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SOC estimation of lead–carbon 
battery based on GA‑MIUKF 
algorithm
Lu Wang , Feng Wang *, Liju Xu , Wei Li , Junfeng Tang  & Yanyan Wang 

The paper proposes a SOC (State of Charge) estimation method for lead–carbon batteries based 
on the GA‑MIUKF algorithm. The GA‑MIUKF algorithm combines GA (Genetic Algorithm) for global 
search and optimization with the MI‑UKF (Multi‑innovation Unscented Kalman Filter) algorithm for 
estimating the SOC of lead–carbon batteries. By establishing an equivalent circuit model for the 
battery, the GA is employed to globally search and optimize the battery model parameters and the 
noise variance parameters in the MI‑UKF algorithm. Comparative analyses with the UKF (Unscented 
Kalman Filter) algorithms and MI‑UKF algorithms reveal that the SOC estimation method based on 
the GA‑MIUKF algorithm yields more accurate results for lead–carbon battery SOC estimation, with an 
average estimation error of 2.0%. This highlights the efficacy of the proposed approach in enhancing 
SOC estimation precision.

Lead–carbon batteries, as a mature battery technology, possess advantages such as low cost, high performance, 
and long lifespan, leading to their widespread application in energy storage and power battery  fields1,2. However, 
in practical engineering, lead–carbon batteries face challenges, such as significant SOC estimation errors, result-
ing in inaccurate estimations that directly impact the performance and reliability of these batteries.

Accurate SOC estimation for lead–carbon batteries is crucial for their daily management and maintenance. 
SOC is a vital parameter representing the remaining charge capacity of the  battery3. Currently, common SOC 
estimation methods include open-circuit voltage method, ampere-hour integration method, and Kalman filtering 
method. He et al.4 proposed an online SOC estimation method for lithium-ion batteries based on the open-circuit 
voltage method. This method models and analyzes the dynamic evolution of SOC based on the relationship 
between the battery’s open-circuit voltage (OCV) and SOC. It derives a recursive function for online identifica-
tion of the battery OCV, establishes an accurate OCV–SOC lookup table, and achieves real-time estimation of 
SOC for lithium-ion batteries.  Reference5 combines Extended Kalman Filtering (EKF) with current integration 
method to estimate the SOC of lithium-ion batteries. This method effectively reduces errors in current integration 
and inaccuracies in model identification. Dai et al.6 use a dual-time-scale Kalman filter to estimate the SOC of 
lithium-ion batteries online. This approach decouples SOC and capacity estimation from both measurement and 
time scale perspectives, significantly reducing the computation time required for obtaining SOC and capacity 
estimates and improving the accuracy and real-time performance of SOC estimation. Li et al.7 propose a SOC 
estimation method based on improved adaptive Unscented Kalman Filtering. This method effectively reduces 
the impact of model and measurement errors on estimation results, enhancing estimation accuracy and stabil-
ity. Liu et al.8 introduce an improved adaptive Extended Kalman Filtering method, incorporating a feedforward 
compensation method to reduce errors in OCV identification. This enhancement improves the SOC estimation 
method based on the open-circuit voltage, effectively minimizing the impact of noise interference on SOC esti-
mation and improving accuracy and stability.

In summary, existing SOC estimation methods for batteries mainly focus on open-circuit voltage, ampere-
hour integration, and filtering algorithms. While these methods improve estimation accuracy and stability to 
some extent, they still face various challenges and issues related to battery operating conditions, battery model 
optimization, and computational resources. Therefore, this paper proposes a SOC estimation method based on 
the GA-MIUKF algorithm, utilizing genetic algorithms for global search and optimization of battery model 
parameters to estimate the SOC of lead–carbon batteries under complex current conditions such as the UDDS 
cycle. During the validation of the algorithm, a comparative analysis of estimation outcomes is conducted for 
the UKF and MIUKF algorithms under identical operating conditions, assessing the accuracy and practical 
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applicability of the proposed methodology. The research findings presented in this paper contribute significantly 
to the ongoing enhancement of efficiency and management proficiency in lead–carbon batteries.

