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The role of strategic visibility 
in shaping wayfinding behavior 
in multilevel buildings
Michal Gath‑Morad 1,2,3,4*, Jascha Grübel 2,5,6,7,8,9, Koen Steemers 3, Kerstin Sailer 4, 
Lola Ben‑Alon 10, Christoph Hölscher 2 & Leonel Aguilar 2,11

In this paper, we explore the mutual effect of prior background expectations and visibility afforded by 
the 3D configuration of the physical environment on wayfinding efficiency and strategy in multilevel 
buildings. We perform new analyses on data from 149 participants who performed six unaided and 
directed wayfinding tasks in virtual buildings with varying degrees of visibility. Our findings reveal that 
the interaction between visibility and prior background expectations significantly affects wayfinding 
efficiency and strategy during between‑floor wayfinding tasks. We termed this interaction effect 
strategic visibility, which emphasizes the importance of the strategic allocation of visibility towards 
actionable building elements in promoting efficient wayfinding and shaping wayfinding strategy. 
Our study highlights the significance of strategic visibility in promoting inclusive and accessible built 
environments for neurodiversity. Finally, we provide an open‑source dataset that can be used to 
develop and test new wayfinding theories and models to advance research in the emerging field of 
human‑building interaction.

Human-building interaction design during the architectural design process plays a critical role in supporting 
efficient and effective wayfinding1,2—the complex cognitive operation that involves monitoring external and 
internal cues, forming internal representations of space, and updating them to find one’s way in an environ-
ment. The study of wayfinding has been a subject of research for over 60 years, with contributions from a variety 
of fields, including architecture and urban  design3–7,  psychology8–14,  neuroscience15–18,  transportation19,20, and 
computer  science21–24. Recent trends, such as intense urbanization leading to more complex buildings and cit-
ies, the rise of information and communication technologies, an aging population, and a growing awareness of 
inclusive design, have further fueled research in this  area3,25–31. It’s important to note that inclusive design also 
involves considering the needs of individuals with diverse cognitive abilities, such as those with dementia, autism, 
dyslexia, or ADHD. This concept is referred to as  neurodiversity32,33, which recognizes neurological differences 
as a natural part of human diversity. Wayloosing and disorientation can have particularly negative impacts on 
individuals with cognitive differences, highlighting the importance of inclusive design in creating environments 
that support all  individuals34.

To understand the factors that affect wayfinding performance, researchers have classified wayfinding tasks 
according to the source of information used, the existence or absence of a final destination, the complexity of the 
search space, and the familiarity with the navigation  environment35. In this paper, we focus on unaided wayfinding 
in unfamiliar multilevel environments, which is a common scenario in which people find their way between floors 
in large search  spaces36,37. Given the growing complexity of multilevel public buildings in cities, people are often 
required to wayfind between-floors in large ‘search spaces’ that span horizontally and especially  vertically36,37.

Efficiency and search strategy are the two main dimensions for measuring wayfinding performance in these 
 contexts38. Efficiency can be assessed by measuring task completion rate, duration, distance covered, or average 
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speed. On the other hand, wayfinding strategies are often captured using ‘think aloud’  protocols10. Former stud-
ies have identified exhaustive search strategies like the perimeter strategy (moving along the boundary of an area 
to reduce the chance of revisiting the same space)39, the lawnmower strategy (proceeding in straight parallel 
 lanes40), and the directed random search strategy (selecting turns with the lowest likelihood of retracing one’s 
former location)35.

In more specific contexts, such as retail environments like supermarkets, shoppers tend to exhibit less exhaus-
tive search strategies. Most shoppers prefer to travel along selected aisles and may favor a perimeter strategy, 
using the store’s perimeter as the main thoroughfare, with occasional trips into the  aisles41. However, it’s essential 
to highlight that individual differences among shoppers play a significant role in influencing the choice of search 
strategy in retail settings. A study of shoppers behavior in a supermarket  setting42 where products are evenly 
distributed in a regular grid revealed the existence of distinct clusters of shopping strategies correlated with 
specific shopper profiles, suggesting that individuals with different backgrounds and preferences tend to adopt 
different ways of navigating and searching for products within the supermarket. In complex, multi-level build-
ings with limited visual cues and numerous movement options, additional wayfinding strategies are observed, 
including the central point strategy (staying in public and visually connected areas even if it involves detours), 
the direction strategy (prioritizing minimizing horizontal distance to the estimated target location, regardless of 
vertical changes), and the floor strategy (prioritizing minimizing vertical distance to the target, irrespective of 
its horizontal position)10,43,44.

Prior research on unaided wayfinding in buildings highlights the independent roles of visibility and of prior 
background expectations to facilitate wayfinding efficiency and inform the choice of search strategy. The spatial 
configuration of buildings has a direct impact on visibility, which refers to the degree to which different parts of 
the environment can be observed from a specific  viewpoint11. Architectural features such as walls and atria can 
act as occlusions or visibility enablers, respectively. The volumetric configuration of buildings determines what 
and how much can be seen from different  viewpoints6,10,11,45–47. Depending on the specific wayfinding task, the 
role of visibility may be more or less critical. For example, a person navigating a familiar building is likely to 
rely on their memory rather than  visibility48. However, depending on the destination and the prior background 
expectations it evokes, different environmental cues may be perceived as more or less  important49. In their 
study, Frankenstein and  colleagues49 found that different destinations trigger different background expectations 
regarding the association of environmental cues with the location of the destination. For instance, finding an 
auditorium, a main exit, or a restroom is associated with more central and public locations, while destinations 
such as a rear exit, the entrance to the cellar, or a broom closet are associated with more peripheral locations.

