estimating intractable likelihoods by correlating 
the estimators of the likelihoods in the acceptance ratio of its algorithm. Algorithm S3 in Section C.3 of the sup-
plementary material provides the CPM algorithm. This correlation can be achieved by correlating the auxiliary 
random numbers used to obtain these estimators; see Davoudabadi et al.30 and Deligiannidis et al.38 for more 
details. To estimate the marginal likelihood of the state variables, we use the RBPF as the SOC model combines 
linear and non-linear sub-models. The RBPF algorithm estimates the marginal likelihood of the non-linear 
sub-model through bootstrap particle filter (BPF). It computes the marginal likelihood of the linear part of the 
model through the Kalman Filter (KF)  algorithm30,39. Computing the exact likelihood of the linear sub-model 

(1)p(Y,X, θ) = p(Y,X|θ)p(θ) = p(Y|X, θ)p(X|θ)p(θ).

(2)p(X, θ |Y) =
p(Y|X, θ)p(X|θ)p(θ)

p(Y)
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makes the RBPF algorithm an attractive algorithm in these scenarios as it reduces the computational cost of 
the estimated likelihood dramatically. See Davoudabadi et al.30 for more details about the RBPF, BPF and KF 
algorithms. In addition, the algorithm of the KF and BPF methods are provided in Sections C.1 and C.2 of 
Supplementary Material , Algorithms S1 and S2 , respectively. The RBPF algorithm is reused to draw a sample 
of the state process from the posterior distribution p(XTOC |θ ,Y) . In the CPM algorithm, it is required to gen-
erate candidate parameters from appropriate proposal distributions. More precisely, a proposal distribution is 
a user-specified distribution that the user is free to choose and the Markov chain will converge to the desired 
posterior distribution if it is run for enough iterations. However, a proposal distribution can have a significant 
impact on the finite-time efficiency of the MCMC and the ideal case occurs when the proposal distribution is 
the desired posterior distribution which is typically unknown. The proposal distributions are presented in the 
supplementary material Section B.

We can quantify the uncertainty of our estimate in many ways, for example, through a 95% credible interval or 
the estimated expected value of functionals of interest. The inference about the mass of SOC added over a period 
of time can be achieved through the MCMC samples of the posterior distribution. We represent the posterior 
distribution p(X , θ |Y) by M∗ samples {(Xm, θm) : m = 1, ...,M∗} and the posterior expectation of any function 
g∗(X , θ) can be estimated by these samples.

The error of the accuracy of such estimates is negligible for sufficiently large sample size M∗ . The change in 
SOC to field i between the first year of trial, e.g. t = 1 , and following year t in a dataset is considered as follows

and can be estimated as follows

where Xi
TOC(t) is the summation of other pools, for example, in the three-pool model Xi

TOC(t) is equal to the 
summation of Xi

C(t) , X
i
IOM(t) , and Xi

B(t).
The posterior variance, var(Xi

TOC(t) − Xi
TOC(1)|Y) , is a measure of uncertainty associated with this Bayes 

estimate.
We assess the quality of the MCMC samples through an MCMC diagnostic known as the Gelman and 

Rubin’s convergence diagnostic  statistic40. The Gelman and Rubin’s convergence diagnostic statistic, R̂ , can be 
used to assess whether the MCMC samples have “mixed” sufficiently, effectively sampling from the probability 
distribution, and have reached a stationary  distribution40. Gelman and Rubin’s convergence diagnostic compares 
samples from multiple chains to assess whether the output from each chain is sufficiently similar to the others. 
The output from each chain is indistinguishable from the others when the scale reduction factor estimated from 
the sampling is less than 1.241.

Before estimating model parameters and conducting inference with a model, it is essential to validate our 
model to establish its suitability for estimating changes in soil carbon stocks. In the next section, we introduce 
our method for selecting between competing soil carbon models, focusing on predictive accuracy.

Model evaluation
One way to evaluate a model or compare different models is to measure predictive  accuracy42. As our models 
depend on time, for model comparison and selection, we apply leave-future-out cross-validation (LFO-CV) that 
refits a model to different subsets of the  data31. The LFO-CV is a fully Bayesian metric in that it uses the entire 
posterior distribution. This method is the approach used to compare the model’s predictive accuracy for the four 
SOC models listed in Section “Model Structure”.

