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Saddlepoint p‑values for a class 
of location‑scale tests 
under randomized block design
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Abd El‑Raheem M. Abd El‑Raheem *

This paper deals with a class of nonparametric two‑sample location‑scale tests. The purpose of 
this paper is to approximate the exact p‑value of the considered class under a randomized block 
design. The exact p‑value of the considered class is approximated by the saddlepoint approximation 
method, also by the traditional method which is the normal approximation method. The saddlepoint 
approximation method is more accurate than the normal approximation method in approximating the 
exact p‑value, and does not take a lot of time like the simulation method. This accuracy is proved by 
applying the mentioned methods to two real data sets and a simulation study.

The tests for location-scale problem have many uses in many fields, especially when studying spatial and 
variations in streamflow, Zhang et al.1 and Yang et al.2, also in monsoon circulation, see Kwoon et al.3. In addition, 
these tests arise very often in bioinformatics in the case of comparing two groups such as control and treatment 
in order to detect differentially expressed genes, see Neuhäuser and  Senske4. There is also an importance for 
location-scale tests in the field of biomedical and clinical trials, when the drug or the treatment is given for the 
treatment group causes changes in location and scale parameters between the two groups, see Mulccioli et al.5, 
Rice et al.6, Lunde and  Timmermann7 and  Marozzi8. This paper presents some location-scale linear rank tests 
that can form the proposed class.  Lepage9 test “LP1”, was the first test that combines both, the location test which 
is the Wilcoxon test and the scale test which is the Ansari-Bradley test. In addition, Büning and  Thadewald10 
presented LP2, LP3 and LP4 tests which are known as modified tests for LP1. Furthermore,  Rublik11 proposed 
a test statistic consisting of a linear combination of the location test which is the Wilcoxon test and the scale 
test which is the Mood test.  Rousson12 discussed the location-scale test in case of a multivariate two-sample 
problem. All the aforementioned tests can be used when all observations in the population or selected samples 
are determined. Therefore, these tests belong to classical statistics. While if the data to be analyzed or a part of 
it is indeterminate, we can resort to neutrosophic statistics. For more information on this context, a number of 
references can be referred to, namely  Smarandache13,  Aslam14–16, Afzal et al.17, Albassam et al.18 and Sherwani 
et al.19. If you interested in location shift only, you could see Hollander et al.20. They suggested many location 
problems and tests, with one sample and two samples.

In clinical trials, consider we have N patients will be distributed into two groups, control group and treatment 
group. To guarantee no selection bias in the randomization assignment for the subjects, and to achieve a certain 
degree of balance between the control and treatment groups, randomization designs must be used. Complete 
randomization design is one of the easiest ways to assign the subject into two groups using a fair coin, if the head, 
it goes to the control but if the tail, it goes to the treatment group, and so on until we finish all subjects. There is 

also a random allocation design, which depends on one of the 
(
N
N
2

)
 permutations to assign the N patients to 

the groups. The randomized block design is an important design that reduces selection bias and control the 
imbalance of group sizes. In this paper, we tend to use randomized block design, which contains k blocks of even 
sizes ni , such that ni2  patients are for control group and the same number for treatment group, and within each 
block the random allocation design is applied to assign the patients to the two groups. For more randomization 
designs, see Rosenberger and  Lachin21.

To calculate the exact p-value of the proposed class, an accurate method is used, which is saddlepoint 
approximation method “SPA” that depends on the permutation distribution of the considered class. The SPA 
method discovered by  Daniels22 who investigated an approximate formula for any probability mass or density 
function based on its moment generating function. The theory of SPA expansions and multidimensional 
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generalizations were presented in  Good23,24 and Barndorff-Nielsen and  Cox25. Further developed by Lugannani 
and  Rice26 who proposed an approximate formula for the cumulative distribution function, CDF. Saddelpoint 
approximations to randomization distributions and permutation distributions were treated by  Robinson27 
and Davison and  Hinkley28.  Skovgaard29 introduced an approximate formula for the conditional distribution 
function which is a generalization of the Lugannani and  Rice26 formula, for more details, see Booth and  Butler30 
and  Butler31. The SPA has many advantages, first, the SPA has a correction term equal to O(n−

3
2 ) , in contrast 

the central limit theorem has O(n−
1
2 ) ,  Daniels32. Second, the SPA often leads to a uniformly bounded error, 

in contrast, the errors of the normal approximation method generally increase in the tail of the distribution. 
 Daniels33 was the first who suggested the major advantages of the SPA method and its general power and scope. 
Many papers were interested in approximating the exact p-value for various classes using SPA method with 
different randomization designs, such as, Abd-Elfattah and  Butler34,35 Abd-Elfattah36–39, Abd EL-Raheem and 
Abd-Elfattah40,41, Kamal et al.42,43 and Abd El-Raheem et al.44,45.