The paper is structured into five sections, outlined as follows:

Introduction: Introduction to the Characteristics of Lead–Carbon Batteries and the Research Background, 
Significance, Objectives, Main Research Content, and Methodology of Battery State of Charge (SOC) Esti-
mation.
Battery modeling: The GNL circuit is chosen as the model for lead–carbon batteries, providing the founda-
tional estimation for subsequent State of Charge assessments.
Methodology: Details the GA-MIUKF method for estimating the SOC of lead–carbon batteries.
Results and Discussion: Battery subjected to HPPC and simulated UDDS tests, combined with identified 
parameter results, compared the estimation results of UKF, MIUKF, GA-MIUKF algorithms under UDDS 
working conditions, and evaluated the accuracy and practicality of the proposed method.
Conclusion: Summarizes the main research content and conclusions of the paper.

Through this structure, the paper aims to conduct an in-depth study and analysis of SOC estimation for 
lead–carbon batteries. It introduces the GA-MIUKF method for estimating the SOC of lead–carbon batteries 
and aims to provide robust support for research and applications in related fields.

Battery modeling
Lead–carbon batteries are commonly used in energy storage applications, and modeling their performance is a 
crucial area of research in battery management systems. The circuit equivalent model is one of the most com-
monly used methods in battery modeling, and the GNL (Gummel-Null Line) equivalent circuit is a specific 
circuit model employed to describe the behavior and performance of batteries during charge and discharge 
 processes9,10. In the equivalent circuit, the charge and discharge processes of the battery can be represented by 
an RC circuit composed of internal resistance and electrochemical capacitance. During discharge, the electro-
chemical potential source indicates that the battery’s potential decreases as the battery discharges. Conversely, 
during charging, the electrochemical potential source indicates that the potential of the charging power supply 
increases as the battery charges. The GNL equivalent circuit model can be utilized to predict the performance of 
lead–carbon batteries under various operating conditions. Figure 1 below illustrates a second-order GNL model 
as the equivalent model for lead–carbon batteries.

The following equations are constructed from the second-order GNL model:

In this model, Ut represents the battery terminal voltage, Uoc is the static electromotive force of the battery, 
I denotes the charging and discharging current of the battery, R0 signifies the contact resistance and internal 
ohmic resistance of various processes within the battery cell, R1 and C1 represent the internal polarization phe-
nomenon of the battery cell, R2 and C2 manifest the internal diffusion phenomenon of the battery, Cb stands 
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Figure 1.  Second-order GNL circuit model of lead–carbon battery.
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for the equivalent capacitance of the battery, and Rs represents the self-discharge resistance of the battery. The 
second-order GNL model can intricately simulate the internal chemical reactions and ion migration of the 
lead–carbon battery. In comparison to traditional circuit equivalent models, it can more accurately predict the 
battery’s performance, thereby enhancing the precision and efficiency of battery management systems.

Methodology
Genetic algorithm for model parameters
The Genetic Algorithm is an optimization algorithm based on the principles of natural evolution and genetic 
 mechanisms11,12. It simulates processes such as selection, crossover, and mutation that occur in biological evolu-
tion. By encoding and evolving candidate solutions, it continuously optimizes and evolves to find the optimal 
solution or an approximate optimal solution. The advantages of genetic algorithms lie in their ability to handle 
complex nonlinear problems, possess global optimization capabilities, and are not constrained by conditions or 
influenced by initial solutions. They can be applied to parameter optimization in the battery parameter identifi-
cation process, specifically using optimization algorithms to search for the optimal parameter solution, thereby 
achieving improved parameter estimation, as illustrated in Fig. 2.

1. Encoding the set of system parameters:
In the process of battery parameter identification, the model parameters of lead-carbon batteries identified 

using the forgetting factor least squares method are encoded into binary. These encoded data will be used to 
assess the accuracy and reliability of battery parameter estimation.