Let Y1:T be a time series of observations and let L be the minimum number of observations from the series 
that we will require before making predictions for future data. To make reasonable predictions for Yi+1 based on 
Y1:i , i should be large enough so that we can learn enough about the time series to predict future observations, 
otherwise, it may not be possible to make reasonable predictions. The choice of L depends on the application and 
how informative the data are, therefore, it may be vary from one dataset to  another31. We would like to compute 
the predictive densities p(Ỹt+1|Y1:t) for each t ∈ {L, ...,T − 1} where Ỹt+1 is a future vector of observed data. The 
expected log pointwise predictive density (ELPD) can be used as a global measure of predictive accuracy, which is

In practice, the integral in (3) is intractable, however we can approximate it through Monte-Carlo  methods31. 
To estimate p(Ỹt+1|Y1:t) , we draw samples (θ11:t , ..., θ

S
1:t) from the posterior distribution p(θ |Y1:t) for t ∈ {1, ..., γ } 

where γ ∈ {L, ...,T − 1} using the particle MCMC method described in Section “Posterior Distribution Infer-
ence” and estimate the predictive density for ỸL+1:T as follows

E(g∗(X , θ)|Y) ≈
1

M∗

M∗∑
m=1

g∗(Xm, θm).

g∗(X , θ) = Xi
TOC(t) − Xi

TOC(1);

ĝ∗(X , θ) = E(Xi
TOC(t) − Xi

TOC(1)|Y);

(3)ELPD = log

T−1∏
t=L

Eθ |Y1:t (p(Ỹt+1|Y1:t , θ)) =

T−1∑
t=L

log

∫
p(Ỹt+1|Y1:t , θ)p(θ |Y1:t) dθ .
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When our model is a state-space model, we need to consider the state variables as part of the parameter space and 
estimate them through the particle filter methods to apply the LFO-CV. The reason for selecting ELPD instead of 
other global measures of accuracy such as the root mean squared error (RMSE) is that it evaluates a distribution 
to provide a measure of out-of-sample predictive performance rather than evaluating a point estimate like the 
mean or median, which we see as favourable from a Bayesian  perspective31,43.

Model structure
The total SOC consists of different components defined by their origin and their decay rate. These components 
originate from living organisms known as biotic material or non-living (abiotic)  material1,44. Based on the RothC 
model, the components of the total SOC include DPM, RPM, HUM, BIO,  IOM1,8. The one-pool model in Clifford 
et al.15 considered all components mentioned above as a single pool. The process model of the one-pool model is a 
combination of linear and non-linear sub-models. The details of the process and the observation models of these 
sub-models are shown in the supplementary material Sections D.1 and D.2 , respectively. Figure 1a graphically 
represents the carbon emission process in the one-pool model. Based on Fig. 1a, a fraction of carbon decays is 
emitted into the atmosphere as CO2 and the rest remains in the pool.

In the two-pool model, we consider the IOM pool as a second pool that is resistant to chemical and biological 
reactions and encompasses charcoal or charred  material8. The IOM fraction is not subject to biological transfor-
mation and is thus  constant45. As the IOM fraction is constant, its process model at time t is a constant value and 
should be estimated. The process and the observation models of the two-pool model are presented respectively 
in Sections E.1 and E.2. Figure 1b shows the graphical representation of the two-pool model.

The three-pool model considers the IOM and BIO as separate pools with a main pool of decomposable carbon 
which is an amalgamation of DPM, RPM, and HUM pools. Soil carbon decomposes from the decomposable 
carbon pool, and fractions are either transferred to the BIO pool or lost to the atmosphere as CO2 . Carbon present 
in the BIO pool that decomposes is either lost to the atmosphere as CO2 , re-assimilated as biological mass or 
transferred to the main soil carbon pool. Figure 1c shows the diagram of the carbon emission in the three-pool 
model. The process and observation models of the three-pool model are presented in detail in Sections F.1 and 
F.2 of the supplementary material, respectively. It is noteworthy to mention that the size of the microbial pool 
encompasses a small fraction of the total organic carbon, e.g. 5% of the TOC, based on expert knowledge. We 
implement this constraint by rejecting BIO state trajectories that exceed 5% of the TOC in the Markov chain 
Monte Carlo (MCMC) algorithm.