The exact distribution of the considered class of tests is unknown. Then, we cannot obtain the exact 
p-values for such tests. Therefore, we resort to the saddlepoint approximation method to approximate the exact 
p-values for such tests. In all previous studies related to the considered class of tests, the normal approximation 
method was used to approximate the exact p-values of such tests. In the current study, we use the saddlepoint 
approximation method to approximate the exact p-value for the considered tests. From the results of simulation 
study and real data analysis, it will be seen that saddlepoint approximation p-values are almost always closer to 
the simulated (permutation) p-values than the normal approximation. The degree of greater accuracy is readily 
apparent in small and intermediate size samples for which the asymptotic normality has not been attained. Thus, 
the saddlepoint method is a more accurate approximation method than the normal approximation method and 
computationally less demanding than the simulation method (permutation based, so time consuming).

This paper is partitioned as follows: “Class of location-scale tests” presents the class of non-parametric location-
scale tests. The saddlepoint approximation is presented in “Saddlepoint approximation”. Section “Simulation 
study and real data examples” proves the accuracy of SPA in approximating the exact p-value by performing 
a simulation study and analyzing three real data sets. Moreover, the time consumed for calculating the SPA 
p-values, normal approximation p-values and simulated mid-p-values is calculated in minutes and presented 
in “Simulation study and real data examples”. Furthermore, the 95% and 99% confidence intervals for location 
and scale parameters are constructed in “Confidence intervals for location and scale parameters”. Finally, the 
conclusion and discussion are presented in “Conclusion”.

Class of location‑scale tests
Consider two independent samples X which is the control group and Y  is the treatment group are drawn from 
populations with CDF F and G , with means µ1 and µ2 and standard deviations σ1 and σ2 , respectively. Under the 
randomized block design, the location-scale class is given by

where k is the number of blocks with even sizes ni , N =
∑k

i=1 ni , and bi = 1
ni+1 is the optimum weight of block 

i  ,  Elteren46. The location and scale scores of each observation j in each block i  are donated by the linear 
combination (aLij + aSij ) , where aLij is for location score and aSij is for scale score, and  Zij is the group indicator 
takes the value 1 if the observation j in the block i is from the treatment group Y  and takes the value 0 otherwise. 
The permutation distribution of the observations assignments within the blocks, is done under random allocation 

rule with 
(

ni
mi

)
 possible permutations, where mi is the number of the treatment observations inside the block 

i . The asymptotic distribution of  HB is N(µL + µS , σL + σS) , where µL and µS are the means of the location and 
scale tests, respectively. Also, σLandσS are the standard deviations of the location and scale tests, respectively.

The considered class includes many of location-scale tests, such as, Lepage’s statistic which can be written 
according to the Eq. (1) as

where WLij is the score of the Wilcoxon location test with mean µL = 1
2

∑k
i=1 bimi(ni + 1) and variance 

σ 2
L = 1

12

∑k
i=1 bi

2
m2

i (ni + 1). Also, RSij is the score of Ansari-Bradley scale test that takes the form

with mean

and variance

(1)HB =

k∑

i=1

bi

ni∑

j=1

(aLij + aSij )Zij , i = 1, . . . , k, j = 1, . . . , ni ,

(2)LP1 =

k∑

i=1

bi

ni∑

j=1

(WLij + RSij )Zij ,

RSij = 1, 2, 3, 4, . . . ,
ni

2
,
ni

2
, . . . , 4, 3, 2, 1,

µS =
1

4

k∑

i=1

bimi(ni + 2),
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with asymptotic distribution N(µL + µS , σL + σS) . In addition, LP2 , also called  Gastwirth47 test, can be written 
in the form of Eq. (1), as follows:

where the location score is

and the scale score

where

and Zi(j) is the j-th order statistic of the combined two samples X and Y  in the block i.
LP3 test takes the form of LP2 in Eq. (3) and follows the form of location-scale class in Eq. (1) with location 

score of Van der Waerden test

and Klotz scale score

where ϕ−1 is the inverse cumulative distribution function of standard normal distribution.
LP4 test also takes the same form of LP2 and LP3 but with location score

and with Mood scale score

where [a] denotes the greatest integer less than or equal to a.
All Lepage’s types, LP2, LP3, andLP4 are asymptotically distributed N(µ, σ), where

and

In addition,  Rublik11 investigated the location-scale problem with test statistic contains a combination 
between the Wilcoxon location score and the Mood scale score, that can take the same form of (1) as follows:

σ 2
S =

k∑

i=1

b2i m
2
i

(
n2i − 4

)

48(ni − 1)
,

(3)LP2 =

k∑

i=1

bi

ni∑

j=1

(aLij + aSij )Uij ,

aLij =






j − ni+1
4 if j ≤ ni+1

4

0 if ni+1
4 < j < 3(ni+1)

4

j − 3(ni+1)
4 if j ≥ 3(ni+1)

4 ,

aSij =






ni+1
4 − j if j ≤ ni+1

4

0 if ni+1
4 < j < 3(ni+1)

4

j − 3(ni+1)
4 if j ≥ 3(ni+1)

4 ,

Uij =

{
1 Zi(j) ∈ Y
0 otherwise,

aLij = ϕ−1

(
j

ni + 1

)
,

aSij =

(
ϕ−1

(
j

ni + 1

))2

,

aLij =






−
��

ni
4

�
+ 1

�
ifj <

��
ni
4

�
+ 1

�

i − ni+1
2 if

��
ni
4

�
+ 1

�
≤ j ≤

�
3(ni+1)

4

�

�
ni
4

�
+ 1ifj >

�
3(ni+1)

4

�
,

aSij =

(
j −

ni + 1

2

)2

,

µ =

k∑

i=1

bimi

ni

ni∑

j=1

(aLij + aSij ),

σ 2 =

k∑

i=1

b2i m
2
i

(ni − 1)

ni∑

j=1

(
(aLij + aSij )−

∑ni
j=1 (aLij + aSij )

ni

)2

.
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with location mean µL = 1
2

∑k
i=1 bimi(ni + 1), and variance σ 2

L = 1
12

∑k
i=1 bi

2
m

2

i (ni + 1) , and scale mean 

µS =
1
12

∑k
i=1 bimi

(
n2i − 1

)
 and variance σ 2

S = 1
180

∑k
i=1 bi

2
m

2

i (ni + 1)
(
n2i − 4

)
. The asymptotic distribution 

of T is N(µL + µS , σL + σS).
In this paper, we are interested in working with three test statistics only, which are LP1 test, LP3 test and Rublik 

test. For more location-scale tests, see Duran et al.48 who investigated a class of location-scale nonparametric 
tests. Also see, Fueda and Ôhori49 who designed a two-sample rank test based on the Wilcoxon test.

Saddlepoint approximation
For simplicity, let the class (Eq. 1) be in the form

where Aij = b
i
(a

Lij
+ aSij ) , as we noted before, that the patients within the blocks distributed under random 

allocation design, this means that the random variables Zij and Zib for all  i = 1, . . . , k and j  = b are dependent 
but independent with  Zaj where a  = i.

To avoid the problem of the dependence, we constructed a conditional distribution as follow:

where Vi1, . . . ,Vini are independent and identically Bernoulli ( θi ) random variables for each i = 1, . . . , k.
This transfers the distribution of the statistic (Eq. 4) to equivalent conditional distribution as follows:

Now, to approximate exact p-value of HB in (Eq. 4), we need to approximate the following conditional 
probability

where ho is the observed value of HB , using the double saddlepoint approximation of  Skovgaard29, the conditional 
probability in (Eq. 5) can be approximated as follows:

where

where M = (m1, . . . ,mk) , the two saddlepoints are 
(
t̂, Ŝ

)
=

(̂
t, ŝ1, . . . , ŝk

)
 and Ŝ0 = (̂s10, . . . , ŝk0).

