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Non‑contact assessment of cardiac 
physiology using FO‑MVSS‑based 
ballistocardiography: a promising 
approach for heart failure 
evaluation
Jing Zhan 1,2,7, Xiaoyan Wu 4,5,7, Xuelei Fu 1,2, Chenze Li 4,5, Ke‑Qiong Deng 4,5, Qin Wei 1, 
Chao Zhang 4,5, Tao Zhao 1,2, Congcong Li 1,2, Longting Huang 1,2, Kewei Chen 1,2, 
Qiongxin Wang 4,5, Zhengying Li 1,2,3,6* & Zhibing Lu 4,5*

Continuous monitoring of cardiac motions has been expected to provide essential cardiac physiology 
information on cardiovascular functioning. A fiber‑optic micro‑vibration sensing system (FO‑MVSS) 
makes it promising. This study aimed to explore the correlation between Ballistocardiography (BCG) 
waveforms, measured using an FO‑MVSS, and myocardial valve activity during the systolic and 
diastolic phases of the cardiac cycle in participants with normal cardiac function and patients with 
congestive heart failure (CHF). A high‑sensitivity FO‑MVSS acquired continuous BCG recordings. 
The simultaneous recordings of BCG and electrocardiogram (ECG) signals were obtained from 101 
participants to examine their correlation. BCG, ECG, and intracavitary pressure signals were collected 
from 6 patients undergoing cardiac catheter intervention to investigate BCG waveforms and cardiac 
cycle phases. Tissue Doppler imaging (TDI) measured cardiac time intervals in 51 participants 
correlated with BCG intervals. The BCG recordings were further validated in 61 CHF patients to 
assess cardiac parameters by BCG. For heart failure evaluation machine learning was used to analyze 
BCG‑derived cardiac parameters. Significant correlations were observed between cardiac physiology 
parameters and BCG’s parameters. Furthermore, a linear relationship was found betwen IJ amplitude 
and cardiac output (r = 0.923,  R2 = 0.926, p < 0.001). Machine learning techniques, including K‑Nearest 
Neighbors (KNN), Decision Tree Classifier (DTC), Support Vector Machine (SVM), Logistic Regression 
(LR), Random Forest (RF), and XGBoost, respectively, demonstrated remarkable performance. 
They all achieved average accuracy and AUC values exceeding 95% in a five‑fold cross‑validation 
approach. We establish an electromagnetic‑interference‑free and non‑contact method for continuous 
monitoring of the cardiac cycle and myocardial contractility and measure the different phases of the 
cardiac cycle. It presents a sensitive method for evaluating changes in both cardiac contraction and 
relaxation in the context of heart failure assessment.

Cardiovascular diseases are the leading cause of global mortality, and require the continuous monitoring of the 
cardiac cycle, myocardial motions, and hemodynamic  parameters1. Accurate assessment of these parameters 
can provide early detection, evaluation of disease severity, and prognosis assessment of cardiovascular diseases. 
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Among these parameters, cardiac time intervals and cardiac output can accurately reflect the mechanical activ-
ity of the  heart2,3.

Ballistocardiography (BCG) is a non-invasive technique that captures the micro-vibrations induced by 
 heartbeats4. BCG signals exhibit synchronized changes with the cardiac cycle and can be obtained without 
attaching sensors to the  skin5. However, the interpretation of the BCG recordings and the recognition of their 
physiological significance have been hindered by the various degrees of distortion and discrepant waveform 
morphologies, which are observed from the device’s characteristic  displays6–8. These limitations have hampered 
progress in BCG research since the  1980s9.

Recent technological advancements in biomedical and electrical engineering have brought new possibilities 
concerning BCG monitoring. Bulky sensing devices that cover the entire body have been replaced by compact 
sensors embedded in  mattresses10,11, electronic  scales12,13, and  seats14, to enable accurate heart rate monitoring. 
These compact sensors offer the advantage of convenience and ease of use, potentially reducing the distortion 
in BCG recordings and revealing more useful information. For instance, Kim et al.5 analysis of aortic pressure 
developed a mathematical model of the BCG signal, which demonstrated a strong association between the genesis 
of the BCG signal and blood pressure gradients in the ascending and descending aorta. It demonstrated a close 
correlation between the waveform of BCG and specific events in the cardiac cycle.

In contrast to other non-invasive methods for monitoring cardiac vibrations, such as seismocardiography 
(SCG)15 and gyrocardiography (GCG)16, which rely on accelerometers and gyroscope sensors, respectively, 
the correlation between these signal waveforms and cardiac events has been studied and applied in cardiac 
function  monitoring17. However, it is noteworthy that these conventional approaches necessitate attachment to 
the chest surface. With the advancement of sensors and technology, the concept of non-contact monitoring of 
cardiac activity has garnered increasing attention due to its numerous advantages over traditional  techniques18. 
Non-contact methods encompass the use of  radar19 smartphones and  laptops20. Nonetheless, these methods are 
primarily geared towards monitoring heart rate and may not capture the subtle valve movements within each 
cardiac cycle.

Therefore, it is crucial to investigate the correlation between the BCG signal and the heart’s actual mechanical 
motion. Determining this correlation will enhance our understanding of the physiological significance of each 
sub-wave in the BCG signal, providing a basis for more accurate and convenient cardiac function assessment. 
Moreover, it lays the foundation for BCG-based non-contact monitoring of cardiac function.

