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Automatic enhancement 
preprocessing for segmentation 
of low quality cell images
Sota Kato 1* & Kazuhiro Hotta 2

We present a novel automatic preprocessing and ensemble learning technique for the segmentation 
of low-quality cell images. Capturing cells subjected to intense light is challenging due to their 
vulnerability to light-induced cell death. Consequently, microscopic cell images tend to be of low 
quality and it causes low accuracy for semantic segmentation. This problem can not be satisfactorily 
solved by classical image preprocessing methods. Therefore, we propose a novel approach of 
automatic enhancement preprocessing (AEP), which translates an input image into images that 
are easy to recognize by deep learning. AEP is composed of two deep neural networks, and the 
penultimate feature maps of the first network are employed as filters to translate an input image 
with low quality into images that are easily classified by deep learning. Additionally, we propose an 
automatic weighted ensemble learning (AWEL), which combines the multiple segmentation results. 
Since the second network predicts segmentation results corresponding to each translated input 
image, multiple segmentation results can be aggregated by automatically determining suitable 
weights. Experiments on two types of cell image segmentation confirmed that AEP can translate low-
quality cell images into images that are easy to segment and that segmentation accuracy improves 
using AWEL.

In recent years, segmentation tasks that assign class labels to each pixel in an image have become important in 
the field of medical and biological  images1–6. Cell image segmentation is subjective because it has been performed 
manually; however, deep learning can obtain objective results. Many segmentation methods have been proposed 
for medical and biological  images7–15, and further, it is more diverse and suitable for real-world environments is 
attracting attention such as instance  segmentation16, 3D  segmentation17,18, segmentation and  tracking19, few-shot 
 segmentation20, semi-supervised  segmentation21, and lightweight model for  segmentation22.

However, low quality image, which is the serious problem with real-world dataset in cell biology, has not been 
discussed. The segmentation accuracy of deep learning methods depends on the quality of the input images. In 
particular, cell images are of low quality, because cells die under strong light. To achieve high accuracy in cell 
image segmentation, appropriate image preprocessing is required for a deep learning model to easily understand 
the given input.

Moreover, few studies have focused on preprocessing suitable for deep learning. Typically, classical preproc-
essing methods, such as a Gaussian  filter23 and bilateral  filter24, are used. Although these methods can remove 
noise from images, the quality of the preprocessed images depends on hyperparameters, and their suitability 
for deep learning is difficult to conclude. Alternatively, in terms of clarifying the images, many image super-
resolution methods have been  proposed25–32. These methods require high-quality teacher images, and preparing 
these images requires considerable time and computational cost. In addition, preparing high-quality images for 
cell images is difficult because cells die under strong light.

Therefore, we present a novel automatic pre-processing method for cell image segmentation using deep learn-
ing. Figure 1 presents examples of a low-quality cell image and penultimate feature map when the cell image 
is input into a model based on a convolutional neural network (CNN) trained on a cell image segmentation 
dataset. As shown in the yellow frame in Fig. 1, the penultimate feature map can capture cell membranes and 
nuclei that are not clear in the low-quality image. This result shows that the feature map of the CNN contains 
useful information for segmentation that is difficult to observe in low-quality images. Based on this analysis, we 
present a novel preprocessing method called automatic enhancement preprocessing (AEP).
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Figure 2 shows an overview of AEP. AEP consists of two deep neural networks. The first network is used for 
semantic segmentation, and the penultimate feature maps in the first network are used as filters to translate an 
input image into images that are easy to segment. The number of channels for the penultimate feature maps is 
the same as that for the segmentation classes, and the input cell image is translated into multiple images that 
emphasize each class. The second network is used to segment the images generated by the first network. The 
low-quality input cell image is translated by the filter, and the translated image was fed to the second network 
for segmentation.

Furthermore, we present automatic weighted ensemble learning (AWEL) to aggregate multiple segmented 
images generated by the first and second networks. Using AWEL, suitable weights are automatically determined, 
and the segmentation accuracy is further improved.

We conducted experiments to evaluate the proposed methods on two cell-segmentation datasets that distin-
guish cell images into multiple categories. The results confirmed that AEP can translate low-quality cell images 
into images that are easy to segment and that the segmentation accuracy improved using AWEL. Furthermore, 
add  to33, we compared AEP with various previous network  architectures15,34 and conventional preprocessing 
 methods23,24,35,36, and analyzed AEP and AWEL architectures, which are the effectiveness of AWEL, the number 
of translation filters, and the difference of output between the first network and the second network, to confirm 
their effectiveness.