The joint cumulant generating function of 
{∑k

i=1

∑ni
j=1 AijVij ,

∑n1
j=1 V1j = m1, . . . ,

∑nk
j=1 Vkj = mk

}
 is

where Q
(
t̂, Ŝ

)
 is (k + 1)× (k + 1) Hessian matrix and Q′′

ss is the second derivative of Q
(
0, Ŝ0

)
 with respect to S . 

To calculate ω̂ and û , we first calculate the numerator saddlepoints 
(
t̂, Ŝ

)
=

(̂
t, ŝ1, . . . , ŝk

)
 , by solving the follow-

ing equations

T =

k∑

i=1

bi

ni∑

j=1

(
j +

(
j −

ni + 1

2

)2
)
Zij ,

(4)HB =

k∑

i=1

ni∑

j=1

AijZij , i = 1, . . . , k, j = 1, . . . , ni ,

Z11, . . . ,Zknk ∼ V11, . . . ,Vknk |

n1∑

j=1

V1j = m1, . . . ,

nk∑

j=1

Vkj = mk ,

k∑

i=1

ni∑

j=1

AijZij ∼

k∑

i=1

ni∑

j=1

AijVij|

n1∑

j=1

V1j = m1, . . . ,

nk∑

j=1

Vkj = mk .

(5)P




k�

i=1

ni�

j=1

AijVij ≥ ho|

n1�

j=1

V1j = m1, . . . ,

nk�

j=1

Vkj = mk



,

midp(ho) ≃ 1−�
(
ω̂
)
− φ

(
ω̂
)( 1

ω̂
−

1

û

)
,

ω̂ = sgn
(̂
t
)
√

2
[{

Q
(
0, Ŝ0

)
−MTŜ0

}
−

{
Q
(
t̂, Ŝ

)
−MTŜ − hot̂

}]
,

û = t̂

√∣∣∣Q′′
(
t̂, Ŝ

)∣∣∣/
∣∣∣Q′′

ss

(
0, Ŝ0

)∣∣∣,

Q(t, S) =

k∑

i=1

ni∑

j=1

ln
{
(1− θi)+ θiexp

(
si + t(aLij + aSij )

)}
,
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and to find the value of Ŝ0 =
(
ŝ10, . . . , ŝk0

)
,  we solve the following equation

Each of ω̂ and û dose not depend on θi , so for explicitly in solving the SPA equations, we can choose θi = mi
ni

 , 
then  Ŝ0 = (0, . . . , 0) for all i = 1, . . . , k.

Simulation study and real data examples
Simulation study
The main aim of using a simulation study is to prove that the saddlepoint approximation method is closer 
to the simulated mid-p-value than the normal approximation method. The exact p-values of Lepage test, 
LP3 test and Rublik test are approximated using the two methods, saddlepoint approximation and normal 
approximation methods. To illustrate the accuracy of SPA p-value, we compare the p-values for the two pre-
viously methods with the simulated mid-p-value, which can be calculated from simulation of one million 
random permutations of the treatment and control indicator Zij . The simulated mid-p-value is obtained as 
[
∑

I(H > h0)+ 0.5
∑

I(H = h0)]/10
6 , and its donated here as “exact” p-value. The benefit of using mid-p-

value instead of the p-value is that the mid-p-value is convenient in case of discrete test statistics and not 
conservative compared to the ordinary p-value, for more details, see  Agresti50,  Butler31 and Delanchy et al.51. 
The simulated data in this section is generated from extreme value and logistic distributions with six cases 
which are (1): N = 24, k = 4,m = 3 , case (2): N = 30, k = 3,m = 5 , case (3): N = 40, k = 4,m = 5 , case (4): 
N = 60, k = 6,m = 5 , case (5): N = 80, k = 5,m = 8 and case (6): N = 90, k = 5,m = 5, each with ni = N

k  , 
and mi = m. Different location (µ1,µ2 ) and scale ( σ1, σ2 ) parameters are used to generate the data according to 
the previous scenarios. To prove our aim this process is repeated 1000 times based on 1000 generated samples. 
Tables 1, 2 and 3 present the mean of the SPA p-values, normal approximation p-values, simulated mid-p-values 
and the percentage of approaching the SPA method to the simulated method “P.SPA”. Also, the average relative 
absolute error for SPA “R.E.SPA” and the average relative absolute error for normal approximation method 
“R.E.NA” are calculated and presented in Tables 1, 2 and 3.