In this study, we aim to investigate the relationship between changes in BCG waveforms, as detected by fiber-
optic micro-vibration sensing system (FO-MVSS), and the various phases of the cardiac cycle. By accomplish-
ing this, we intend to advance our understanding of the physiological importance of each BCG sub-wave and 
establish a foundation for convenient assessment of cardiac function. This research holds promising potential 
in evaluating heart failure, offering a valuable approach to early detection and intervention.

Results
Performance of the FO‑MVSS
The FO-MVSS (Fig. 1) exhibited a sensitivity of 2.57 V/g at 10 Hz and response variation within 0.51 dB from 
0.5 to 35 Hz (Fig. 2). The flat response and relatively stable ground delay in the BCG frequency band effectively 
reduced the distortion of the recorded signals (Fig. 2). The noise floor was estimated to be 30.1 ± 2.5 mV. Accord-
ing to the FO-MVSS sensitivity ranging from 0.5 to 35 Hz, the vibration resolution of MV-OFSS was 0.115 m/s2.

Verification of the stability of the extracted signal
The respiratory component in the vibration signal was removed via a signal processing algorithm, and a periodic 
waveform in sync with the heartbeat was obtained (Fig. S1B to S1E). Variation in respiratory rates (12–24, 0, > 24, 
and < 12 times/min) has minimal influence on the composition of the waveform in the extracted vibration signal 
(Fig. S1). Each waveform of the BCG had 4 peaks and 3 valleys. Sandbags were placed on the chest or abdomen 
of the participants. The changes affecting the amplitude and morphology of the waveforms after loading 5-kg 
or 10-kg weights (Fig. S2) were deemed negligible because the variations in amplitude for each BCG sub-wave 
were less than 0.02 V.

Correspondence between BCG recordings and electrocardiograms
When comparing the extracted vibration signal with the synchronously recorded electrocardiogram (ECG), 
each vibration signal peak appeared consistently with each R peak from the ECG in sinus rhythm (Fig. 3A,B). 
In the case of an APB observed in the ECG, the corresponding peak in the extracted vibration signal appeared 
in advance, and was consistent with the atrial premature beat (APB) R peak (Fig. 3C). And in the case of ECG-
confirmed ventricular premature beat (VPB), an early and abnormal waveform was observed still in the consist-
ency of time with the VPB R peak (Fig. 3D). This could be linked to the incomplete filling of ventricle failing to 
produce enough heartbeat vibration. To further verify the time correspondence, a 20-s segment of the extracted 
vibration signal was randomly sampled from the recording of each subject and compared with the synchronized 
ECG. The results from 101 participants (Table 1) indicated that the peak-to-peak interval in the extracted signal 
from the FO-MVSS had a good linear relationship with the RR interval in the ECG, giving a Spearman’s rank 
correlation coefficient r of 0.999 (P < 0.001), and, a coefficient of determination R2 of 0.997 (Fig. 3E). The rela-
tive error in measuring heart intervals using BCG with respect to the measure of RR intervals using ECG was 
less than 2% (Fig. 3F). These results would suggest that the extracted vibration signal may correspond to the 
heartbeat and meet the BCG definition. Starr’s naming  rules6 are adopted and the four peaks and three troughs 
in the waveform are named H, I, J, K, L, M, and N, respectively (Fig. 3G). Similar morphology was observed in 
the BCG waveforms of participants with normal cardiac function, all composed of peaks and troughs from H to 
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N, irrespective of sex, age, height, and weight. Each R peak time of ECG had a good linear relationship with the 
H peak time of each BCG, with a Spearman’s rank correlation coefficient r of 0.965 (P < 0.001), and, a coefficient 
of determination R2 of 0.999.

BCG‑based cardiac cycle phases
The BCG and ECG recordings, intracardiac pressure curves, and M-mode echocardiograms were simultaneously 
obtained from 6 patients. For proper illustration, the synchronized results from one subject are shown in Fig. 4. 
Each sub-wave of the BCG waveform corresponded to a certain phase of the cardiac cycle (Fig. 4B,C). The peak 
of the H wave (the H point) was aligned with the T1 point (start of the isovolumetric contraction phase) in the 
LVP curve, which also represented the moment of mitral valve closing. The trough or the I wave (the I point) 
corresponded to the T2 point (start of the left ventricular ejection phase), the maximum of dp/dt (change rate 
of the left ventricular pressure), and the moment of aortic valve opening. The peak of the J wave (the J point) 
corresponded to the notch in the ascending segment of the left ventricular pressure curve, and dp/dt drops to 
around 0. The peak of the L wave (the L point) matched the turning point when the ventricular pressure starts to 
decline from the highest point. The trough of the M wave (the M point) corresponded to the T3 point (beginning 
of the isovolumetric relaxation phase) and the timing of the aortic valve closure. The peak of the N wave (the N 
point) corresponded to the T4 point (beginning of the filling phase) and the timing of the mitral valve opening. 
The sub-wave from the N point to the next H point corresponded to the phases from the ventricular filling to 
the end of atrial contraction. The BCG recordings from the other 5 participants presented the same similitudes 
with the events in a cardiac cycle.