Critically, despite findings that emphasise either the role of visibility or of background expectations during 
wayfinding, the interaction between them during unaided and directed wayfinding in multilevel buildings is 
still unclear, both with respect to wayfinding efficiency and wayfinding strategy. Table 1 presents an overview 
of empirical studies focused on wayfinding in built environments. Each study is analyzed with respect to five 
main categories; Environment, Experiment, Implementation, Participants and Analysis. As can be seen, the 
majority of studies have been limited to analyzing Within-floor wayfinding tasks (even if the building is multi-
level) in which the origin and destination are on the same  floor6,18,38,40,49–62. In contrast, despite the ubiquity of 
multilevel public buildings, very few studies have empirically studied the role of visibility or background expec-
tations during Between-floor wayfinding tasks in which the origin and the destination are located in different 
 floors10–12,14,43,44,63–71. Amongst these studies, only a few experiments observed directed wayfinding (i.e., towards 
a specific destination) in unfamiliar environments which necessarily involves  search10–12,43,44,64,65,67,68. This gap 
limits our understanding of how the architectural design of everyday search environments such as buildings 
affects wayfinding efficiency and strategy.

In this paper, we aim to investigate the mutual role of both visibility and prior background expectations in 
unaided wayfinding behavior in unfamiliar multilevel environments. Specifically, we seek to address the question 
of whether it is primarily the visual cues that affect wayfinding behavior, or whether prior knowledge and expec-
tations also play a role. To this end, we conduct novel analyses on a wayfinding dataset collected in a previously 
conducted Virtual Reality (VR) wayfinding  experiment12,74, which has thus far been used as benchmark data 
to validate a cognitive agent model. In contrast, we focus on the behavioral data collected and investigate the 
independent and interacting effects of visibility and prior background expectations on wayfinding in unfamiliar 
multilevel environments.

In the conducted  experiment12, a total of 149 participants were randomly assigned to one of three building 
conditions; Base-case (control condition), Atria, and Glass (visibility treatments), see Figs. 8 and 9. The control 
condition (i.e., Base-case) featured a multilevel building with two staircases enclosed in two multi-story cores 
with concrete walls, resulting in the lowest degree of between-floor visibility. Both the Atria and Glass treat-
ments were identical to the control building, except for a systematic visibility treatment applied to both build-
ings, which increased the degree of between-floor visibility compared to the control condition. This visibility 
treatment involved systematic design interventions applied to the architectural configuration of each building. 
Specifically, the Atria treatment condition involved the creation of six small atria on the second floor, while in 
the Glass treatment condition, the facade of the two circulation cores was replaced from concrete to glass. As part 
of the experiment, participants in all three conditions were required to wayfind from the same starting position 
(i.e., the entrance to the building) to six typical building destinations (i.e., Auditorium, Reading Area, Study Area, 
Office, Patio, or Roof Terrace). Although both design variations increased the degree of visibility compared to the 
control condition, they differed in the type of information being revealed, either the functionality of the second 
floor or the circulation elements in the building.

Accordingly, we expected that: (H1) wayfinding efficiency and strategy would be affected by the background 
expectations people have regarding the location of each destination, which may be informed by their previous 
wayfinding experience; (H2) the Glass treatment, which reveals the location of the stairs, would have a significant 
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effect on wayfinding distance performance, resulting in more efficient wayfinding when compared to the other 
visibility treatment (i.e., Atria) or to the control condition (i.e., Base-case); (H3) the Glass treatment would have 
a significant effect on the type of wayfinding search strategy employed, resulting in increased Between-floor 
search as opposed to Within-floor search when compared to the other visibility treatment (i.e., Atria) or to the 
control condition (i.e., Base-case); and (H4) the distribution of paths would be significantly different between 
the Glass condition and the two other building conditions (Base-case and Atria). To test these hypotheses, we 
computed several novel wayfinding measures for unfamiliar multilevel buildings based on previously collected 
raw wayfinding  data12,74, resulting in the generation of a new wayfinding  dataset75. All measures capture differ-
ent aspects of wayfinding efficiency, strategy, and visual perception in an unfamiliar multilevel environment.

Our findings confirm our hypotheses, showing for the first time that there is an interaction effect between 
visibility and background expectations during Between-floor search tasks. We name the interaction effect stra-
tegic visibility and illustrate how it can be applied as an architectural design principle to enhance legibility, thus 
promoting positive human-building interactions by architecture.

Results
Our analysis examined the impact of visibility and background expectations on wayfinding efficiency and wayfind-
ing strategy through two independent variables. The first independent variable we considered was the Visibility-
Treatment applied to the building (Base-case, Atria, Glass), as shown in Fig. 8. The second independent variable 
was the wayfinding Tasks, which varied based on the destination (Auditorium, Reading Area, Study Area, Office, 
Patio, or Roof Terrace), each assumed to invoke different background expectations.

Our Linear Mixed Effects Regression (LMER)  analysis76 supported all hypotheses concerning the effect of the 
Visibility-Treatment and Task (associated with different background expectations) on both wayfinding strategy 

Table 1.  Literature review. Comparison of measurements of familiarity and multilevel building in navigation 
research. In Grey: Wayfinding in unfamiliar environments; C: Complexity, V: Visibility, D: Differentiation, 
L:Learning; +: Some trend observed, *:Some results significant.
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and efficiency. Detailed results of this analysis are presented in Table S5 and Table S6, which can be found in the 
Supplementary Materials S2.

Interpreting models with interaction effects can be challenging since the coefficients cannot be viewed inde-
pendently. Thus, we calculated the marginal effects of the wayfinding outcome variables to understand the impact 
of the Visibility-Treatment and Task (corresponding to different background expectations) on the model  results77. 
Specifically, we calculated Marginal Effects at the  Mean78 for the average response across all trials to gain insights 
into the effect of Tasks and Visibility-Treatment on wayfinding efficiency and strategy, See Fig. 1. Additionally, we 
looked at Average Marginal  Effects79 for group-level responses. For more detailed information on the analysis 
methods used, please see the Methods section.