The RothC model, consisting of five conceptual pools, is the standard soil carbon used in many studies and is 
considered a reasonable representation of the physical sub-species of carbon in the soil. In the models presented 

(4)p(Ỹt+1|Y1:t) ≈
1

S

S∑
s=1

p(Ỹt+1|Y1:t , θ
s
1:t).

a b

dc

Figure 1.  Graphical representation of the carbon emission in the (a) one-pool model, (b) two-pool model, (c) 
three-pool model, and (d) five-pool model. The five pools from RothC have been amalgamated into a single 
homogeneous soil carbon pool in the one-pool model. The DPM, BIO, HUM and RPM pools are amalgamated 
and treated as a single homogeneous pool in the two-pool model, and the DPM, HUM and RPM pools are 
amalgamated and treated as a single homogeneous pool in the three-pool model.
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so far, we have considered the pools to be either one of the RothC pools or an amalgamation of the five RothC 
pools. In the five-pool model presented here, we now retain the structure presented in the RothC model without 
any amalgamation.

In the five-pool model, plant material is split between two conceptual pools: DPM and RPM. Decomposition 
of carbon from these two pools either leaves the system as CO2 or is transformed to carbon in the BIO and HUM 
pools. Carbon from the BIO and HUM pools that decomposes can either be lost to the atmosphere as CO2 , or 
transformed to carbon in the BIO or HUM pools. The process and observation models of the carbon transfer 
in the five-pool model are presented mathematically in detail in Section G of the supplementary material. The 
five-pool model is depicted in Fig. 1d.

Results
Comparing models
We worked with four MCMC chains, each initialised with a randomly sampled parameter vector, in the Corre-
lated Pseudo-marginal Method (CPM) method for estimating the predictive density (4). We ran each chain for 
200,000 iterations discarding the first 80,000 as burn-in. We thinned these chains, choosing every 30th sample 
of the MCMC samples to estimate (4), therefore, S in Eq. (4) was equal to 4,000. The minimum numbers of 
observations, L, used for making predictions for future data in the Tarlee and Brigalow datasets were 12 and 13, 
respectively. The estimated expected log pointwise predictive density (ELPD) of the one, two, three, and five-pool 
models applied on the Tarlee dataset were −53.02 , −40.55 , −34.79 , and −37 , respectively. The estimated ELPD 
of those models applied on the Brigalow dataset were −36.89 , −36.88 , −36.48 , and −49.57 , respectively. Based 
on these results (supplementary material Tables S13 and S14) , the three-pool model outperformed the other 
models in the sense of yielding the best LFO predictive ability for both the Brigalow and Tarlee datasets. This 
three-pool model included an inert carbon pool and two decomposable pools that were conceptually equivalent 
to a biological pool (the decomposers) and a decomposable material pool, an amalgamation of DPM, RPM, 
and HUM pools. For Tarlee, the five-pool RothC-like model had the next best ELPD, but in Brigalow, the five-
pool model exhibited the worst ELPD of the four models studied. The performances of the three and five-pool 
models in estimating the trajectories of the SOC dynamics of the Brigalow dataset are highlighted visually in 
Fig. 2a,b, respectively. As shown in Fig. 2b, the five-pool model increased uncertainty in the soil carbon dynam-
ics, especially during the sparse periods, typified by wide 95% credible intervals. The significant variability in 
these regions stems from our practice of simulating input state values, such as the total mass of wheat dry matter 
( XW ), during each iteration of the particle filter algorithm and subsequently aggregating them. However, when 
there is no observation available for comparing these simulated values, it introduces additional variability in the 
trajectory of the state variables. Hence, when an observation ( Y(t) ) is present, the level of uncertainty is notably 
lower compared to other scenarios.