Based on the experimental findings, we proposed a method for the categorization of BCG based on the phases 
of the cardiac cycle (Table 2). The H point could correspond to the timing of the mitral valve closure, while the 
interval from H to I could represent the isovolumetric contraction phase. At the I point, the aortic valve opening 
could mark the transition to the left ventricular ejection phase, which may extend from I to M. The M point could 
refer to the closure of the aortic valve, and the interval from M to N may indicate the isovolumetric relaxation 
phase. From the N point until the subsequent H point, the cardiac cycle enters diastole, when synchronized with 
the ECG, the cardiac diastole could be further subdivided into two stages: the ventricular filling phase and the 
atrial contraction phase.

Cardiac time intervals measured by the BCG‑based cardiac cycle phases categorization and 
tissue Doppler imaging
According to the similitudes observed between the BCG waveform and the cardiac cycle, it would be reason-
able to use the HI, IM, and MN intervals in the BCG waveform, respectively to estimate the isovolumetric con-
traction time (IVCT), left ventricular ejection time (LVET), and isovolumetric relaxation time (IVRT). These 
hemodynamic parameters measured by BCG were compared with those measured by tissue Doppler imaging 
(TDI)21 in echocardiography for 51 participants with normal cardiac function (Table S1). Compared with the 
IVCT measured by TDI, the HI interval measured by BCG yielded a Spearman’s rank correlation coefficient r of 

Figure 1.  FO-MVSS used to acquire heartbeat-induced vibration signals. The sensor of the FO-MVSS is 
placed directly below the heart, and the marker line of the FO-MVS is placed along the nipple line or on the 
fifth intercostal space with the subject in a dorsal decubitus position. The heartbeat-induced vibration signal 
is detected with FO-MVS, before undergoing optoelectronic conversion by the photodetector, two stages of 
pre-amplification, A/D conversion, and digital signal processing. A/D, analog-to-digital; FO-MVSS, fiber-optic 
micro-vibration-sensing system; FO-MVS, fiber-optic micro-vibration sensor.
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0.945 (P < 0.001), and a coefficient of determination R2 of 0.894, with a median absolute error as low as 2.59 ms 
(Fig. 5B). The results from the IM and MN interval measurements also highly correlated with the LVET and 
IVRT respectively as measured by TDI (Fig. 5C,D). The IM interval measured with BCG gave a Spearman’s 
rank correlation coefficient r of 0.988 (P < 0.001), and a coefficient of determination R2 of 0.975, with a median 
absolute error as low as 3.65 ms. And the MN interval measured by the BCG approach had a Spearman’s rank 
correlation coefficient r of 0.906 (P < 0.001), and a coefficient of determination R2 of 0.821, with a median absolute 
error as low as 2.89 ms.

Figure 2.  Calibration of the FO-MVSS. (A), Schematic illustration of the calibration setup. (B), Vibration 
signals from different frequencies and amplitudes are detected simultaneously by the fiber-optic micro-vibration 
sensing system (FO-MVSS) and the geophone. C, Zoom-in view of four signal sections in (B,D), Spectrograms 
of the signals in B. E, Sensitivity calibration of the FO-MVSS by the geophone, performed at 10 Hz. (F), FO 
MVSS frequency response.
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Relationship between IJ amplitude and myocardial contractility
Considering the correspondence between the IJ interval and the ventricular ejection phase, we further investi-
gated the relationship between the IJ amplitude and the myocardial  contractility21. The IJ amplitudes of 11 par-
ticipants with normal cardiac function (Supplementary Table S2) at resting state and after exercise were obtained, 
and compared to the CO measured by echocardiography. The IJ amplitude was found to increase after exercise 
in each of the 11 cases (Fig. S3A to S3C). The increase in the IJ amplitude (ΔIJ) and the increase in the cardiac 

Figure 3.  Simultaneously recorded BCG and ECG waveforms. (A), A photograph was taken during the 
experiment. (B), BCG, and ECG recordings show a regular heart rate. (C), BCG, and ECG recordings showing 
APBs. (D), BCG, and ECG recordings showing VPBs. (E), Linear relationship between the RR interval 
and the peak-to-peak interval. (F), The relative error between the heart rate intervals extracted by BCG 
and the RR intervals measured by ECG. (G), A typical BCG waveform. APBs, atrial premature beats; BCG, 
ballistocardiography; ECG, electrocardiography; FO-MVSS, fiber-optic micro-vibration-sensing system; ICC, 
intraclass correlation coefficient; VPBs, ventricular premature beats.

Table 1.  The characteristics of 101 participants with normal cardiac function (NCF). BMI, body mass index; 
HR, heart rate; LAD, left atrial diameter; LVEDD, left ventricular end of diastole diameter; EF, ejection 
fraction;

Characteristics NCF (n = 101)

Age, y 49.11± 29.28

Male sex, n, 55%, 55

Height, cm 170.21± 8.05

Weight, cm 65.68± 11.32

BMI, Kg/m2 22.33± 3.07

Heart rate, beats/min 73.02± 12.19

LAD, mm 32.78± 2.98

LVEDD, mm 47.53± 4.64

EDV, ml 107.04± 27.35

ESV, ml 35.39± 12.26

SV, ml 70.43± 20.28

CO, L/min 5.12± 1.66

EF, % 67.39± 7.33
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Figure 4.  Correspondence between the sub-waves of the BCG waveform and the phases of the cardiac cycle. 
The ECG recordings, intracardiac pressure curves, and M-mode echocardiograms were synchronously obtained 
for verification. (A), Location of the intracardiac catheters. (B–C), Synchronized electrocardiogram with LVP, 
AoP, RVP, and dp/dt (rate of change in LVP) curves; BCG recording; and M-mode echocardiogram of the 
aortic valve of one subject.AoP, aortic pressure; BCG, ballistocardiography; LAO, left anterior oblique; LVP, left 
ventricular pressure; RAO, right anterior oblique; RVP, right ventricular pressure.