Wayfinding efficiency
With regards to wayfinding efficiency (see Table 2), the AME shows that the Glass treatment has a substantial 
and significant effect on Total Distance performance, resulting in participants walking in average 64.82 meters 
less across all tasks when compared to the control condition. As expected, the AME of the Atria treatment on 
distance performance was not significant (participants walked on average 14.63 meters less). At the same time, 
we see that all Tasks except the Reading Area significantly differ from the baseline task (i.e., where the destination 
was the Auditorium on the first floor which was visible from the entrance). According to our AME analysis, the 
effect of the Glass treatment on distance performance remains significant, even when accounting for the effect 
of the task type. These findings confirm (H2).

Wayfinding strategy
With regards to wayfinding strategy (see Table 3), results show that the Glass treatment had a significant and 
positive effect on the percentage of time the participant spent inside the circulation core (p<0.05), which was 
not demonstrated in the case of the Atria treatment. Remarkably, the Percentage of Between-Floor Movement 
in the Glass treatment was 13% more than in the control condition. In the case of the Atria treatment, the vis-
ibility increase did not have a significant effect on wayfinding strategy when compared to the control condition, 
resulting in a negligible increase of 1% in the Percentage of Between-Floor Movement. These findings confirm that 

Figure 1.  The effect of Visibility Treatment and Tasks on wayfinding efficiency and strategy. The Glass treatment 
shows significant differences in the Marginal Effects at the Mean (MEM) for most tasks. 
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participants in the Glass treatment were performing significantly more Between-floor search when compared to 
the control condition where a Within-floor search was dominant. These findings confirm (H2) and (H3).

The discoverability potential of the target in each task is also driving when participants employ Between-
floor search for a specific task (see Tables 3 and 5), thus meeting our expectations. We contrast each task to the 
Auditorium as the task where no Between-floor search is required. We find significant increased Between-floor 
search strategy for the Reading Area (26%), the Office (39%), the Patio (40%) and the Roof Terrace (62%). The 
Study Area task does not increase the Between-floor search significantly. The discoverability potential of the Roof 
Terrace motivates most participants to opt for a Between-floor search strategy whereas the more defuse discover-
ability of the Reading Area only slightly induces this behaviour. The Office and Patio are somewhat expected to 
be higher up in terms of discoverability and therefore induce the Between-floor search strategy more regularly.

Background expectations
To test the impact of background expectations on wayfinding efficiency and strategy, we revisit both models, see 
Fig. 1. Across both efficiency and strategy, a similar pattern emerges with a strong task specific effect which is 
confirmed in Table 2 and Table 3. As can be seen, regardless of the Visibility-Treatment (Glass, Atria, Base-case), 
the Task type (i.e., destination type) has a significant effect on distance performance, except for the case of the 
Auditorium and Reading area tasks (see Table 2 and Table 3. These findings confirm (H1).

Furthermore, we found that the Discoverability Potential of a task (i.e., whether it is low, middle, or high) also 
impacts wayfinding efficiency and strategy, as demonstrated in Table 5 and Fig. 2. To address concerns that the 
task structure such as the minimal required walking distance and time could be responsible for these results, 
we introduced an alternative measure, Time To Move Up in the Supplementary Materials describing how much 
time a participant needed to move up from the first floor. Our analysis shows that it behaved similarly to the 
other measures.

Alternative encoding of visibility treatments
To measure how much visual information participants were gaining in each building condition, we calculated the 
Average View Volume using post-processing on participants’ first-person camera data. The Average View Volume 
was calculated using participants’ first-person camera data to measure the view volume perceived at each path 
point. By raycasting homogeneous rays from the eye-height of participants towards the environment, the view 
frustum was calculated, and the view volume at each point was computed. The Average View Volume is the mean 
of these values from all recorded positions between the starting and end point of each trial.

Our analysis presented in Fig. 3 showed that participants in the Glass treatment perceived more visual infor-
mation and had a higher Average View Volume compared to the control Base-case and Atria treatment condi-
tions. However, we found an unexpected relationship between the Average View Volume and % of Between-Floor 
Movement in the Glass treatment. The visual information gain of participants in this condition was higher, but 
it remained fairly constant while they were inside the circulation cores.

Table 2.  Average Marginal Effect (AME) for Tasks and Visibility Treatment for Total Distance.

Term Contrast Estimate Std. Error Statistic p-value Conf. low Conf. high

Building Atria–Base −  14.63 11.87 −  1.23 0.22 −   37.88 8.63

Building Glass–Base −  64.82 11.71 −   5.53 0.00 −   87.77 −   41.86

Task Reading Area–Auditorium 22.72 15.13 1.50 0.13 − 6.93 52.37

Task Study Area–Auditorium 72.58 15.13 4.80 0.00 42.92 102.23

Task Office–Auditorium 169.68 15.21 11.16 0.00 139.87 199.49

Task Patio–Auditorium 197.08 15.13 13.03 0.00 167.42 226.73

Task Roof Terrace–Auditorium 99.41 15.16 6.56 0.00 69.71 129.12

Table 3.  Average Marginal Effect (AME) for Tasks and Visibility-Treatment for Percentage Time spent Between-
Floors. 

Term Contrast Estimate Std. Error Statistic p-value Conf. low Conf. high

Building Atria–Base −  0.01 0.01 −  1.17 0.24 −  0.04 0.01

Building Glass–Base 0.13 0.01 10.26 0.00 0.10 0.15

Task Reading Area–Auditorium 0.26 0.01 18.57 0.00 0.23 0.29

Task Study Area–Auditorium 0.03 0.01 2.43 0.02 0.01 0.06

Task Office–Auditorium 0.39 0.01 28.21 0.00 0.37 0.42

Task Patio–Auditorium 0.40 0.01 28.92 0.00 0.38 0.43

Task Roof Terrace–Auditorium 0.62 0.01 44.14 0.00 0.59 0.64
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This finding reinforced the idea that participants’ information gain was not necessarily related to how much 
more they could see. Instead, persisting with the Between-floor strategy in the Glass treatment may have been due 
to the potential for quickly gathering information at a lower cost of angular movement that could have reduced 
 disorientation6. We discuss the potential underlying cognitive mechanisms for this phenomenon in the Discus-
sion section. See Fig. 3 for a visual analysis of the relationships between Average View Volume, Total Distance, 
and % of Between-Floor Movement.