The remainder of this paper is organized as follows. Section "Related work" presents related work. Section 
"Method" explains the proposed method in detail. Section "Experiments" presents the experiment results. Finally, 
we summarize the study and discuss future work in Section "Discussion".

The main contributions of this study are summarized as follows:

Figure 1.  Examples of cell image and its penultimate feature map. (a) Low-quality cell image as input. (b) One 
of the penultimate feature maps when the cell image is fed to a model based on a CNN.

Figure 2.  Overview of AEP. AEP consists of two deep neural networks. The first network preprocesses images, 
and the second network segments the images generated by the first network.
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• We present a novel automatic preprocessing method called AEP. The penultimate feature maps in the first 
network are used as filters to translate an input image into multiple images that emphasize each class, and 
the translated image is fed to the second network for semantic segmentation. We can obtain high-quality 
segmentation results using AEP even with low-quality input.

• Furthermore, we present AWEL to aggregate multiple segmentation results to determine suitable weights 
automatically. Consequently, the accuracy can be improved better than the general ensemble learning.

Related work
Biological image segmentation
In cell biology, semantic segmentation is a crucial task because segmentation results must be easy for humans to 
 understand37–39, and deep learning methods have been widely  spread20,40 because it can achieve higher accuracy. 
Further, in recent studies, it is more diverse and suitable for real environments is attracting attention such as 
instance  segmentation16, 3D  segmentation17,18, segmentation and  tracking19, few-shot  segmentation20, semi-
supervised  segmentation21, and lightweight model for  segmentation22.

Recently, U-Net10 structure is a well-known segmentation method used in cell biology and medical image 
processing. It is an encoder-decoder network, and in the encoder, the features of an input image are extracted by 
convolution. Fine information, such as the correct object position, is lost during downsampling. In the decoder, 
skip connections are introduced at each resolution. Skip connections concatenate the feature maps obtained by 
the encoder with those of the same resolution in the decoder. Consequently, the fine information and correct 
positions lost during feature extraction can be used effectively. Furthermore, many network structures based 
on U-Net for improving accuracy have been  proposed11,12,14,15,41. Li et al.11 proposed UNet++, which consists 
of U-Net with varying depths and whose decoders are densely connected at the same resolution using rede-
signed skip pathways. UNet++ addresses two key challenges: the unknown depth of the optimal architecture 
and unnecessarily restrictive design of the skip connections. Li et al.15 proposed shape-attentive U-Net (SAU-
Net), which focuses on model interpretability and robustness. SAUNet attempts to address the aforementioned 
limitations using a secondary shape stream that captures rich shape-dependent information in parallel with a 
regular texture stream.

Although there are many studies focusing on real environments in the biological imaging, there is little study 
into low image quality, which is the biggest issue in real environment images. Many segmentation methods also 
have been proposed for improving network structures to achieve the highest accuracy. However, the accuracy of 
biological segmentation depends on the input image quality. Our approach specializes in segmenting low-quality 
cell images, and it can translate input images into images that a CNN can easily classify.

Image preprocessing
Image preprocessing methods include resizing, cropping, and color correction. Noise reduction is widely used 
for low-quality images. The most classical method for noise reduction is  filtering23,24,35. Gaussian and bilateral 
 filters23,24 can blur low-quality images and reduce noise, and the Sobel  filter35 can emphasize object boundaries. 
However, the optimal parameters of these classical filters must be adjusted manually, and these parameters are 
sometimes unsuitable for deep learning.

Super-resolution methods that use deep  learning25–32 are conceptually similar to the proposed method. Ledig 
et al.27 proposed SRGAN, which is a generative adversarial network for image super-resolution. SRGAN recovered 
photorealistic textures from heavily downsampled images on public benchmarks and achieved impressive gains 
in perceptual quality. Zhan et al.29 proposed very deep residual channel attention networks (RCAN) for image 
super-resolution. RCAN achieved higher accuracy and visual improvements compared with state-of-the-art 
image super-resolution methods. However, these methods require high-quality teacher images whose prepara-
tion is cost- and time-intensive. Recently, unsupervised super-resolution methods have been  proposed31,32, but 
their image quality has been insufficient. Thus, using them to preprocess low-quality microscope images is dif-
ficult. GPU memory is also a problem because conventional networks for super-resolution enlarge the images.

Furthermore, a recent study proposed a learned image resizer using deep  learning42. However, although this 
method is useful for image classification, it is ineffective for semantic segmentation.

Selecting a suitable preprocessing method is important for solving the actual cause of low-quality cell images. 
Unlike conventional methods, our proposed method can automatically preprocess cell images and simultane-
ously improve segmentation accuracy.