Table 2.  Relationship between the sub-waves of the BCG waveform and phases of the cardiac cycle. IVCT, 
isovolumetric contraction time; LVET, left ventricular ejection time; IVRT, isovolumetric relaxation time.

Cardiac cycle Critical point Physiological event Physiological significance

Systole

H Mitral valve closing HI interval: IVCT

I Aortic valve opening IJ interval: rapid ejection period

J End of fast ejection JM interval: slow ejection period

K ─ IM interval: LVET

L LVP starts to drop I point: the moment of dp/dtmax

M Aortic valve closing

Diastole
N Mitral valve opening MN interval: IVRT

NH interval: ventricular filling and atrial contraction

H Mitral valve closing



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3269  | https://doi.org/10.1038/s41598-024-53464-8

www.nature.com/scientificreports/

output (ΔCO) (CO) presented a linear positive relationship, with a Spearman’s rank correlation coefficient r of 
0.9227 (P < 0.001), and, a coefficient of determination R2 of 0.8721 (Fig. S3D).

The usefulness of cardiac time intervals and amplitude parameters by BCG‑based cardiac 
cycle phases categorization
The usefulness of cardiac time intervals and amplitude parameters by BCG-based cardiac cycle phases catego-
rization. We analyzed the distribution ranges of BCG-derived feature parameters from a cohort of 101 partici-
pants with normal cardiac function or control and 61 patients with heart failure (Table 3). In the heart failure 
group, we observed significant changes in the cardiac time intervals and amplitude parameters derived from 
BCG signals. More precisely, the HI interval (corresponding to IVCT) showed a significant increase in duration 
and increased from 65 ± 12 ms to 102 ± 32 ms (p < 0.001) as compared to the one from the healthy cohort. The 
IM interval (corresponding to IVET) was decreased among the heart failure group, with values changing from 
310 ± 33 ms to 260 ± 37 ms (p < 0.001) compared to the group with normal cardiac function. While the MN 
interval (corresponding to IVRT) was increased in duration, from 69 ± 12 ms to 93 ± 25 ms (p < 0.001) when 
compared to the control group. Regarding the parameters’ amplitude, notable variations were observed (Table 4). 
The IJ amplitude (2.715 ± 0.716 mV to 2.163 ± 0.803 mV p < 0.001), which has previously been correlated with 
cardiac output, showed a significant decrease in the heart failure group. In contrast, both the HI amplitudes 
(0.900 ± 0.219 mV to 1.286 ± 0.497 mV p < 0.001) and MN amplitudes (1.160 ± 0.480 mV to 1.405 ± 0.695 mV 

Figure 5.  Time parameters measured by BCG and TDI. (A), The IVCT, LVET, and IVRT measured by TDI and 
correspondingly obtained from the BCG recordings. (B), Correlation between the HI interval and the IVCT. C, 
Correlation between the IM interval and the LVET. (D), Correlation between the MN interval and the IVRT. 
BCG, ballistocardiography; IVCT, isovolumetric contraction time; IVRT, isovolumetric relaxation time; LVET, 
left ventricular ejection time; TDI, tissue Doppler imaging.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3269  | https://doi.org/10.1038/s41598-024-53464-8

www.nature.com/scientificreports/

p < 0.001) were significantly larger in the heart failure group compared to the normal cardiac function group 
(control group). As for the slope parameters, the IJ slope (35.707 ± 9.026 to 27.916 ± 11.586 p < 0.001) dem-
onstrated an evident decrease in magnitude with the onset of heart failure compared to the control group. By 
continuously acquiring the BCG recording before and after the CCM implantation, the changes in the BCG 
recordings were consistent with the symptom relief, the reduction of the left ventricular end-diastolic diameter, 
and an increase in EF (Fig. 6A,B).

Performance evaluation of BCG‑derived cardiac time and amplitude parameters for heart fail‑
ure Classification
The performance evaluation of BCG-derived cardiac time and amplitude parameters for heart failure classifica-
tion involved training and evaluating six distinct classification models: Support Vector Machine (SVM), k-Nearest 
Neighbors (KNN), Decision Tree Classifier (DTC), Logistic Regression (LR), Random Forest (RF), and XGBoost. 
Employing a five-fold cross-validation approach, we assessed the average accuracy, AUC, sensitivity, specificity, 
and F1 score of each model. The specific results are presented in Table 5, showcasing that all six classifiers achieve 
accuracy levels surpassing 95%, with logistic regression demonstrating superior overall performance compared 
to the other models. This outcome highlights the capability of the nine parameters extracted through BCG to 
precisely capture cardiac pulsations and predict cardiac functionality.