Figure 2.  Trajectories per Task. Participants’ trajectories for each of the six wayfinding tasks plotted on the 
same plane across the three building conditions. Comparing trajectories across treatments (rows), participants’ 
trajectories appear less spread out in the Glass treatment (high visibility) compared to the Base-case and Atria 
treatments. Comparing trajectories across tasks (columns), the Auditorium, Reading Area, and Roof Terrace 
visually indicate similar search behavior indicated by the spread of trajectories, possibly related to the prior 
background expectations participants had regarding the location of these destinations and their Discoverability 
Potential. Similarly, the Study Area, Office, and Patio appear more similar because participants need to explore 
the floors to find them.

Figure 3.  Average view volume by treatment conditions for wayfinding efficiency and strategy. Each trial of a 
participant is represented as a dot combining the amount of visible information (Average View Volume) with 
either wayfinding efficiency (Total Distance, or wayfinding strategy % Between-Floor Movement), across building 
conditions.
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Differences in spatial distribution of paths
The visualization in Fig. 2 gives a strong impression of the differences in the spatial distribution of participants’ 
movement paths across conditions. To further explore these differences, we used Kernel Density Estimation 
(KDE) to compare the paths in a 3D space, as shown in Fig. 4. A clear pattern emerges as path density in the 
Glass treatment is concentrated around the circulation core that was closer to the starting point, see Fig. 4c. In 
contrast, we observe more distributed density patterns observed in the Atria treatment, see Fig. 4b and the Base-
case control condition, see Fig. 4a, which appear to be quite similar.

We validate the strong impression provided by the visualization using the KDE  test80,81. Results confirmed that 
the Glass treatment had a significantly different distribution of trajectories from the other conditions, as seen in 
Table 4. This provides additional evidence that changing the materiality of the circulation cores from concrete 
to Glass to make the stairs visible nudged participants to move up the stairs. These findings confirm (H4).

Further analysis of Mean Distance Between Floors (i.e., indicative of between-floor search) shows that par-
ticipants in the Glass condition significantly favored the front staircase which was closer to the starting position 
(i.e., origin) of all tasks. In the Atria group, while there was a preference for the front staircase, the difference 
was not statistically significant. In the Base-case condition, the back staircase was used slightly more, although 
not significantly more than the front staircase (see Figure S5 in the Supplementary Materials).

Clustering multi‑level wayfinding strategies
K-means clustering was employed to investigate the impact of individual differences on strategy selection across 
tasks and building conditions. The input for this clustering process consisted of participants’ spatial wayfinding 
paths. To ensure comparability between longer and shorter paths, we divided each path into 25 segments, as 
described in detail in the Methods section. Silhouette scores were used (see Supplementary Materials, Figure S4) 
to determine the optimal number of clusters for classification. The analysis revealed that clustering into two 
groups yielded the highest silhouette score of 0.8018 compared to the options with 3, 4, 5, or 6 clusters, indicat-
ing meaningful distinctions between participant groups.

This analysis resulted in Cluster 0, which included 110 paths, and Cluster 1, which included 36 paths. Figure 5 
displays a planar projection of the wayfinding paths in each cluster.

Figure 4.  3D trajectories’ Kernel Density Estimates (KDE) across building conditions. A comparison of KDE 
analysis of participants’ trajectories across all tasks and trials between building conditions. The density is 
scaled from purple (minimal density) over blue (average density) to green (maximal density). The densities are 
normalized across conditions. The Base-case and the Atria treatment produce near similar densities. Visually, 
the Glass condition reduces participants’ roaming behavior and focus the participants’ trajectories on using the 
staircases to find the correct floor.

Table 4.  Comparing KDEs for visibility conditions. *Benjamini-Hochberg correction level.  KDE were 
compared with a non-parametic  test80,81 (see Supplementary Materials) S3. A significant p-value (in 
bold) implies that the KDE originates from a different distribution. It follows that the Base-case condition and 
Atria condition do not differ significantly from each other whereas the Glass treatment significantly differs 
from both.

Comparison T z p  α*

Base–Atria 156.11 0.20 0.42 0.050

Base–Glass 2409.73 4.71 <0.025 0.025

Glass–Atria 2486.71 4.95 <0.016 0.016
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For a more detailed analysis, Figure 7 provides a 2D projection of paths within each cluster for the same 
task. Additionally, the paths of the most ‘representative participant’ in each cluster, closest to the cluster center 
coordinates, are highlighted in black. Figure 6 extends the analysis into a 3D representation, with paths colored 
based on their progress from start to end (blue to red).

A closer examination of paths within each cluster for each task reveals that in Cluster 1, the representative 
participant consistently favours a central point search strategy10,43, gravitating towards visually connected areas, 
even if it involves detours, as evident in all their paths crossing through the centre of the building. For example, 
in the Roof Terrace task, they initially position themselves in the centre of the floor before ascending the rear 
staircase. These consistent results across tasks suggest that individual differences are linked to the choice of search 
strategy. Conversely, in Cluster 0, the representative participant prefers a perimeter search strategy35, as seen in 
the Office, Patio, and Roof Terrace tasks.

It’s noteworthy that for tasks with high or moderate discoverability potential, such as the Auditorium or Read-
ing Area tasks, where targets are easily visible within a few steps or immediately in the case of the Auditorium, the 
representative participants in both clusters follow identical paths. This suggests that when background expecta-
tions and target visibility are high, individual differences in search strategy may be overridden.