2. Initializing the population:
Utilizing the data of battery model parameters, a set of initial parameter solutions is generated as the popula-

tion. Each parameter solution constitutes a vector of battery model parameters, essentially forming chromosomes.
3. Fitness calculation:
Each individual’s parameter solution is entered into the fitness function to calculate its fitness value, assessing 

its ability to solve the problem. The fitness function is typically defined by comparing the error between model-
predicted values and actual measured values.

4. Selecting the optimal solution:
Through the selection operator, some excellent individuals are chosen from the current population as the 

parents of the next generation. Here, Q and R are covariance matrices used to describe the characteristics of noise 
in the system and measurement process. Q represents the covariance of system process noise, while R represents 
the covariance of measurement noise. The algorithm employs Q = 0.1 and R = 0.001, determined through a 
parameter tuning process. This process involves conducting sensitivity analysis and using genetic algorithms to 
optimize parameters to minimize estimation errors.
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Figure 2.  Genetic algo identification lead–carbon battery parameter flow chart.
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5. Crossover Operation:
Perform crossover operations on the parent individuals to generate new individuals. In battery parameter 

identification, single-point or multi-point crossover operators can be employed, involving the exchange of a 
portion of the chromosome in parent individuals.

6. Mutation Operation:
Apply mutation operations to the newly generated individuals to ensure population diversity, preventing 

convergence to local optima. In battery parameter identification, mutation operations may involve random 
changes at random positions in the chromosome.

7. Obtain a New Population:
Merge the newly generated individuals with the original population to form the new generation.
8. Termination Criteria:
Evaluate whether termination criteria are met, such as reaching the maximum iteration count or achieving 

a sufficiently excellent value for the objective function.
Repeat steps 4–8 until the termination conditions are met. Once the termination conditions are satisfied, 

output the optimal solution or optimal individual as the algorithm’s result, representing the best-estimated 
parameters for the battery.

MI‑UKF algorithm
The MI-UKF algorithm is an improved version of the UKF  algorithm13, utilized for state estimation in systems. 
Compared to traditional Extended Kalman Filter (EKF) and UKF algorithms, the MI-UKF algorithm can more 
accurately estimate the states of nonlinear systems. In the UKF algorithm, a set of Sigma points is chosen to 
approximate the probability distribution of state variables, facilitating state estimation in nonlinear systems. 
However, over time, the number of Sigma points increases rapidly, leading to an escalation in the computational 
complexity of the system. The MI-UKF algorithm addresses this issue by introducing a new information matrix. 
During each measurement, the MI-UKF algorithm utilizes this new information matrix to update the Sigma 
points, reducing their quantity and concurrently enhancing the accuracy of state estimation and computational 
 efficiency14.

Steps in the application of the MI-UKF algorithm for estimating the State of Charge (SOC) in lead–carbon 
batteries:

1. Initialize the mean x0 of the battery state vector X0 and the state estimation error covariance matrix P0.

2. Calculating Sigma points at k-1 moments:
Sigma points are calculated using the predicted state vector and covariance matrix to estimate the nonlinear 

distribution of states.

⌢
xk−1 represents the optimal estimate of the state variables at time k-1, including SOC, Ub, U1, U2; Pk−1 is the 

state covariance matrix at moment k-1;n is the number of dimensions of the state variables;γ is the scaling factor.
3. Status variable update:
The obtained Sigma points are brought into the nonlinear equation xι,k/k−1 = F

(

xι,k−1, uk
)

 to calculate the 
predicted values of the mean and covariance of the state variables at moment k:

where Qk−1 and Rk−1 are the process noise covariance and measurement noise covariance of the previous 
moment, respectively.
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m in Eq:
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4. Predictive measurement vectors:
The Sigma points are transformed using the measurement function to obtain the predicted measurement 

vector.

5. Update state:
Utilize the difference between the measured value and the mean of the predicted measurement vector, along 

with the Kalman gain, to update the state vector and the state covariance matrix.
Kalman filtering gain update:

New Interest Sequence: The new interest ek represents the difference between the predicted value and the 
actual observed value.