In Table 1, 2 and 3, the SPA approximation is more accurate than the normal approximation method. This 
can be seen through the R.E.SPA, which is much smaller than R.E.NA, for all considered cases.

QSi ′
(
t̂, Ŝ

)
=

N∑

i=1

θiexp
(
si + t(aLij + aSij )

)

(1− θi)+ θiexp
(
si + t(aLij + aSij )

) = mi , i = 1, . . . , k,

Qt ′
(
t̂, Ŝ

)
=

k∑

i=1

ni∑

j=1

θiexp
(
si + t(aLij + aSij )

)
(aLij + aSij )

(1− θi)+ θiexp
(
si + t(aLij + aSij )

) = ho,

Qsi ′
(
0, Ŝ0

)
=

ni∑

j=1

θiexp
(
ŝi0
)

(1− θi)+ θiexp
(
ŝi0
) = mi , i = 1, . . . , k.

Table 1.  Outcomes of the simulation study for the Lepage test.

Lepage test

Cases N  = 24, k = 4, m = 3 N  = 30, k = 3, m = 5 N  = 40, k = 4, m = 5 N  = 60, k = 6, m = 5 N  = 80, k = 5, m = 8 N  = 90, k = 9, m = 5

Extreme value distribution

µ1,µ2, σ1, σ2 0, 1, 3, 2 3, 1, 1, 2 0, 3, 3, 3.5 0, 1, 3, 2 0, 1, 0.1, 1.5 0, 1, 3, 2

Exact p-value 0.2442 0.0202 0.0454 0.1382 0.0221 0.1085

SPA p-value 0.2426 0.0202 0.0452 0.1380 0.0221 0.1084

Normal p-value 0.2416 0.0207 0.0453 0.1378 0.0222 0.1084

P.SPA 80.1 95.6 84.1 76.0 86.1 73.4

R.E.SPA 0.0298 0.0004 0.0476 0.0216 0.1497 0.0253

R.E.NA 0.0601 0.0010 0.4318 0.0616 0.5431 0.0764

Logistic distribution

µ1,µ2, σ1, σ2 3, 1, 5, 10 0, 3, 1, 1.5 0, 3, 1, 2 3, 1, 5, 10 0, 3, 3, 2 3, 1, 5, 10

Exact p-value 0.2661 0.0306 0.0640 0.1586 0.0094 0.1090

SPA p-value 0.2649 0.0301 0.0635 0.1586 0.0094 0.1089

Normal p-value 0.2642 0.0304 0.0635 0.1585 0.0095 0.1089

P.SPA 81 85.3 82.0 77.5 89.6 74.6

R.E.SPA 0.0061 0.0917 0.0482 0.0019 0.1196 0.0007

R.E.NA 0.0110 1.7408 0.4445 0.0025 0.4601 0.0010
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Real data examples
To support the aim of this paper, three real data sets are analyzed. The first data set is from Rosenberger and 
 Lachin21. They analyzed cholesterol rate for 50 patients. The results of the cholesterol rate for 50 patients can 
be found in Table 7.4 in the reference Rosenberger and  Lachin21. The 50 patients were assigned randomly to 
control and treatment group by generating the vector of the group indicator Zij , such that 25 assign to control 
and 25 assign to treatment, where each block contains 5 from each group, i.e. ( N = 50, ni = 10, k = 5,m = 5 ). 
The second data set is from a survey of household expenditure for 20 single men” treatment group” and 20 
single women ”control group”. For this data set, ( N = 40, ni = 8, k = 5,m = 4) . The second data is presented in 
Büning and  Thadewald10. The third data set was presented on page 39 of Hand et al.52. This data set consists of 
40 measurements of cholesterol levels for 40 men were divided into two groups A and B according to two types 
of behaviors. The type A behavior “treatment group” is characterized by urgency and aggression. While type B 
behavior “control group” is relaxed. For this data set, ( N = 40, ni = 8, k = 5,m = 4) . Table 4 presents the p-values 
of LP1 test, LP3 test and Rublik test using simulated, SPA and normal approximation methods.

From Table 4, we can see that SPA p-value is closer to the exact p-value than the normal p-value, and this 
result gives more evidence that SPA method is more accurate than the normal method in approximating the 

Table 2.  Outcomes of the simulation study for the LP3 test.