Discussion
The goal of this paper was to investigate the interplay between prior background expectations and visibility 
afforded by the volumetric configuration of buildings on wayfinding efficiency and strategy. Our study gener-
ated a new  dataset75 of wayfinding behavior that extends a previous  dataset74 describing an online desktop VR 
 experiment12,82, in which 149 participants performed six unaided and directed wayfinding tasks in one of three 
unfamiliar multilevel buildings.

These buildings were systematically varied to have either low (Base-case, control condition) or high visibility 
between floors (Atria) or towards the circulation elements of the building (Glass). Our statistical analysis con-
firms all four hypotheses. Regarding (H1), our analysis shows that regardless of the visibility treatment applied 
to the building (Glass, Atria, Base-case), the Task type (i.e., destination) has a significant effect on distance per-
formance, except for the case of the Auditorium and Reading area tasks. These findings are in agreement with 
results from prior  studies49,83 suggesting that people associate specific environmental cues with the location of 
unique building destinations.

With respect to (H2) and (H3), our findings demonstrate that greater visibility did not necessarily lead to 
more efficient wayfinding and did not predict wayfinding strategy, as opposed to prior  findings6. Our main result 
shows that the Glass treatment, which made the position of the stairs visible from the starting point, led to a 
significant increase in wayfinding efficiency (participants walked on average 64 meters less than in the Base-
case condition) and predicted the dominant search strategy in the form of between-floor search. In addition to 
confirming hypotheses (H1) through (H3), our statistical analysis also confirms (H4), which predicted that the 
distribution of paths would be significantly different between the Glass treatment and the two other building 
conditions (Base-case and Atria). Our analysis shows that the Glass treatment led to a significant concentration 
of path density around the circulation core that was closer to the starting point.

The observed behavior is in good agreement with the principles of Information Foraging Theory (IFT)84. IFT 
borrows concepts from optimal foraging theory in  biology85 to understand how humans seek information in 
online environments. The main premise of IFT is that similarly to organisms trying to maximize energy intake 
while minimizing the cost associated with obtaining it, humans apply similar logic when seeking and interacting 
with information environments. Borrowing IFT terminology, our findings suggest that in the Glass treatment, 
the ‘information scent’ of the stairs was stronger as a result of increasing visibility, which was not the case in the 
Atria treatment as the ’information scent’ provided was perceived as less relevant to the task. The participants 

Figure 5.  Spatial distribution of wayfinding paths in two clusters. A planar projection of wayfinding paths 
included in either Cluster 1 (red) or Cluster 0 (blue).
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in the Glass treatment were able to identify the strategic staircase as the optimal path to their goal due to its 
increased visibility, and this resulted in a more direct and efficient route to their destination. On the other hand, 
in the Atria treatment, participants may have found it more challenging to locate the staircase, as it was not as 
strategically visible, resulting in longer and more spread-out routes.

Furthermore, the wayfinding strategies emerging from our analysis align with the high level search strategies 
described in IFT. If we consider each floor as a potential information patch, human participants performed a 
within-patch search or a between-patch search, depending on the strength of the information scent emitted by 
the environment. In the Glass treatment, the participants applied a between-patch search strategy, where they 
quickly identified the location of the most strategically visible staircase and then used it as a landmark to guide 
their wayfinding behavior. In contrast, the participants in the Atria treatment seemed to use a within-patch search 
strategy, exploring each floor more systematically to locate the less strategically visible staircase.

Results from our clustering analysis shed further light on the potential role of individual differences in the 
choice of search strategies. In Cluster 1, paths were characterised by more direct and central point-oriented 
search  strategies10,43 indicating a consistent preference for visually connected areas, even if it involved detours. 
In contrast, Cluster 0 paths favored a perimeter search strategy35. Intriguingly, for tasks characterised by high 
or moderate discoverability potential, both clusters converged on similar paths. This suggests that individual 
differences in search strategy may be overshadowed by task characteristics, highlighting the complex interplay 
between background expectations, target visibility, and strategy selection.

In addition to these main findings, the observed relationship between Average View Volume and participants’ 
wayfinding behavior was not straightforward. Participants in the Glass treatment persisted with the Between-floor 
strategy even though they had a relatively constant visual information gain while inside the circulation cores. 
This finding suggests that participants’ information gain was not necessarily related to how much more they 
could see, but rather to a lower cost of angular movement that may result in less disorientation, in accordance 
with prior wayfinding research in single level  environments6.

This study makes several important contributions to wayfinding research, evidence-based architectural design 
and Human-Building Interaction research. Firstly, our findings expand previous research on the impact of vis-
ibility on  wayfinding6,10–12,14,18,38,40,43,44,50–71 and account for the mutual impact of background expectations and 

Figure 6.  3D representation of wayfinding paths and progress along path over time. Paths of representative 
participants are distinctly highlighted and color-coded to reflect their temporal progress from start (blue) to end 
(red).
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Figure 7.  Two-dimensional projection of wayfinding paths within clusters, with paths of representative 
participants emphasized in black. 

Figure 8.  Perspective elevations for the three building conditions with architectural variations highlighted in a 
dashed green line. Base-case, the control condition has the lowest visibility with the staircases hidden behind 
concrete walls and no atria on the second floor. The Atria and Glass treatments increase visibility either between 
the first and second floor by means of 6 atria (Atria) or towards strategic elements such as the staircases by 
removing the concrete enclosure on both circulation cores to become transparent (Glass). Legend: Purple 
triangle: Origin for all tasks.
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visibility on wayfinding. While previous studies have largely focused on the effects of increased visibility on 
wayfinding, our study highlights the importance of considering peoples’ prior expectations and knowledge of the 
environment to inform the design of legible building configurations. Secondly, our study highlights the impor-
tance of strategic visibility in wayfinding. We define strategic visibility as the potential of spatial configuration to 
increase visibility to strategic or actionable elements such as the main staircase of a building. Our results show 
that strategic visibility is a powerful design tool for promoting efficient wayfinding and influencing wayfinding 
strategy. By using strategic visibility to make key wayfinding elements more visible, designers can encourage 
people to make more informed and efficient wayfinding choices. This has important implications for the design 
of buildings that promote active living and healthy behaviors, as well as the design of buildings that accommodate 
people with different abilities and sensory profiles. Thirdly, our study provides an open-source dataset that can 
be used by other researchers in the broad field of HBI to advance our understanding of wayfinding behavior 
in complex environments. This dataset contains rich information on peoples’ wayfinding behavior in three dif-
ferent building environments, including their search strategies and distance performance. This dataset can be 
used to develop and test new wayfinding theories and models, as well as to design and evaluate new wayfinding 
design strategies.