Setting aside the five-pool model and focusing on the one, two, and three-pool models, we see that amongst 
these three models, the ranking from best to worst is three-pool, two-pool, and one-pool for both study sites. 
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Figure 2.  Soil organic carbon (SOC) dynamics of the Brigalow dataset based on (a) the three-pool model and 
(b) the five-pool model. The gray shaded part is the area between the 2.5th and the 97.5th percentiles for the 
SOC process gained by the three and five-pool models. The 25th and the 75th percentiles for the SOC process 
are indicated by the dashed lines. The 50th percentile is shown by the solid line and the measured SOC values 
are indicated by filled dots.
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We cannot say with full confidence the three-pool model is the best model for the Brigalow dataset compared 
to the one and two-pool models as there is not much difference between their estimated ELPDs acknowledging 
the Monte Carlo errors. Nevertheless, we select it as the best model for the Brigalow dataset since the three-pool 
model has the largest ELPD.

Uncertainty quantification
The average of the SOC change between 1978 and 1997 in fields 1, 2, and 3 in the Tarlee trial based on the three-
pool model were −3.81 , −3.47 , and 7.12, respectively (Fig. 3a). Here the negative values denote that the first two 
fields were expected to lose carbon over the 20-year period. The management strategies that are used in fields 
1, 2, and 3 are “Wheat-Wheat”, “Wheat-Fallow”, and “Wheat-Pasture”, respectively. This average for three soil 
types of the Brigalow dataset, based on the three-pool model, between 1981 and 2000 were −4.37 , −0.43 , and 
−5.13 , respectively (Fig. 3b). The hardware use and computing time information are provided in Section J of 
the Supplementary Material.

We can find the 95% credible interval for the amount of carbon in the soil by computing the upper and lower 
limits of the interval which are the 97.5th and 2.5th percentiles of the posterior distribution, respectively. These 
percentiles for the SOC process of each soil type in the Brigalow trial and each Tarlee field are presented in 
Figs. 2a and 4, respectively. Due to the wide range of soil carbon stocks in Fig. 2b we also provide a separate com-
parison of the 50th percentiles based on three and five-pool models for Brigalow in Supplementary Figures S1a 
and S1b, respectively in section Supplementary Material.

As mentioned earlier in Section “Prior Information”, prior knowledge plays a significant role in the presence 
of small and sparse datasets. We compare the prior distributions with a histogram of the samples drawn from 
the posteriors of some main model parameters of the three and five-pool models that are the best and the more 
complex models, respectively, to highlight what we have learned about those parameters. Figure 5a,b show the 
difference between the prior and posterior of the decomposition rate of the SOC and BIO pools of the three-pool 
model in Tarlee and Brigalow, respectively. Also, Figure 6a,b show the difference between the prior and posterior 
of the decomposition rate of each pool of the five-pool model in Tarlee and Brigalow, respectively. Based on 
Figures 5 and 6, it is clear that we learn quite a lot about some parameters such as KB and KH , and we learn little 
new about other parameters, namely KC and KD as the posterior and prior are very similar.

We calculated the Gelman and Rubin’s convergence diagnostics, R̂ for the model parameters of the three-pool 
model of the Tarlee dataset and the one-pool model of the Brigalow dataset. They are presented in Supplementary 
Tables S11 and S12, respectively, in Section H of the supplementary material. Since the values of R̂ are less than 
1.2, there is no evidence of divergence.
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Figure 3.  The expected difference of the SOC in each year from 1978 and 1981 in the (a) Tarlee and (b) 
Brigalow datasets, respectively, estimated based on the three-pool model. The change of the SOC stock in each 
field/soil type is indicated by solid line, and the gray shaded part is the area between the 2.5th and the 97.5th 
percentiles for the SOC process.
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Discussion
In this study, we have developed three new soil carbon models and compared them with the one-pool model in 
Clifford et al.15 in the BHM framework, which allows us to think conditionally and critically about the parameters, 
the process, and the data that reside within a soil carbon model. To show these models are broadly applicable, 
we have implemented them for two datasets.

An important motivating question behind this study is whether multi-pool state-space models based on 
deterministic models such as RothC are fit for making inferences on soil carbon dynamics in commonly occur-
ring situations where soil carbon measurements are monitored infrequently. In fitting models to two Australian 
datasets, we found a three-pool model (in both the cases of Tarlee and Brigalow) to have the best predictive 
ability of those models considered and to be better than a five-pool model, which is frequently adopted for its 
bio-geochemical realism. We conclude that the detail and realism included in statistical soil carbon models should 
consider the volume and quality of data available for making inferences. Indeed, this study has shown that some 
concessions in physical realism can lead to better predictive accuracy. This can be helpful for the IPCC, Paris 
agreement and Kyoto protocol’s purposes, especially for national carbon accounting where datasets are sparse.