Method
Ethics
In our study, no patient-related images are taken during the experiments. For the mouse liver cell image  dataset43, 
the animal protocols were reviewed and approved by the Animal Care and Use Committee of the Kyoto University 
Graduate School of Medicine (No. 10584), and all methods were performed in accordance with the guidelines 
and regulations.

Automatic enhancement preprocessing (AEP)
We propose an unsupervised image translation method that uses deep learning to make an input image more 
suitable for segmentation. Figure 3 shows an overview of the proposed method. First, filters for translating input 
images into images suitable for segmentation are generated by the penultimate feature maps in the first network 
for cell image segmentation. The size of channels in the generated filters are the same as the input image. Because 
the first network outputs a segmentation image, the generated filters contain useful information for segmentation 
and emphasize objects related to the segmentation result. In this study, we call this is an automatic enhancement 
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preprocessing using deep learning. We do not require high-quality ground truths to generate filters, and the 
method of generating filters for an input image to improve segmentation accuracy is also trained automatically.

When there are N datasets ({xk , yk}k=1...N ) of images xk and their labels yk , we show the translation equation 
from the input image with low quality to translated images in Eq. (1).

where x̂ is the translated image, f ′1 is the first network as the translation function, and c is the number of transla-
tion filters. The filters generated by penultimate feature maps of the first network are added to the input image xk , 
and translated images ˆxkc that emphasize important regions are generated. However, if the filters contain negative 
values, the shapes of objects reflected in the input images may be erased. Therefore, we use the ReLU function 
before the filter output to avoid negative information in the filters. Finally, translated images are normalized 
from 0 to 1 using a sigmoid function because the luminance value is too large to interfere with learning. The 
generated filters are added to the input image, subsequently, and the translated images ˆxkc are fed to the second 
network f2 for cell image segmentation. Because the number of translated images is the same as the number of 
translation filters, we feed each translated image to the second network f2 independently, and the second network 
outputs multiple segmentation images. The segmentation results obtained from each translated image are differ-
ent because each translated image differs from the original image. Finally, the segmented images generated by 
both the first network f1 and the second network networks f2 are aggregated using AWEL, and we generate the 
final segmentation image zk as shown in Eq. (2).

We reduce the total error by aggregating the segmentation outputs. Both networks for filter generation and 
segmentation are simultaneously trained to generate highly accurate segmentation results.

For semantic segmentation, we use the softmax cross-entropy loss for all outputs in Eq. (3).

where C is the number of categories in the dataset, ykc is the teacher label, and pkc is the probability value after 
a softmax function as pi = ezi∑

j e
zj  . Further, zi is the i-th element of z , which is an output vector of the deep neural 

network. Equation (4) shows the final loss function.

(1)ˆxkc = xk + Sigmoid(ReLU(f ′1(xk)c)

(2)zk = AWEL(f1(xk), f2( ˆxk1), ..., f2( ˆxkc))

(3)CE Loss = −

N∑

k=1

C∑

c=1

ykc log pkc

Figure 3.  Overview of AEP+AWEL architecture. When we use a segmentation dataset of three classes, we set 
three translation filters. Each translation filter is added to an input cell image, and we obtain three translation 
images. Each translation image emphasizes objects related to the segmentation result. Translated images are fed 
to the second network one-by-one for segmentation, and we compute the loss for all segmentation images using 
AWEL.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3619  | https://doi.org/10.1038/s41598-024-53411-7

www.nature.com/scientificreports/

where CELossn1 is the error of the first network output, CELossn2 is the error of the outputs aggregated by AWEL, 
and CELossn3c is the error of the second network against the c-th translated image.

Automatic weighted ensemble learning (AWEL)
The aim of ensemble learning is to aggregate the multiple segmentation images generated by the first and sec-
ond networks into one segmentation result to improve segmentation accuracy. The ensemble has two types of 
averages: learning normal and weighted. In general, the weighted average is better if we assign large weights to 
important elements. However, determining suitable weight values is difficult. Therefore, we propose weighted 
ensemble learning, which automatically determines the weights using a 3D convolution layer.

Figure 4 shows the architecture of the weighted ensemble learning. The shape of each segmentation result 
of the first and second networks is [C ×H ×W] , where H and W are the height and width of the output image, 
respectively, and C is the number of classes. All outputs are aggregated as [S × C ×H ×W] , where S is the 
number of outputs. Here, we use a 3D convolution layer with 1× 1× 1 kernels, a stride of 1, and padding of 0. 
This is called point-wise 3D convolution. Point-wise 3D convolution calculates only the channel direction. We 
can integrate this convolution layer into the aggregated array by replacing [S] in the aggregated array with the 
channel direction. Therefore, we can assign a weight wi , as in Fig. 4, to each segmentation output [C ×H ×W] 
through training, and automatically generate the final segmentation result from [S] results.