To the best of our knowledge, this is the first study to analyze the interaction between visibility and prior 
background expectations in the context of unaided and directed wayfinding during Between-floor wayfinding tasks 
in an unfamilliar multilevel environment. However, several limitations should be considered when interpreting 
our findings. Firstly, the dataset used for  analysis75 was based on wayfinding behavior observed in a Desktop 
VR  setting12,74. While evidence suggests that wayfinding in VR and real environments is comparable for strate-
gic decision  making86,87, the limitations of the behavioural dataset collected in VR should be considered when 
interpreting our results. Specifically, distance estimation in VR may be less accurate than in reality, and the use 
of visual motion (as opposed to physical motion) may affect neural encoding of spatial information in  memory88. 
Nevertheless, given the design variations included in our treatments, it would have been impossible to conduct 
a validation experiment in corresponding real-world conditions. Secondly, the random assignment to treatment 
conditions resulted in an imbalanced sample for gender, with 286 trials in the control group, 294 trials in the 
Atria treatment, and 310 trials in the Glass treatment (see Table S2). While we do not report specific results by 
gender, an initial review has shown no significant  difference82,(see Supplementary Materials).

To conclude, our study results demonstrate the crucial interplay between visibility and background expecta-
tions in determining wayfinding efficiency and strategy. Our findings indicate that the strategic allocation of 
visibility, rather than mere increased visibility, can be a powerful means of facilitating efficient wayfinding and 
shaping wayfinding strategy. The alignment of our results with Information Foraging Theory highlights the sig-
nificance of an environment’s information scent in guiding people’s wayfinding behavior. Practically, our study’s 
results have implications for HBI research, fueling efforts that promote that design of inclusive and accessible 
environments catering to individuals with different abilities and sensory profiles, including those on the neuro-
diverse spectrum. By leveraging the potential of strategic visibility, architects can design environments that are 
more legible, easier to orient in, and more accommodating for all individuals. We hope that our open-source 
 dataset75 can serve as a valuable resource for other researchers seeking to deepen our understanding of wayfind-
ing behavior in complex environments, ultimately informing an evidence-based and human-centered approach 
to design legible built environments in the face of complexity.

Methods
The Zollvereine wayfinding study and dataset
Study description
The data collection for this wayfinding dataset was conducted as part of a previous VR  study12 based on an online 
infrastructure following the Experiments as Code  paradigm82,89–91. For full details, we refer to the previous work 
above. A concise summary of experimental details relevant to this current study is provided below. In this paper, 
the Methods description focuses on the hypotheses set and analysis methods used to test it.

For the original  study12, 149 participants (44 female, 105 male) were recruited using Amazon’s Mechanical 
Turk (Mean age = 33.7 years; SD = 6.8 years; Age range = 18 to 59 years). That study was approved by the Research 
Ethics Committee of ETH Zurich (2020-N-24). Participants signed informed consent before the study and all 
methods and experiments described in this paper were performed in accordance with the relevant guidelines 
and regulations. A virtual model of the Zollverein building in Essen (Germany) was generated for the purpose 
of the VR experiment, referred to as the Base-case condition. Two treatments were applied to the Base-case 
condition. These two treatment conditions increase visibility relative to the Base-case condition through differ-
ent architectural design strategies that modify either the building configuration or the building materiality. The 
three multilevel virtual building models including the control condition and the two treatment conditions are 
illustrated (see Fig. 9).

For the experiment, participants were randomly assigned to one of the three building conditions. Participants 
had a first person view of the navigation environment (see Fig. 10). Participants were asked to perform a set of 6 
wayfinding tasks (i.e., 1 task per trial). The order of tasks was randomized to avoid practice effects. In each task, 
they were instructed to find a semantically defined destination (i.e., Roof Terrace, Patio, Office, Auditorium, Read-
ing Area, Study Area). Participants were told that the destination would be marked with a colored ball (See Figure 
S1b) for the instructions given before each wayfinding task). The colour of the ball was randomly generated for 
each trial. The starting position was located on the ground floor and was the same for all six wayfinding tasks. 
The six destinations participants had to find were either located within the same floor as the starting position 
(i.e., Auditorium and Reading Area), or in one of the upper floors (Level 2: Study Area, Level 4: Office, Patio, and 
Level 5: Roof Terrace). We refer to tasks in which the starting position and destination are on the same floor as 
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Figure 9.  Floorplans for each level across the three building conditions; Base-case, Atria, and Glass. Dashed 
lines on Atria Level 1 indicate the locations of six atria on the second floor. On the second floor in the Atria 
condition, views towards the first floor are visible through the six atria. Across levels in the Glass condition, the 
staircase is visible through a glass facade, in contrast to the respective levels in Base-case and Atria. Legend: 
Purple triangle: Origin for all tasks; Green circle: Destination for each task.

Figure 10.  Participant view in experiment. An exemplary screenshot from the VR study showcasing the initial 
first-person perspective (from the same starting position) across the three buildings conditions. In the Base-case 
(left; (a)), there is no information available what is behind walls. In the Atria treatment (middle; (b)), holes in 
the ceiling partially reveal the floor above. In the Glass treatment (right; (c)), the stairs are visible through the 
glass walls.