Discussion
In this study, several key innovations in the field of cardiac monitoring are presented. Firstly, BCG recordings 
were successfully obtained using the high-sensitivity FO-MVSS, enabling non-contact and continuous monitor-
ing of cardiac motion. Secondly, our study demonstrated that BCG based on FO-MVSS may accurately determine 

Table 3.  The characteristics of patients with heart failure. BMI, body mass index; HR, heart rate; LAD, left 
atrial diameter; LVEDD, left ventricular end of diastole diameter; EF, ejection fraction;

Characteristics CHF (n = 61)

Age, y 62.13± 14.27

Male sex, n, 44%, 27

Height, cm 162.74± 6.34

Weight, cm 63.16± 11.86

BMI, Kg/m2 23.78± 3.88

Heart rate, beats/min 79.52± 16.61

LAD, mm 42.82± 7.88

LVEDD, mm 55.74± 9.47

EDV, ml 190.14± 79.81

ESV, ml 110.46± 59.84

SV, ml 76.96± 30.15

CO, L/min 6.15± 2.95

EF, % 40.26± 6.59

Table 4.  The distribution of cardiac time intervals and amplitudes parameters measured by BCG in the 
control group and CHF patients. HI interval, the time interval from the H point to the I point of BCG, 
which corresponds to the IVCT; IM interval, the time interval from the I point to the H point of BCG, which 
corresponds to the LVET; MN interval, the time interval from the M point to the N point of BCG, which 
corresponds to the IVRT; HI amplitude, the amplitude from the H point to the I point of BCG; IJ amplitude, 
the amplitude from the I point to the J point of BCG; MN amplitude, the amplitude from the M point to the N 
point of BCG; HI slope, the slope from the point H to the I point of BCG; IJ slope, the slope from the point I to 
the point J of BCG; MN slope, the slope from the point M to the point N of BCG.

Characteristics Control group (n = 101) CHF (n = 61) P Value

HI interval (ms) 65± 12 102± 32 P < 0.001

IM interval (ms) 310± 33 260± 37 P < 0.001

MN interval (ms) 69± 12 93± 25 P < 0.001

HI amplitude (mV) 0.900± 0.219 1.286± 0.497 P < 0.001

IJ amplitude (mV) 2.715± 0.716 2.163± 0.803 P < 0.001

MN amplitude (mV) 1.160± 0.480 1.405± 0.695 P < 0.001

HI slope −18.450± 6.530 −15.018± 9.364 0.013

IJ slope 35.707± 9.026 27.916± 11.586 P < 0.001

MN slope 13.161± 5.110 15.733± 6.969 0.011
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the key phases of the cardiac cycle. The duration of isovolumetric contraction, ejection, and isovolumetric 
relaxation could be assessed. Thirdly, the cardiac time intervals and amplitude parameters extracted from the 
BCG-based cardiac cycle categorization method demonstrate consistent changes in the clinical presentation of 
CHF patients, indicating its potential in the monitoring of heart failure progression. These findings could col-
lectively contribute to the advancement of non-contact cardiac monitoring techniques.

FO‑MVSS‑based BCG and the cardiac motion
The BCG recordings were obtained using an FO-MVSS with high sensitivity and resolution. The vibration sens-
ing device fiber-optic micro-vibration sensor (FO-MVS), which was recently developed in our  center22 guaran-
teed the safety of the user as it did not require direct contact with the human body. The FO-MVSS presented a 
flat response and relatively stable ground delay in the BCG frequency band (0.5—35 Hz), thus, warranted the 
accuracy of signal acquisition (Fig. S5). The high resolution ensured the FO-MVSS’s ability to capture vibrations 
80 times weaker than the gravitational acceleration. It was verified that the BCG recordings obtained by the 
FO-MVSS would present excellent stability and consistency in participants with normal cardiac function. By 
implementing the signal processing algorithms including de-trending and multiple resolution reconstruction via 
discrete wavelet transform, the vibration signal components resulting from the respiratory motion and muscle 
fibrillation were removed. The results indicated that the BCG waveforms could exhibit similar morphology at 
different respiratory rates for the same subject (Fig. S1). Meanwhile, the BCG waveforms changed only slightly 
after loading 5-kg or 10-kg sandbags on the chest or abdomen of the same subject (Fig. S2). This insensitivity to 
loadbearing may be attributed to the fact that the BCG recordings originate from the alternating current of the 
acquired signal, but the added load affected mainly the direct current component. Furthermore, the FO-MVS 
was placed directly below the heart. Thus, the vibration was closely related to cardiac mechanical activity. As 
such, the morphology and amplitude of the BCG recordings were not greatly affected by loadbearing (Fig. S2). 
The BCG recordings were reliable, as demonstrated by the peaks and troughs from H to N being consistently 
observed in the waveforms of participants with normal cardiac function, regardless of sex, age, height, and weight.

The BCG‑based cardiac cycle phases categorization
The experimental results synchronously obtained by electrocardiography, BCG, intracardiac pressure measure-
ment, and M-mode echocardiography showed that the BCG waveforms presented one-to-one correspondence 

Figure 6.  Comparison of the BCG waveforms in patients with CHF before and after treatments. (A-B), The 
BCG waveforms before the procedure and 6 days after implantation of CCM in a patient with CHF, the HI 
intervals decreased from an average of 0.15 s before the procedure to 0.07 s on the  6th day after the procedure. 
The IJ amplitude increased from 1.96 V to 3.89 V and the waveform morphology progressively restored to 
normal after the procedure. The average IJ slope increased notably from an average of 20.10 V/s before the 
procedure to 48.51 V/s on the 6th day. IJ : average IJ amplitude; HI : average HI interval; KIJ : average IJ slope.