Network structures
Figure 5 shows an overview of the network structures. Our networks use encoder-decoder structures. We used 
a lighter structure than that of the original U-Net10 to reduce the number of calculations because we trained 
two types of networks simultaneously. As shown in Fig. 5, the encoder layer includes one convolution layer, 
batch  normalization44, activation ReLU, and  dropout36. The decoder layer includes a deconvolution layer, batch 
normalization, activation ReLU, and dropout. The encoder and decoder blocks consist of two encoders and two 
decoder layers, respectively. Although one encoder or decoder block consists of three convolution layers in the 
original U-Net, we remove convolution layers individually, including the encoder and decoder blocks, and the 
bottom-most block of the encoder consists of one encoder layer. The encoder network consists of one input layer 
and six encoder layers, and the decoder network consists of six decoder layers. Skip connections are introduced 
at each resolution.

(4)Loss = CE Lossn1 + CE Lossn2 +

C∑

c=1

CE Lossn3c

Figure 4.  AWEL architecture using 3D convolution layer. In the segmentation of three classes, we prepare four 
segmentation outputs. The first network generates one segmentation result, and the second network generates 
three segmentation results. To aggregate all outputs and generate the final segmentation results, we use weighted 
ensemble learning. Weights are automatically determined by 3D convolution.
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In the first network, the output layer consists of two convolution layers. The outputs of the first convolution 
layer are used to translate an input image, and the output of the second convolution layer are used to predict each 
class. In the second network, only one convolution layer is used for semantic segmentation.

Experiments
Datasets
We used 50 cell images of a mouse liver with a ground truth attached by Kyoto  University43. The ground truth 
image includes three labels: cytoplasm, nucleus, and membrane. The images and ground truth have a size of 
256× 256 pixels. Thirty-five images were used for training, five for validation, and the remaining 10 images for 
evaluation. We used 5-fold cross validation while replacing images for evaluation.

We also evaluated our method on another cell-image dataset. We used absorbance microscopy images of 
human iRPE cells (iRPE dataset)13. The ground truth includes two types of labels: background and membrane. 
The images were split into 1032 regions of 256× 256 pixels and their corresponding ground truths. We randomly 
rearranged the images, divided each dataset into 2 to 1 in numerical order, and prepared them as training or 
inference data. We divided the inference data into validation and test data (1:2) and used 3-fold cross validation 
while switching the training and inference data.

Additionally, we used 2D electron microscopy images of the ISBI2012 challenge (ISBI2012)45 as a pseudo 
low quality dataset. This dataset is for binary segmentation of tubular structures spread over an image, i.e., cell 
membrane and background. We processed the original cell images in three ways to create three types of pseudo 
low quality cell images: (1) adding the random noise, (2) changing the contrast, and (3) adding the blur. For 
the random noise, we used the Gaussian noise ( µ = 0 , σ = 100 ). For changing image contrast, we also used 
the Gaussian noise ( µ = −100 , σ = 0 ), and we used a Gaussian filter (kernel size = 5) to add the blur. Since the 
resolution of ISBI2012 image is 512× 512 , we cropped a region of 256× 256 pixels from the original images due 
to the limitation of GPU memory. There is no overlap for cropping areas, and consequently, the total number of 
crops is 120. We randomly rearranged the images. Afterward, we divided each dataset into 2 to 1 in index order 
and prepared them as training or inference data, and used 3-fold cross validation while switching the training 
and inference data.

Figure 6 shows examples of cell images in the three datasets and their ground truths. Figure 6a shows a 
mouse liver cell image and its ground truth with three classes: cell nucleus (red), cell membrane (blue), and 
cytoplasm (green). Figure 6b shows a human iRPE cell image with two class labels: cell membrane (white) and 
background (black), and Fig. 6c shows ISBI2012 dataset with pseudo low quality: cell membrane (white) and 
background (black).