LP3 test

Cases N  = 24, k = 4, m = 3 N = 30, k = 3, m = 5 N = 40, k = 4, m = 5 N = 60, k = 6, m = 5 N = 80, k = 5, m = 8 N  = 90, k = 9, m = 5

Extreme value distribution

µ1,µ2, σ1, σ2 1, 0, 0.1, 1 3, 0, 5, 1 3, 0, 1, 2 1, 0, 0.1, 1 3, 0, 50, 10 1, 0, 0.1, 1

Exact p-value 0.5370 0.0025 0.1277 0.3897 0.0003 0.3677

SPA p-value 0.5366 0.0024 0.1273 0.3895 0.0003 0.3676

Normal p-value 0.5367 0.0035 0.1270 0.3893 0.0004 0.3675

P.SPA 81.7 99.4 93.8 91.6 99.3 85.1

R.E.SPA 0.0086 6.2 ×10−5 0.0008 0.0055 7.6 ×10−6 0.0091

R.E.NA 0.0205 0.0011 0.0034 0.0423 6.6 ×10−5 0.0390

Logistic distribution

µ1,µ2, σ1, σ2 0, 2, 5, 15 3, 0, 50, 10 3, 0, 50, 10 0, 2, 5, 15 3, 0, 5, 7 0, 2, 5, 15

Exact p-value 0.2043 0.0940 0.0725 0.0539 0.4974 0.0241

SPA p-value 0.2033 0.0934 0.0721 0.0537 0.4974 0.0240

Normal p-value 0.2026 0.0934 0.0723 0.0539 0.4974 0.0243

P.SPA 83.5 89.2 94.2 92.5 89.3 91.9

R.E.SPA 0.0202 0.0009 0.0005 0.0387 0.0024 0.0765

R.E.NA 0.2401 0.0037 0.0023 0.5868 0.0097 0.5964

Table 3.  Outcomes of the simulation study for the Rublik test.

Rublik test

Cases N  = 24, k = 4, m = 3 N  = 30, k = 3, m = 5 N  = 40, k = 4, m = 5 N  = 60, k = 6, m = 5 N  = 80, k = 5, m = 8 N  = 90, k = 9, m = 5

Extreme value distribution

µ1,µ2, σ1, σ2 1, 3, 1, 2 1, 3, 0.1, 0.01 1, 3, 0.1, 0.5 1, 3, 1, 2 0, 3, 1, 2 1, 3, 1, 2

Exact p-value 0.0737 0.0478 0.0268 0.0488 0.0853 0.0210

SPA p-value 0.0733 0.0481 0.0266 0.0487 0.0853 0.0210

Normal p-value 0.0735 0.0481 0.0274 0.0488 0.0850 0.0212

P.SPA 65.7 84.6 81.9 82.7 71.7 83.8

R.E.SPA 0.0465 0.0067 0.0086 0.0155 0.0052 0.0307

R.E.NA 0.1524 0.0080 0.0220 0.0807 0.0091 0.1262

Logistic distribution

µ1,µ2, σ1, σ2 0, 0.01, 1, 0.5 0, − 0.1, 1, 1.5 0, 0.01, 1, 0.5 0, 0.1, 1, 1.5 0, 0.001, 1.5, 1 0, 0.01, 1, 0.5

Exact p-value 0.2644 0.2600 0.1138 0.0906 0.1147 0.0486

SPA p-value 0.2627 0.2597 0.1135 0.0904 0.1146 0.0485

Normal p-value 0.2619 0.2588 0.1133 0.0904 0.1144 0.0486

P.SPA 76 81.9 83.1 82.6 81.2 81.1

R.E.SPA 0.0064 0.0094 0.0009 0.0005 0.0004 0.0003

R.E.NA 0.0098 0.0436 0.0019 0.0011 0.0008 0.0005
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p-value. It remains for us to explain the reason for considering the saddlepoint approximation method as an 
alternative to the simulation method. The reason is that the saddlepoint approximation method requires much 
less computing time compared to the simulation method. To clarify this, the computing time for the different 
methods is calculated and this is summarized in Tables 5, 6 and 7.

From the result of the simulation study, we can see that the SPA method is more accurate than the normal 
approximation methods compared to the simulated exact p-value. Moreover, from Tables 5, 6 and 7 it is clear 
that the SPA method is faster than simulated method which needs a lot of time to approximate the exact p-value.