Table 5.  Comparative analysis of average accuracy, average AUC values, average specificity, average sensitivity, 
and average F1 score among various classification models in the assessment of heart failure using fivefold 
cross-validation. LR, Logistic regression. SVM, support vector machines; KNN, K-nearest neighbor;DTC, 
Decision tree RF, Radom forest. XGBoost, Extrme gradient boosting. AUC, area under the curve.

Metrics LR SVM KNN DTC RF XGBoost

Accuracy 0.989 ± 0.01 0.983 ± 0.01 0.974 ± 0.01 0.972 ± 0.02 0.970 ± 0.03 0.976 ± 0.02

AUC value 0.986 ± 0.01 0.982 ± 0.01 0.960 ± 0.02 0.963 ± 0.02 0.964 ± 0.03 0.972 ± 0.02

Specificity 0.993 ± 0.01 0.985 ± 0.03 0.990 ± 0.01 0.982 ± 0.01 0.978 ± 0.02 0.980 ± 0.02

Sensitivity 0.979 ± 0.02 0.979 ± 0.03 0.929 ± 0.03 0.944 ± 0.04 0.950 ± 0.05 0.965 ± 0.02

F1 score 0.979 ± 0.02 0.969 ± 0.02 0.949 ± 0.03 0.947 ± 0.04 0.944 ± 0.05 0.955 ± 0.04
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with the cardiac mechanical activity from sinus rhythm. The relationship between the sub-waves in each BCG 
waveform and the cardiac pumping activities during the systolic and diastolic phases of a cardiac cycle was 
established. Compared to BCG waveforms obtained by previous devices (Fig. S6)6, the physiological significance 
of each sub-wave in the BCG waveforms was thoroughly explained (Table 2). The H point marks the beginning 
of the isovolumetric contraction phase of a cardiac cycle when the LVP starts to rise. The rate of LVP rises to 
reach the maximum (dp/dtmax) at the I point, which represented the end of the isovolumetric contraction phase 
and the beginning of the ejection phase. The J point corresponds to the moment of dp/dt decreasing to nearly 
zero. Hence, the J point may help to accurately distinguish the fast and the slow ejection phases. The M point 
represents the beginning of the isovolumetric relaxation phase. As the rate of the LVP decreases to 0 at the N 
point, the isovolumetric relaxation phase ends and the ventricular filling phase begins. The interval between 
the N point and the next H point (NH interval) could be divided into the ventricular filling phase and the atrial 
systolic phase using the peak of the P wave from the synchronized ECG. The time parameters (IVCT, LVET, and 
IVRT) in a cardiac cycle measured by BCG (HI, IM, and MN intervals) were highly consistent with the results 
measured by TDI in echocardiography. Overall, the BCG recordings can effectively identify every specific event 
from cardiac contraction to  relaxation23.

BCG and myocardial contractility
It was verified that the variation of IJ amplitude (ΔIJ) was positively correlated with ΔCO (Fig. S3). As the CO 
of the individuals increased notably after exercise, the IJ amplitude increased accordingly. A large IJ slope  (KIJ) 
was associated with a faster pump speed, which might imply stronger myocardial  contractility24. The HI interval 
measured by BCG was highly consistent with the IVCT measured by classical means such as TDI (Fig. 5). A 
shorter HI interval indicated that the ventricular pressure reached the maximum rising rate in a shorter time, 
implying greater myocardial  contractility24.

To verify the effectiveness of BCG monitoring and determining cardiac function, the BCG waveforms of 
one patient diagnosed with CHF were continuously monitored before and after CCM implantation. Changes 
in the BCG waveform morphology and time intervals matched with the common clinical indicators of cardiac 
function. The amplitude of the BCG waveform was higher after CCM implantation than before CCM implanta-
tion, the waveform morphology returned to near-normal. The increased IJ amplitude, the shorter HI interval, 
as well as the increased IJ slope, were consistent with the relief of clinical symptoms and the improvement in 
echocardiographic parameters.

Potential application of BCG‑based cardiac cycle phase categorization
A study conducted by Biering-Sørensen25 supports the usefulness of cardiac time intervals by TDI in predicting 
cardiac dysfunction, particularly IVCT and the myocardial performance index (MPI) which was computed with 
cardiac time intervals as independent predictors of heart failure. The cardiac time intervals obtained by BCG in 
our studying showed consistent changes in the heart failure group as indicated by ultrasound measurements. It 
is noteworthy that BCG may enable a more convenient and comfortable long-term monitoring experience, as 
the sensor does not require any contact with the skin. This makes it suitable for prolonged monitoring in both 
clinical and home settings. In addition, the substantial differences in BCG waveform amplitudes among the heart 
failure and the control group indicated that BCG waveforms could reflect cardiac mechanical activity. Changes 
in waveforms may provide insights into the functional status of the heart.

Study limitations
One of the limitations of the proposed method relied on the requirement for the subject to remain calm dur-
ing the monitoring process because of the high sensitivity to vibrations. Therefore, participants who could not 
cooperate, such as those with Parkinson’s syndrome, were excluded from the study. Another limitation was that 
the BCG recordings were obtained under the combined activities from all the cardiac chambers and large vessels. 
The influences of the left and the right ventricles, as well as the large vessels, could not be differentiated. However, 
as verified by the recorded LVP, RVP, and AoP (Fig. 4), the BCG waveforms mainly reflected the mechanical 
contraction of the left ventricle. Moreover, further research is needed to validate the reliability and effectiveness 
of these BCG-derived parameters in larger cohorts and diverse populations. Standardization of BCG signal 
acquisition and analysis protocols would also be beneficial. Nevertheless, this work is still in ongoing progress.