Training conditions and evaluation metrics
The images were normalized between 0 and 1, and no other preprocessing was performed. The batch size for 
training was set to 16, and Adam (betas = 0.9, 0.999) was used for optimization. The learning rate was set to 
1× 10−3 . We trained all networks for 300 epochs, which is converged the training loss for all models and 
networks. The experiments evaluated AEP+AWEL and conventional segmentation  networks10,11,14,15,34 without 
preprocessing to demonstrate the effectiveness of AEP and AWEL. Furthermore, we evaluate conventional image 
preprocessing methods based on  filters23,24,35,36,46. All experiments were conducted using the same dataset size, 
optimizer, and number of epochs, and a single Nvidia GTX 1080Ti GPU was used as a calculator.

Figure 5.  Overview of network structures. The proposed method is based on the U-Net architecture. The 
encoder and decoder networks consist of six layers. Each layer includes a convolution layer (Conv), batch 
normalization (BN), activation ReLU (ReLU), and dropout (DP). The first network (Network1) obtains 
segmentation results and translation filters using two output layers, and the second network (Network2) obtains 
segmentation results at the output layer.
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The segmentation accuracy of each class was evaluated using the interactive over union (IoU) and Dice score 
coefficient (DSC). The IoU and DSC compute the overlapping ratio between the predicted result and ground 
truth. Because the number of pixels in each class was different, we used the average score as the final evaluation 
measure.

Results on cell image with low quality
Comparison with conventional models
Table 1 shows the segmentation results for the mouse liver cell image dataset. We evaluated the conventional 
 methods10,11,14,15,34 and AEP+AWEL. The AEP+AWEL method improved the IoU by approximately 1.41% for 
cell nuclei and 2.95% for cell membranes compared with U-Net without preprocessing. The DSC of our method 
improved by approximately 1.04% for cell nuclei and 3.00% for cell membranes. The average IoU improved by 
approximately 1.63%, and the average DSC by approximately 1.48%. Surprisingly, the ground truth was not used 
for translated images, but adequate preprocessing for segmentation was realized. This result demonstrates the 
effectiveness of the proposed automatic preprocessing method.

We also evaluated the proposed method using cell membrane datasets. Table 2 shows the results for the 
human iRPE cell images. The AEP+AWEL method improved the IoU by approximately 2.55% and the DSC by 
approximately 2.24% for cell membranes. The average IoU improved by approximately 1.19% and the average 
DSC by approximately 1.07% compared with the baseline U-Net without preprocessing. The results demonstrate 
that the proposed method is effective for other cell-image datasets.

Figure 7 visualizes the segmentation results for the two types of cell-image datasets. Focusing on the yellow 
squares in Fig. 7, the proposed method can segment cell membranes that conventional U-Net and SAUNet 

Figure 6.  Examples of cell images and their ground truths in two datasets. (a) shows the cell image of a mouse 
liver with three class labels: cell nucleus (red), cell membrane (blue), and cytoplasm (green). (b) shows a human 
iRPE cell image labeled as: cell membrane (white) and background (black). (c) shows ISBI2012 dataset with 
pseudo low quality: cell membrane (white) and background (black).

Table 1.  Comparison between the conventional and proposed methods on the cell image dataset of mouse 
livers. Significant values are in bold.

Methods

IoU (%) DSC (%)

Average Cytoplasm Membrane Nucleus Average Cytoplasm Membrane Nucleus

U-Net 57.90±1.33 71.38±4.80 40.32±3.84 62.01±2.65 72.36±0.73 83.21±3.31 57.36±3.95 76.52±2.01

U-Net++ 57.29±1.23 71.38±4.67 39.80±4.20 60.68±3.16 71.84±0.59 83.21±3.22 56.82±4.35 75.48±2.42

Attention U-Net 58.06±1.21 71.98±3.83 40.00±3.49 62.19±2.79 72.46±0.69 83.65±2.58 57.06±3.64 76.65±2.08

U-Net+++ 56.80±1.24 72.60±3.77 37.18±4.95 60.63±2.58 71.18±1.11 84.07±2.54 54.01±5.33 75.45±2.00

SAUNet 58.47±1.80 72.13±3.43 41.71±2.26 61.58±3.75 72.92±1.17 83.76±2.32 58.83±2.26 76.16±2.84

AEP+AWEL 59.53±1.72 71.91±3.91 43.27±2.32 63.42±3.38 73.84±1.06 83.60±2.64 60.36±2.26 77.56±2.50
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cannot segment well. Our method worked well even if the input images differed significantly from the previous 
experiment. The segmentation accuracy of the proposed method is better than those of U-Net and SAUNet 
without preprocessing.