Furthermore, we have explored the effect of microbes and inert organic matter on the carbon cycle decom-
position by adding microbial biomass and IOM pools in the Tarlee model in Clifford et al.15. In particular, based 
on the LFO-CV criterion, we have shown that the three-pool model, which includes microbial biomass and 
IOM pools, outperforms other models on the Tarlee and Brigalow datasets. The LFO-CV of the five-pool model 
is close to the three-pool model in its predictive ability for Tarlee but not for Brigalow. The reason is that the 
Brigalow dataset has more uninformative priors and sub-models than the Tarlee dataset. Both the Brigalow and 
Tarlee datasets exhibit relatively long, multi-year periods with no observation of any carbon pools, i.e. temporally 
sparse data. During those periods, all knowledge about the soil carbon process comes from the carbon inputs, the 
process dynamics and the model parameters through prior distributions. However, in the case of Brigalow, adding 
more pools to the model increased uncertainty in the soil carbon dynamics in each iteration of the particle filter 
process, causing wide variance which make it a poor predictor, typified by wide 95% credible intervals during 
those sparse periods. This result indicated that multi-pool models might not be as fit-for-purpose compared to 
some simpler models when used with sparse data over time.

In exploring soil carbon models with reduced complexity, we chose not to investigate a four-pool model. We 
could create such a model by combining the DPM and RPM components, for example. However, we deemed a 
four pool model to be too similar in structure to the five pool model, therefore not providing much additional 
variation in model complexity. Furthermore, our aims in this study were to explore the importance of microbe 
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and inert organic matter pools because they are fundamentally different from other soil carbon pools (the former 
being constrained in its total pool size and the latter being stable over very long time scales). The range of models 
used in this study provides valuable insight into whether the complexity of the RothC model is warranted when 
datasets are temporally sparse.

We have shown that, the three-pool model that was found to be best suited to the Brigalow and Tarlee datasets 
in this study can be used to obtain good fits to observational data and can be used to estimate with uncertainty 
the net gain or loss of carbon overtime at each study site.

Since both datasets used in this study are not large, we have used the LFO-CV criterion for model evalua-
tion. It is noteworthy to mention that this criterion is computationally expensive when used with a larger dataset 
since it requires repeating the MCMC every time a data point is introduced. Based on our experiences here, 
other criteria such as Pareto smoothed importance sampling LFO-CV (PSIS-LFO-CV)31 or widely applicable 
information criterion (WAIC)46 may be more relevant methods for large datasets.

We have successfully demonstrated applying advanced Bayesian methods in Davoudabadi et al.30 to more 
complex SOC models. We have shown the importance of these methods in inference on soil carbon dynam-
ics, especially in scenarios where uncertainty quantification plays a significant role in carbon sequestration 
accounting.

In this study, we consider the effect of the microbial biomass pool on the carbon emission decomposition rate 
with the limitation on the maximum size of microbes, which is 5% of the total SOC. Through this limitation, we 
have prevented too much carbon from entering the microbial pool and where excess, the extra amount is rejected 
by rejecting BIO state trajectories in the MCMC algorithm. Furthermore, the precision of the single-pool statisti-
cal model of Clifford et al.15 has been improved upon by adding a microbial biomass and inert soil carbon pools 
to that model. It is possible that we could improve the growth of the population of microbes by considering a 
dynamic process in future studies. We could fit a model (e.g. perhaps a logistic population model with a carrying 
capacity) to the growth of the size of microbes. In this case, the extra amount of carbon in the BIO pool could 
be diverted into the other pools into which carbon could be cycled. This will be considered in future research.
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Data availability
Dataset can be accessed online at:https:// doi. org/ 10. 4225/ 08/ 54F07 86D6D 923. 

Code availability
Code for our methods and models is available at:https:// github. com/ MJDav oudab adi/ Model ling- soil- carbon- 
Tarlee- and- Briga low.
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