Conclusion
In this study, we advanced BCG recording and proposed a novel method for cardiac cycle phase categorization. 
By utilizing BCG, we measured cardiac interval time and correlated amplitude parameters with hemodynamic 
parameters. This approach could enable real-time monitoring of heart rhythm, cardiac function, and potential 
prediction of heart failure. Our findings highlighted the clinical value of BCG-based cardiac cycle phase catego-
rization, offering a non-contact and convenient cardiac functional assessment. This method has the potential 
to revolutionize cardiology by improving patient care through timely detection and treatment implementation. 
Our research contributes to the understanding and implementation of BCG in cardiac monitoring, paving the 
way for future investigations and validation studies attached to this area.

Methods
Study population and protocol
The data supporting the findings of the research can be obtained upon reasonable request from the correspond-
ing authors. There were 111 participants with normal cardiac function recruited, and 61 patients with CHF were 
recruited, all participants were in sinus rhythm. All participants gave written informed consent, and the study 
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was performed in accordance with the second Helsinki Declaration and approved by the institutional review 
board of Zhongnan Hospital of Wuhan University (2,022,075).

Cardiac signals acquisition and stability analysis
Fibre‑optic micro‑vibration sensor
The fiber-optic micro-vibration sensor (FO-MVS) was a mat embedded with a macro-bending optical fibre sen-
sor, which was proposed for non-contact vital signs monitoring in our previous  work22. The mat is designed as a 
sandwich structure for encapsulate the FO-MVS for stable sensing under complicated conditions. The whispering 
gallery mode in a bent single-mode optical fibre was utilized by the FO-MVS to detect weak vibration signals. 
High vibration sensitivity was obtained by optimizing the fibre radius (110 υm)22.

FO‑MVSS calibrations
The calibration platform is presented in Fig. 2. The vibration signal (0.5–35 Hz) generated by a loudspeaker was 
detected simultaneously and respectively by the FO-MVSS (V) and a geophone (Jiangsu China DONGHUA610V, 
m/s2).

Sensitivity measurement
The sensitivity of a vibration sensor is defined as the ratio of the output voltage to acceleration (U/a)26. It quntifies 
the sensor’s ability to detect and convert vibrations into measurable electrical signals. As illustrated in Fig. 2, a 
dynamic calibration system was employed to calibrate the vibration sensitivity of the FO-MVSS. In Fig. 2E, at 
a vibration signal frequency of 10 Hz, the output voltage of the FO-MVSS exhibited a monotonically increases 
with rising acceleration (obtaining from the geophone) achieved by elevating the intensity of the vibration signal 
generated by loudspeaker. Subsequently, we calculated the ratio of the output voltage to acceleration, yielding 
the vibration sensitivity of FO-MVSS.

Frequency response measurement
The sensitivity and frequency responses from the FO-MVSS were obtained by calibration with the output of 
Pre-amplifier 2 and that of the geophone.This calibration process facilitated the assessment of the FO-MVSS’s 
amplitude and the frequency response characteristics.Simultaneously, the signals acquired by the FO-MVSS and 
the excitation signals supplied to the loudspeaker were fed into an oscilloscope, this arrangement allowed for 
the precise measurement of phase variation in the sensing signal when subjected to a range of excitation signal 
frequencies (0.5-35 Hz).

Vibration resolution
Vibration resolution is determined by averaging the noise floors from 7 different demodulation 
controllers,measured during 1-h runs without load. The vibration resolution is determined by the ratio of the 
noise floor to the sensitivity of the FO-MVSS.

Data transmission
Data could be transmitted to the computer via a virtual serial port or wireless connection.

Digital signal processing
The BCG recordings were acquired using discrete wavelet transform. Each 8-s sequence of the original signals was 
decomposed into 11 sub-components through the Symlet wavelet filter with four vanishing moments (sym4)27,28. 
Subsequently, the BCG waveform was obtained by synthesis of the  5th to  10th subcomponents.

Acquisition of the BCG recordings
The subject was requested to lie flat on the FO-MVS22, which is a mat placed under the mattress of a bed (“non-
contact” means that the sensor does not direct contact with the body), and the marker line of the sensor was 
placed along the nipple line or on the  5th intercostal line (Fig. 1). During the BCG collection, the subject was to 
stay relaxed and calm.

BCG recording acquisition at different respiratory rates
The BCG recordings were obtained from 10 participants with normal cardiac function. During the collection, 
the participants were respectively asked to breathe normally, fast, slow, and hold their breath. It was ensured 
that each group of signals contained all four respiratory states, to observe the influence of the respiratory rate 
on the BCG waveform morphology.

Collection and synchronization of medical data
ECG (MedEx MCA-09012A) recordings were collected simultaneously with the BCG recordings. ECG (Mind-
ary M7 Expert P4-2S and JJET LEAD_EPG) recordings were also acquired for the synchronization between the 
BCG recordings and the echocardiograms (Mindary M7 Expert P4-2S) or the intracardiac pressure curves (JJET 
LEAD_EPG). The BCG signal, echocardiography, and intracavitary pressure recording devices were synchronized 
with the ECG signal. This allowed for time alignment for the BCG signal, echocardiography, and intracavitary 
pressure measurements based on the ECG.
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Verification of the correspondence between BCG and ECG recordings
The ECG and BCG recordings of 101 participants with normal cardiac function (Table 1) were synchronously 
acquired. A 15-s continuous and stable recording was taken for each subject, to compare the correspondence 
between the BCG and ECG recordings in participants in terms of sinus rhythm, APBs, or VPBs.