Comparison with preprocessing methods
Table 3 shows the results of conventional image preprocessing methods. We evaluated the conventional filtering 
 methods23,24,35,36 and our automatic preprocessing method. The kernel size of all filtering methods was set to 
3× 3 and 9× 9 . As shown in Table 3, AEP achieved the best accuracy for the two types of cell image datasets. 
For the mouse liver cell image dataset, although conventional preprocessing methods ineffectively improved 
the segmentation accuracy, AEP improved the IoU score of cell membranes and nuclei. On the iRPE cell image 
dataset, although the conventional filtering methods, except the bilateral filter, tended to reduce the accuracy, 
our preprocessing method achieved better IoUs in all classes.

Figure 8 visualizes the results of image preprocessing. Focusing on the yellow squares in Fig. 8, for the mouse 
liver cell image dataset, confirming cell nuclei and membranes with low brightness in the original image was 
impossible. When the median and Gaussian filters were used, noise in the original image was reduced, but the 
output images were blurred. The bilateral filter was nearly unchanged in terms of quality, and the Sobel filter 
emphasized the edges of the object too much and consequently retained its shape as a cell. However, using AEP, 
cell nuclei with low brightness became clear, and cell membranes, which had become similar to noise, were 
more clearly emphasized. Although the cell membranes in the noisy part were difficult for humans to segment, 
we confirmed that the cell membrane is emphasized more by the filter, and the generated filter is suitable for 
segmentation. The IoU on the cell membranes using AEP improved by 2.62%. For the iRPE cell image dataset, 
although the conventional filtering methods were minimally effective, AEP generated a preprocessing image that 
emphasized the cells. These results demonstrate the effectiveness of our translation filter in that the necessary 
information for segmentation in the image is emphasized, and unnecessary information is suppressed.

Table 2.  Comparison between the conventional and proposed methods on human iRPE cell images. 
Significant values are in bold.

Methods

IoU (%) DSC (%)

Average Background Membrane Average Background Membrane

U-Net 62.86±0.37 76.09±0.09 49.64±0.69 76.38±0.32 86.42±0.06 66.34±0.61

U-Net++ 62.33±0.68 74.97±0.68 49.69±0.89 76.04±0.54 85.69±0.45 66.38±0.79

Attention U-Net 63.95±0.45 76.07±0.40 51.82±0.53 77.34±0.35 86.41±0.26 68.26±0.46

U-Net+++ 62.82±0.34 74.96±0.08 50.68±0.61 76.48±0.29 85.69±0.05 67.27±0.53

SAUNet 63.81±0.37 76.08±0.23 51.54±0.56 77.22±0.30 86.41±0.15 68.02±0.48

AEP+AWEL 64.05±0.45 75.92±0.33 52.19±0.75 77.45±0.37 86.31±0.22 68.58±0.65

Figure 7.  Qualitative results. (a) Input image, (b) label annotation, (c) U-Net, (d) SAUNet, and (e) AEP+AWEL 
(Ours).
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Table 3.  Comparison between conventional preprocessing methods. Significant values are in bold.

Methods

Mouse liver cell image dataset iRPE cell image dataset

Average Cytoplasm Membrane Nucleus Average Background Membrane

w/o preprocessing 57.90±1.33 71.38±4.80 40.32±3.84 62.01±2.65 62.86±0.37 76.09±0.09 49.64±0.69

Median filter (kernel size=3) 57.94±1.72 72.55±3.36 39.53±2.81 61.74±3.76 58.10±0.46 73.76±0.21 42.44±0.93

Median filter (kernel size=9) 50.01±2.29 67.59±5.25 32.15±4.22 50.29±4.56 39.38±0.16 62.43±1.18 16.33±1.30

Gaussian filter (kernel size=3) 57.62±1.17 71.79±4.07 40.18±3.95 60.90±1.72 59.50±0.23 74.67±0.18 44.33±0.32

Gaussian filter (kernel size=9) 56.32±1.80 71.12±3.96 38.81±2.62 59.04±3.91 49.80±1.26 69.10±0.74 30.50±3.18

Bilateral filter (kernel size=3) 58.38±1.40 72.60±3.90 40.66±3.47 61.86±2.79 62.88±0.39 75.81±0.31 49.95±0.49

Bilateral filter (kernel size=9) 58.41±1.29 72.22±4.34 40.75±4.10 62.90±2.49 62.90±0.39 76.05±0.06 49.74±0.76

Sobel filter (kernel size=3) 55.13±1.57 70.18±4.42 37.62±2.67 57.59±2.65 50.22±0.64 72.42±0.12 28.02±1.39

Sobel filter (kernel size=9) 55.84±1.95 70.04±3.52 38.62±2.77 58.87±3.05 34.93±0.12 69.86±0.25 0.00±0.00