Table 5.  Overview of background expectations. Tasks are distributed across different floors and are assumed 
to raise certain expectations for participants. We also differentiate the tasks expectations according to how 
locatable they are. *Assumed.

Task True location *Expected floor *Expected horizontal position *Discoverability potential

Office Third floor Undefined Enclosed, remote Low

Patio Fourth floor Undefined Central, outdoor Low

Reading area Second floor Close to ground floor Enclosed, accessible Medium

Study area Ground floor Close to ground floor Enclosed, accessible Medium

Auditorium Ground floor Ground floor Central, accessible High

Roof terrace Fifth floor Top floor Central, outdoor remote High
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‘within-floor tasks’, and to tasks in which the destination is at a different floor from that of starting position as 
‘between-floor tasks’. Tasks were designed to trigger different background expectations, see Table  5. In general, 
the tasks vary from wayfinding towards highly unique destinations such as an auditorium to more generic ones 
such as an office. We ranked these destinations according to their discoverability potential, see Table 5, following 
findings  from49 suggesting that specific building destinations invoke stronger or weaker background exceptions.

Dataset description
From the Zollverine experiment, a dataset describing wayfinding behavior in the three building conditions has 
been  generated74 and was used  in12 to validate a cognitive agent model. In this paper, we present an extended 
and newly annotated wayfinding  dataset75 used to test several hypotheses concerning the effect of visibility and 
background expectation on wayfinding behaviour. The new dataset consists of 890 records (rows) and 53 vari-
ables (columns). This derivative dataset focuses only on the wayfinding task and includes newly computed vari-
ables that are the result of post-processing analysis. In this paper, we focus on analysing a subset of 12 variables 
presented Table 6. These include metadata on the participants, general task completion information and newly 
calculated metrics based on visibility and multi-level behaviour. A description of each column in the complete 
dataset and the overall format of the data are presented in Table S1 and Table S4 in the supplementary materials. 
Descriptive statistics for the dataset are provided in the supplementary materials (see section S1.2).

To analyze how how visibility and task-related background expectations affected wayfinding efficiency and 
strategy, specific variables were calculated from the raw data. With respect to wayfinding efficiency, for each 
trial (i.e., one wayfinding task) the Total Distance from the starting point to the destination was calculated. This 
measure captures the efficiency of finding one’s way, assuming that shorter distances correspond with more 
efficient wayfinding. With respect to wayfinding strategy, for each trial, the percentage of time the participant 
spent inside the two circulation cores was also calculated. This measure captures the relative part of the path 
spent moving between floors. It is also indicative of a ‘between-floor’ search strategy given that the stairs inside 
the circulation cores are the only means of vertical movement. For simplification purposes, it is assumed that 
upon entering the circulation cores, participants performed, or intended to perform between-floor movement 
disregarding their speed (i.e., walking or idle) once inside the cores.

Analysis
To analyse how visibility and background expectations affect wayfinding efficiency and wayfinding strategy, 
the main independent variable of interest was the Visibility-Treatment applied to the building (Base-case, Atria, 
Glass, see Fig. 9). The wayfinding Task was considered a secondary independent variable of interest (i.e., tasks 
differ with respect to their destination being the Auditorium, Reading Area, Study Area, Office, Patio, or Roof 
Terrace, each of which is assumed to invoke different background exceptions). Based on the literature and our 
own expectations, the following hypotheses were set a priori:

• (H1) Wayfinding efficiency and wayfinding strategy will be affected by the background expectations people 
have regarding the location of each destination (i.e., wayfinding tasks), resulting in a significant correlation 
between the relative pattern measures for different destinations across building conditions.

• (H2) The Glass treatment revealing the location of the stairs will have a significant effect on wayfinding 
distance performance, resulting in more efficient wayfinding when compared to the control condition (i.e., 
Base-case). In contrast, the Atria treatment will not have a significant effect on distance performance when 
compared to the control condition.

Table 6.  Variables overview. This table presents the 12 selected variables for this study extracted from the 
complete dataset with 890 records and 53 variables that was generated on the basis of the VR experiment raw 
data  by12.

Variable Description

participant Anonymized participant identifier

task  A semantically defined destination to be reached (e.g., roof-terrace, patio, office, auditorium,reading area, study area)

task_order The chronological order in which this task was executed

total_distance Distance walked by the participant in meters

total_time Total time taken to complete the task in seconds

building Building condition in which this task was executed (i.e.. Base, Atria or Glass)

age Age of the participant

gender Gender of the participant

average_speed Average participant movement speed inside the VR environment

view_volume_average Camera view volume minus obstacles limiting this view volume averaged along the path

time_percentage_between_floors Percentage of time the participant was in the stairs during a task

distance_percentage_between_floors Percentage of the distance along the participant path that was recorded on the stairs

time_to_stairs Time in seconds to reach a staircase
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• (H3) The Glass treatment will have a significant effect on the type of wayfinding search strategy employed, 
resulting in increased ‘between-floor’ search as opposed to ‘within-floor’ search when compared to the con-
trol condition. In contrast, the Atria treatment will not have a significant effect on wayfinding strategy when 
compared to the control condition.

• (H4) The distribution of paths will be significantly different between the Glass condition and the two other 
building conditions (Base-case and Atria).

Linear mixed effects regression
We test H1, H2 and H3 through Linear Mixed Effects Regressions (LMER) because participants repeatedly per-
form wayfinding in the same environment. The random effect allows us to capture the participants’ individual 
 differences92 in the data across the different tasks. The LMER use two dependent wayfinding behavioral meas-
ures: (1) Total Distance and (2) Percentage of Time Spent Between-Floors. With regards to wayfinding efficiency 
(H2), the dependent variable of interest was Total Distance. With regards to wayfinding search strategy (H3), the 
dependent variable of interest was Percentage of Time Spent Between Floors. To validate our results we applied 
a form of  triangulation93 by choosing analyses with different  assumptions94. Specifically, we employed different 
alternative independent variables and explain the choice and results in the Supplementary Materials.