BCG‑based cardiac cycle phase categorization
Six participants underwent intracardiac pressure monitoring by percutaneous femoral artery puncture with digi-
tal subtract angiography at the cardiac catheterization room of the Department of Cardiology, Zhongnan Hospital 
of Wuhan University. Two individuals had VPBs, two had supraventricular tachycardia, and two underwent 
coronary angiography. The tube (Name, Camdale pig5f.) was used to simultaneously measure the left ventricular 
pressure (LVP) and right ventricular pressure (RVP), respectively. The left ventricular intracavitary angiography 
tube was withdrawn to the aortic root, and the aortic pressure (AoP) curve was recorded. Simultaneously, the 
BCG recordings, ECG recordings, and echocardiograms were obtained. Then, the LVP and RVP values were 
time-aligned by the synchronous acquisition of ECG and BCG recordings.

Validation of BCG‑Based cardiac cycle phases
Hemodynamic parameter measurement by TDI
The  TDI25,29 and BCG recordings of 51 participants (Supplementary Table S1) were obtained simultaneously. An 
8-s continuous and stable recording was taken for each participant. The TDI data were measured by two-color 
Doppler flow imaging certified doctors and the average was considered as the outcome measure. The measured 
data included the interval from mitral valve closure to aortic valve opening (IVCT), the interval from aortic valve 
opening to aortic valve closing (LVET), and the interval from aortic valve closing to mitral valve opening (IVRT).

Data collection in resting state and after exercise
The BCG recordings, ECG recordings, and M-mode echocardiograms of 11 participants with normal cardiac 
function (Supplementary Table S2) were obtained simultaneously at a resting state and after 30 quick squats. The 
cardiac output (CO, L/min) was calculated by CO = SV ∙ HR, where SV (L/min) represents the stroke volume 
and HR (beats/min) represents the heart rate. SV and HR were obtained by taking the average value of three 
cardiac cycles from the M-mode echocardiograms, as calibrated by two doctors certified in color Doppler flow 
imaging, The IJ amplitude was calculated by taking the amplitude difference between the points I and J. These 
data were then used to analyze the relationship between the BCG waveform and the myocardium contractility.

The usefulness of BCG‑Based cardiac cycle phases
BCG recordings of patients with CHF
A total of 61 patients with CHF were included in this analysis, and all of them received standard medications 
including cardiotonic agents, diuretics, and arterial dilators. From the 61 participants, we collected the BCG 
signals during the initial phase of treatment. BCG recordings were continuously taken to observe the variation 
in the waveform. Simultaneously, Echocardiogram reports were collected. The variations in BCG waveforms 
and indicators of myocardial contractility were analyzed.

Classification of BCG-derived cardiac parameters for cardiac function evaluation.

Data collection and preprocessing
BCG data were collected from a total of 162 participants, including 101 participants with normal cardiac func-
tion and 61 participants with CHF. The BCG-based cardiac cycle phase categorization was utilized to extract 
time and amplitude cardiac parameters, especially the HI interval, IM interval, MN interval, HI amplitude, IJ 
amplitude, MN amplitude, HI slope, IJ slope, and MN slope (Table S3). To obtain these parameters, a dynamic 
time  warping30 fusion analysis was performed on the cardiac cycle.This analysis yielded a total of 541 sets of 
samples, with each set comprising the aforementioned parameters, before training the dataset, we also conducted 
standardization processing on the dataset.

Training and testing the classification models
Six distinct classification models were employed in this study, namely SVM, KNN, DTC, LR, RF and XGBoost. 
These models were trained and evaluated using a dataset comprising nine parameters. The total sample size con-
sisted of 541 groups. To enhance model performance, an extensive grid search was conducted on both the training 
and validation sets to identify the optimal hyperparameters. Detailed information on the hyperparameters for 
each model is provided in Supplementary Table S4. Subsequently, the models underwent rigorous evaluation 
using five-fold cross-validation, with key metrics such as accuracy, area under the curve (AUC), sensitivity, 
specificity, and F1 score used to assess their efficacy.

Statistical analysis
Data analysis was conducted using MATLAB (R2020b) and a statistical package for the social sciences (SPSS) 
programming platform. Time intervals and amplitudes obtained by BCG or tissue Doppler echocardiographic 
techniques were expressed as mean ± standard deviation. To evaluate the accuracy of the measurements, the 
median value of the absolute errors, spearman’s rank correlation coefficient r, and R2 were computed using the 
equations outlined in Reference 31. A Pearson  correlation32 plot was generated to visualize the strength and 
direction of the correlation between the variables. To assess the clinical value of BCG-based cardiac cycle phase 
categorization, we analyzed the BCG parameters ranges of distribution ranges from participants with normal 
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cardiac function and heart failure patients. We used the paired sample t-test to compare the indices, and a p-value 
less than 0.05 was considered indicative of significant differences across the measured parameters.

Data availability
All data needed to evaluate the conclusions in the study can be found in the paper and Extended data. The original 
data are available from the corresponding authors (Z.Li and Z.Lu) on reasonable request.
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