Frangi/vesselness filter 53.09±0.18 69.43±1.38 32.59±2.41 57.24±3.79 55.27±2.29 72.83±0.93 37.71±2.76

AEP 59.27±1.81 72.40±3.92 42.44±2.27 62.98±3.57 63.81±0.39 75.98±0.32 51.64±0.71

Figure 8.  Visualization results of image preprocessing.
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Results on cell image with pseudo low quality
Table 4 shows the segmentation results for ISBI2012 dataset with pseudo low quality. In Table 4, “Noise” means 
adding Gaussian noise, “Contrast” means changed the image contrast, and “Blur” means used the Gaussian filter 
for the input image to blur. We evaluated the baseline model (U-Net) and our AEP+AWEL using the IoU metric. 
As shown in Table 4, AEP+AWEL improved the IoU by approximately over 1.00% for cell membrane compared 
with U-Net. Consequently, the average IoU improved by approximately 1.66% for the noise, by approximately 
1.74% for the contrast, and by approximately 1.82% for the blur. We believe that these results demonstrate the 
generalization performance of AEP+AWEL.

Figure 9 visualizes the segmentation results for ISBI2012 dataset with pseudo low quality. Focusing on the 
yellow squares in Fig. 8, there are some miss-predictions regions in what is originally the background class as 
a result of pseudo-degradation. However, by using AEP+AWEL, we can be to control over-detection, and get 
a more accurate segmentation result. We confirmed that the generalization performance of our proposed pre-
processing method from a qualitative aspect as well.

Ablation studies
Effectiveness of AEP
Table 5 shows the results of the ablation studies for AEP. We compared our proposed AEP+AWEL with AEP 
used outputs of the first network instead of penultimate feature maps to confirm whether the penultimate fea-
ture maps are the most effective for preprocessing. Furthermore, we also evaluated outputs used the softmax 
layer and the argmax layer. As shown in Table 5, our proposed translation method used the penultimate feature 
maps was the best average IoU, and we consider that this is because the penultimate feature maps can get more 

Table 4.  Comparison between the conventional and proposed methods on the cell image datasets with pseudo 
low quality. Significant values are in bold.

Methods

Noise Contrast Blur

Average Background Membrane Average Background Membrane Average Background Membrane

U-Net 76.34±0.76 88.26±0.34 64.42±1.21 79.24±0.76 89.76±0.43 68.71±1.10 79.40±0.51 89.95±0.29 68.85±0.76

AEP+AWEL 78.00±1.02 88.79±0.54 66.21±1.52 80.98±0.72 90.23±0.38 70.74±1.06 81.22±0.72 90.38±0.37 71.06±1.08

Figure 9.  Qualitative results. (a) Original input image, (b) Input image with pseudo low quality (c) label 
annotation, (d) U-Net, and (e) AEP+AWEL (Ours).
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detailed information as shown in Figure 1. We confirmed that the penultimate feature maps were more effective 
than feature maps of outputs.

Figure 10 visualizes the segmentation results of two networks. As shown in Fig. 10, although the segmenta-
tion result of the first network was that the cell membrane class was interrupted and the accuracy was not good, 
the result of the final output, as shown in Fig. 10d, was better than the result using only the first network. We 
consider that the input image for the second network was emphasized by AEP, translated images were easier to 
discriminate for deep learning, and consequently, the accuracy was improved.

Effectiveness of AWEL
Table 6 shows the results of the ablation studies for AWEL. We evaluated our proposed method without AWEL, 
with AWEL using fixed weights, and with AWL using automated weights. Without AWEL, the output of the 
second network was only one segmented image as the final result. The fixed weights were defined as wi = 1 . Our 
proposed AEP+AWEL method improved the IoU compared with only AEP and AWEL using fixed weights. The 
ensemble learning method that automatically determines the weights was more effective than the fixed-weight 
ensemble learning.

Figure 11a,b visualizes the results of the weights used by AWEL. We plotted the weights of the 3D convolution 
layer for ensemble learning using test images. The weights were the average values for cross-validation. Figure 11a 
shows the mouse liver cell image dataset and Fig. 11b shows the human iRPE cell image dataset. As shown in 
Fig. 11a, the most influential weight for ensemble learning was the third weight. This result demonstrates that 
the AWEL judged the translated input image corresponding to the weight3 is the most important automatically 
in the training stage, and it contributed to the final prediction. In Fig. 11b, although the second and third weights 
are the same, the first weight has a negative value. In both cases, the AWEL weights were unbiased towards a 
certain weight; the final segmentation results could be output using each segmentation result from the first and 
second networks.