Confidence intervals for location and scale parameters
The estimated confidence intervals for location parameter µ2 and scale parameter σ2 , are the set of all values 
µ2o and σ2o of the parameters µ2 and σ2 , respectively, which if formulated in the claim Ho : µ2 = µ2o and 
σ2 = σ2o , would not be rejected at α significant level. Accordingly, if p

(
µ2o , σ2o

)
 is the one-sided p-value 

for the location-scale test, then a (1− α)100% confidence intervals of µ2 and σ2 can be constructed as {
µ2o :

α
2 ≤ p

(
µ2o , σ2o

)
≤ 1− α

2

}
 and 

{
σ2o :

α
2 ≤ p

(
µ2o , σ2o

)
≤ 1− α

2

}
 , respectively,  see34. Assume Do

(
µ2o , σ2o

)
 

be the observed test statistic with location parameter µ2o and scale parameter σ2o , using a satisfactory grid of µ2o 
and σ2o values with suitable increasing, the cutoff Do(., .) is a step function in µ2o and σ2o that leads to incremental 
increases with increasing µ2o and σ2o . Here, the  3rd real data set is used to illustrate the procedure for creating 

Table 4.  P-values for simulated, SPA and normal approximations for the three data sets.

Data sets

LP1 LP3 Rublik

SPA Exact Normal SPA Exact Normal SPA Exact Normal

1st 0.2397 0.2403 0.2381 0.2767 0.2773 0.2733 0.2705 0.2705 0.2710

2nd 0.3655 0.3681 0.3638 0.0135 0.0138 0.0152 0.0093 0.0094 0.0104

3rd 0.0128 0.0130 0.0137 0.1216 0.1219 0.1192 0.3934 0.3911 0.3975

Table 5.  The time consumed for calculating the SPA p-values, normal approximation p-values and simulated 
mid-p-values for Lepage test.

Lepage test

Cases N  = 24, k = 4, m = 3 N  = 30, k = 3, m = 5 N  = 40, k = 4, m = 5 N  = 60, k = 6, m = 5 N  = 80, k = 5, m = 8 N  = 90, k = 9, m = 5

Extreme value distribution

µ1,µ2, σ1, σ2 0, 1, 3, 2 3, 1, 1, 2 0, 3, 3, 3.5 0, 1, 3, 2 0, 1, 0.1, 1.5 0, 1, 3, 2

Exact p-value 1504 min 1615 min 1613 min 1701 min 1617 min 1713 min

SPA p-value 5.13 min 5.14 min 6.12 min 5.62 min 5.23 min 5.33 min

Normal p-value 3.41 min 3.52 min 3.44 min 4.11 min 3.21 min 3.21 min

Logistic distribution

µ1,µ2, σ1, σ2 3, 1, 5, 10 0, 3, 1, 1.5 0, 3, 1, 2 3, 1, 5, 10 0, 3, 3, 2 3, 1, 5, 10

Exact p-value 1515 min 1512 min 1527 min 1621 min 1629 min 1723 min

SPA p-value 5.71 min 5.21 min 5.32 min 6.22 min 6.10 min 6.30 min

Normal p-value 3.21 min 3.01 min 3.22 min 3.41 min 3.41 min 3.22 min

Table 6.  The time consumed for calculating the SPA p-values, normal approximation p-values and simulated 
mid-p-values Rublik test.

Rublik test

Cases N  = 24, k = 4, m = 3 N  = 30, k = 3, m = 5 N  = 40, k = 4, m = 5 N  = 60, k = 6, m = 5 N  = 80, k = 5, m = 8 N  = 90, k = 9, m = 5

Extreme value distribution

µ1,µ2, σ1, σ2 1, 3, 1, 2 1, 3, 0.1, 0.01 1, 3, 0.1, 0.5 1, 3, 1, 2 0, 3, 1, 2 1, 3, 1, 2

Exact p-value 1603 min 1613 min 1502 min 1528 min 1619 min 1624 min

SPA p-value 5.21 min 5.66 min 5.24 min 5.44 min 5.55 min 5.36 min

Normal p-value 2.99 min 3.12 min 2.97 min 3.25 min 3.75 min 3.19 min

Logistic distribution

µ1,µ2, σ1, σ2 0, 0.01, 1, 0.5 0, − 0.1, 1, 1.5 0, 0.01, 1, 0.5 0, 0.1, 1, 1.5 0, 0.001, 1.5, 1 0, 0.01, 1, 0.5