The models for our LMER analysis is as follows:

Our models test the effects of age, gender and the interaction between visibility treatments and task, fixed effects, 
on wayfinding efficiency (1) and strategy (2). This allows as to take account of individual differences between 
 participants95. We compare our models with potential alternative explaining models in the Supplementary Mate-
rials. There, ANOVAs have identify the presented models as best fits. Ignoring the individual differences of 
 participants92 with a linear model formulation does not perform better than LMER (see Tab S7). Furthermore, 
we compare the LMER models to discern whether covariates on age and gender which typically attributed as 
sources for individual  differences92 improve our models (see Table S8). We observe that only for Velocity and 
the Time to Move up, the models with covariates significantly improve the model fit. These small impact of 
covariates on the individual performance may be explained by the motivated nature of this  experiment96 and 
the non-representative range of the covariates.

The wide variance in task design requires us to analyse the data for each treatment and task jointly as an 
interaction effect. To overcome interpretability issues of complex models, we opt to represent results as mar-
ginal effects. In principle, marginal effects look at how the outcomes changes for different levels of interacting 
independent variables (covariates). Without interaction terms, marginal effects equal the regression coefficients. 
However, the term marginal effect is often ill-defined77 and therefore we need to clearly delineate which form has 
been used. We opt for Average Marginal Effects (AME)97 and Marginal Effects at the Mean (MEM)78 because both 
are  common98. MEM is simpler as predicted values for task and visibility treatment are compared to the average 
response across all respondents. However, the average response may not exist in real  data79 and is therefore rather 
abstract in its implication for the real world.

In contrast, AME tries to improve this by calculating a model prediction for all real  inputs99 instead of the 
average in MEM. The advantage is that (treatment) groups may present ideosyncracies that are not captured with 
a global mean of a variable. The averages for the prediction are then constructed for each group and in our case 
over task and visibility treatment. We compare AME and MEM for our wayfinding efficiency measures in Figure 
S2 and our wayfinding strategy measures in Figure S3. First, we notice that the overall pattern between visibility 
treatments remains visually similar across AME and MEM. However, there is a slight difference in values that 
is visually notable for time and velocity. Nonetheless, the type of marginal effects does not impact the overall 
outcome. For the models with a significant improved fit with covariates, we investigate the marginal effects and 
observe, that only for velocity under AME we find a large substantial impact of covariates.

Finally, we are comparing our triangulation  measures93 to determine whether our effects are robust to dif-
ferences in measurement. We replace our dependent variable with different measures that we expect to perform 
similar. First, for wayfinding efficiency, we find that distance and total time have very similar patterns at different 
scales. Velocity has a different pattern but also shows that glass is different. Distance produces the substantially 
largest difference between treatment conditions and is selected for the main analysis. Second, for wayfinding 
strategy, we find all measures produce a similar pattern (with Time to Move up being on an inverted scale). The 
ratio measure has a lower response strength for one task (Reading Area) but stronger responses for other tasks 
(Office, Patio, and Roof Terrace). We find that the percentage measure has the smallest confidence intervals and 
select it for the main analysis. We believe that across measures and methods we can show robust results for our 
main claims. The robustness of the models and a detailed model comparison with linear models is shown in the 
Supplementary Materials S2.

Kernel density estimates
The trajectories, shown in Fig. 2, are aggregated by visibility treatment into Kernel Density Estimates (KDE) to 
differentiate physical presence in different sections of the building.

To test H4, we compare these trajectory distributions using a KDE  test80,81 with the R package  ks100. Two KDEs 
are compared with a discrepancy  measure101 that compares intra-sample differences to inter-sample  differences80. 

(1)Total Distance ∼ Visibility Treatment ∗ Task+ Age + Gender + (1|Participant)

(2)%Time Between Floors ∼ Visibility Treatment ∗ Task+ Age + Gender + (1|Participant)
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We test H4 on the KDE of participant trajectories using a closed-form, non-parametric, asymptotically normal, 
density-based  framework100, see Supplementary Materials S3 for detailed formulas.

To account for multiple comparisons, we apply the Benjamini-Hochberg  correction102. This type of correc-
tion reduces false discovery rates by applying an increasing penalty depending on the rank of the p-values from 
highest to lowest.

K-means clustering of wayfinding paths
The input for the K-means clustering process comprised participants’ spatial wayfinding paths. To construct 
feature vectors representing these paths, we followed the methodology outlined  in42. Specifically, we divided each 
path into 25 segments and computed the centroid, which includes coordinates (x, y, z), of each segment. This 
resulted in a detailed feature vector for each participant, encapsulating their path for each of the six wayfinding 
tasks. These individual task-based feature vectors, consisting of the coordinates of the 25 segments, were then 
concatenated to create a comprehensive feature vector representing a person’s paths across all six wayfinding 
tasks. To enhance the clustering performance and reduce dimensionality, this feature vector was projected into 
two dimensions using UMAP, a technique known for preserving data structure  effectively103,104. The determina-
tion of the optimal number of clusters for the subsequent K-means clustering was informed by silhouette scores 
(see Supplementary Materials, Figure S4, which assessed the separation of data points within clusters relative to 
neighbouring clusters. The silhouette scores exhibited variations with respect to the number of clusters, with the 
highest score observed for two clusters (0.8018), indicating meaningful distinctions between participant groups.

Ethical approval
The research with human participants was approved by the Research Ethics Committee of ETH Zürich (2020-N-
24). The participants were informed on the study goal and gave informed consent and accepted the publication 
of appropriately anonymised data.

Data availibility
The open-source extended wayfinding dataset used for analysis is available  on75.
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