Table 5.  Ablation study for ensemble learning. Significant values are in bold.

Methods

Mouse liver cell image dataset iRPE cell image dataset

Average Cytoplasm Membrane Nucleus Average Background Membrane

AEP 59.27±1.81 72.40±3.92 42.44±2.27 62.98±3.57 63.81±0.39 75.98±0.32 51.64±0.71

AEP+AWEL (fixed) 59.41±0.73 72.01±0.73 42.94±0.73 63.26±0.73 63.88±0.48 75.71±0.28 52.06±0.69

AEP+AWEL (automated) 59.53±1.72 71.91±3.91 43.27±2.32 63.42±3.38 64.05±0.45 75.92±0.33 52.19±0.75

Figure 10.  Qualitative results of two networks. (a) Input image, (b) label annotation, (c) Network1, and (d) 
Network2.

Table 6.  Ablation study for preprocessing methods. Significant values are in bold.

Methods

Mouse liver cell image dataset iRPE cell image dataset

Average Cytoplasm Membrane Nucleus Average Background Membrane

Output 57.97±2.10 72.85±3.80 40.63±2.81 62.44±4.30 62.81±0.35 75.85±0.44 50.76±0.27

Output with Softmax 55.23±2.68 72.53±3.24 35.85±4.11 57.32±5.72 62.50±0.32 74.87±0.20 50.12±0.55

Output with Argmax 46.32±6.53 66.19±3.10 39.00±3.89 33.77±17.61 63.04±0.55 75.86±0.20 50.22±1.19

AEP 59.53±1.72 71.91±3.91 43.27±2.32 63.42±3.38 64.05±0.45 75.92±0.33 52.19±0.75
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Validation of the number of translation filters
Figure 12 shows the results of the ablation studies on the number of translation filters for AEP. We compared 
the number of translation filters set to double(×2 ), triple(×3 ), quadruple(×4 ), and quintuple(×5 ) the number 
of segmentation classes measured by the average IoU. As shown in Fig. 12, the best IoU was obtained when we 
set the number of translation filters to the number of classes ( ×1 ) for both cell image datasets. The average IoU 
tended to decrease as the number of translation filters increased. Increasing the number of translation filters is 
expected to result in filters that are unrelated to each object.

Figure 13 shows the visualization results of translation filters using AEP. As shown in Fig. 13, the generated 
filters were the same images when we quintupled the number of segmentation classes as translation filters ( ×5 ). 
Consequently, the enhancement of each class from the segmentation results was less effective. Based on this 
validation, we confirm that the number of translation filters should be set to the same number of segmentation 
classes.

Figure 11.  (a) and (b) are the ablations on weights used by AEP.

Figure 12.  Ablation on the number of translation filters for AEP architecture. The red line is the mouse liver 
cell image dataset, and the blue line is the human iRPE cell image dataset.
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Discussion
In general, although raw cellular images tend to be low quality, all of the publicly available datasets for segmenta-
tion, which are easy to use, are quite clean and easy to train for deep learning models. Then, there are very limited 
of low-quality cellular image datasets for segmentation that can be used, and as a result, we only evaluated on 
two datasets in this study. Furthermore, to confirm the generalization performance of our proposed method, 
we processed publicly available clean cell image datasets to create and evaluate three types of pseudo low quality 
images. As shown in Table 4 and Fig. 9, our proposed method performs well even with pseudo cellular images, 
which we believe demonstrates the generalization performance of the proposed method.

Conclusion
In this study, we focused on a pre-processing method for low quality cell images using deep learning, which has 
not been discussed, and proposed a segmentation method using automatic preprocessing and ensemble learning. 
In experiments on actual cell images, we translated input images into images that are easy to segment, and the 
average IoU improved by approximately 1.63% compared with a segmentation network without preprocessing. 
In addition, the proposed method performed well on another cell image dataset. From evaluation experiments 
using pseudo low quality cell images, we confirmed the generalization performance of our proposed method. 
Although our method uses the ground truth label for training the first network, by combining an unsupervised 
learning approach, it may be possible to add further expressiveness to the automatic preprocessing filter. This 
may further improve accuracy, and it is a subject for future research.

Data availibility
Our code is available at https:// github. com/ usagi sukis uki/ AEP. The mouse liver cell image dataset generated 
and analyzed during the current study is not publicly available. Please request from corresponding  authors27. 
The human iRPE cell image dataset generated and analyzed during the current study is available in the National 
Institute of Standards and Technology: https:// isg. nist. gov/ deepz oomweb/ data/ RPEim plants.
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