Exact p-value 1533 min 1630 min 1623 min 1525 min 1522 min 1623 min

SPA p-value 6.00 min 6.25 min 6.61 min 5.43 min 5.31 min 5.29 min

Normal p-value 3.24 min 3.55 min 3.76 min 3.42 min 3.46 min 3.12 min
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confidence intervals for the location and scale parameters. We use the “gofTest” R package to estimate the location 
µ2 and scale σ2 parameters for the  3rd real data set and to test the suitability of the extreme value distribution for 
the considered real data set. The maximum likelihood estimations for the location and scale parameters are 227.9 
and 31.17, respectively. Furthermore, the p-value of the goodness of fit test, is p-value = 0.887. We evaluate the 
values of Do

(
µ2o , σ2o

)
 using a large range of the possible values of µ2oandσ2o , then for each value of Do

(
µ2o , σ2o

)
 

the corresponding exact, saddlepoint and normal p-values are calculated. Table 8 includes the exact, saddlepoint 
and normal confidence intervals for LP1 test.

From Table 8, we can see that the estimated 99% confidence interval using SPA method is more accurate than 
the corresponding estimated confidence interval using the normal approximation method as compared to the 
simulated (Exact) confidence interval. For the 95% confidence interval, both methods have the same accuracy 
as the simulated method.

Conclusion
In this article, various nonparametric tests for location and scale problem have been discussed and rewritten as 
a common linear rank class. The exact p-value of the considered class is approximated by SPA method and the 
normal approximation method. According to our results in the simulation study and the two real data sets, SPA 
performs well and achieves high accuracy in approximating the exact p-value instead of the normal method. 
This article can be applied in different designs, such as random allocation design, Wei’s urn design, complete 
design and truncated binomial design. Also, the proposed study can be extended to neutrosophic statistics, see 
Afzal et al.17, Albassam et al.18 and Sherwani et al.19.

Table 7.  The time consumed for calculating the SPA p-values, normal approximation p-values and simulated 
mid-p-values for LP3 test.

LP3 test

Cases N  = 24, k = 4, m = 3 N = 30, k = 3, m = 5 N = 40, k = 4, m = 5 N = 60, k = 6, m = 5 N = 80, k = 5, m = 8 N  = 90, k = 9, m = 5

Extreme value distribution

µ1,µ2, σ1, σ2 1, 0, 0.1, 1 3, 0, 5, 1 3, 0, 1, 2 1, 0, 0.1, 1 3, 0, 50, 10 1, 0, 0.1, 1

Exact p-value 1051 min 1060 min 1072 min 1075 min 1067 min 1173 min

SPA p-value 6.20 min 6.54 min 5.61 min 6.43 min 6.21 min 6.49 min

Normal p-value 3.34 min 3.35 min 3.16 min 3.22 min 3.16 min 3.92 min

Logistic distribution

µ1,µ2, σ1, σ2 0, 2, 5, 15 3, 0, 50, 10 3, 0, 50, 10 0, 2, 5, 15 3, 0, 5, 7 0, 2, 5, 15

Exact p-value 1054 min 1057 min 1162 min 1167 min 1267 min 1263 min

SPA p-value 5.00 min 5.45 min 5.21 min 5.42 min 6.31 min 6.31 min

Normal p-value 3.23 min 3.16 min 3.77 min 3.52 min 3.86 min 3.97 min

Table 8.  99% and 95% confidence intervals for the location and scale parameters of the 3rd data set for LP1 
test.

Location parameter Scale parameter

99% Confidence interval

 Exact (151.4, 308.4) (29.34, 111.6)

 SPA (151.4, 308.4) (29.34, 111.6)

 Normal (146.9, 311.9) (29.23, 115.1)

95% Confidence interval

 Exact (158.4, 319.4) (29.51, 122.6)

 SPA (158.4, 319.4) (29.51, 122.6)

 Normal (158.4, 319.4) (29.51, 122.6)
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The datasets used and/or analyzed during the current study available from the corresponding author on 
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