State variable estimation update:

Covariance estimation update:

GA‑MIUKF algorithm
The GA-MIUKF algorithm combines Genetic Algorithm, multi-innovation Unscented Kalman Filter, and system 
identification techniques to address state estimation problems in systems with nonlinearity and non-Gaussian 
characteristics. The GA-MIUKF algorithm utilizes Genetic Algorithm for global search and optimization of 
system parameters, aiming to achieve more accurate system models and state estimation results. Of particular 
concern is the impact of the initial SOC value and temperature on the GA-MIUKF algorithm. In  literature15, 
research suggests that unknown initial SOC may lead to the algorithm requiring more time to converge when 
estimating the initial state. The filter may need more measurement data to accurately estimate SOC, potentially 
making the estimation system more susceptible to noise and measurement errors, resulting in inaccurate esti-
mates and system instability. Temperature is a crucial environmental factor, and temperature variations can 
alter battery model parameters. Parameters such as internal resistance and open-circuit voltage are typically 
temperature-dependent. If these parameters are unknown in the estimation algorithm, temperature changes 
may introduce model uncertainty, affecting the performance of the estimation  algorithm16.

The GA-MIUKF algorithm for lead–carbon battery State of Charge estimation comprises the following steps:
1. MI-UKF Algorithm Parameter Initialization:Initialize all parameters of the MI-UKF algorithm.
2. Setting System Parameters:
Import the lead-carbon battery model parameters identified using the forgetting factor least squares method 

into the genetic algorithm. These model parameters are designated as the parameters to be optimized by the 
genetic algorithm.

Build the system parameter matrix: ε =
(

R0 R1 R2 Rs Cb C1 C2 Qk Rk
)T.

3. Global Search and Optimization with Genetic Algorithm:
Employ genetic algorithm for global search and optimization of battery model parameters and noise variance 

parameters in the MI-UKF algorithm, aiming to enhance estimation accuracy. The genetic algorithm typically 
involves steps such as initialization, fitness evaluation, selection, crossover, and mutation.

4. Update MI-UKF Algorithm Parameters:
Update the state estimator of the MI-UKF with the optimal system parameters and continue the state estima-

tion process.
5. MI-UKF Algorithm State Estimation for Battery:
Utilize the MI-UKF algorithm for state estimation, comprising prediction and update steps. Initially, based 

on the state and output equations of the GNL battery model, as well as the current and voltage data, obtain the 
previous time step’s state estimate. Predict the current state values based on the previous time step’s state estimate 
and the battery model. Subsequently, update the state values based on the actual measurement data.

The equation of state and the output equation are given by:

(12)W ι
m =

γ

2(n+ γ )
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6. Obtaining the State of Charge (SOC) for Lead–Carbon Battery:
Process the state estimate values to obtain the estimated SOC for the battery. The specific workflow is illus-

trated in the flowchart shown in Figure 3.

Results and discussion
Experiment preparation
The study investigates a single 2 V cell with a capacity of 16.67 Ah. This cell is extracted from the 6-GFM-17 
lead–carbon battery. The experimental testing instrument employed was the CT-8002 battery testing system. 
The lead–carbon batteries were placed inside a constant temperature chamber, and the fixture of the battery 
testing system was attached to the positive and negative terminals of the lead–carbon battery. The battery testing 
system was controlled by a computer to conduct charging and discharging tests on the lead–carbon battery. The 
measurement data and dynamic characteristics of the battery were transmitted to the computer through a data 
acquisition card. The experimental setup of the lead–carbon battery is depicted in Fig. 4.

Battery parameter identification
HPPC testing
For the identification of model parameters, this study employed HPPC (Hybrid Pulse Power Characterization) 
 testing17. The HPPC test is capable of identifying the internal parameters of the battery model, providing reliable 
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battery performance data. It possesses advantages such as non-invasiveness, high accuracy, wide frequency range, 
repeatability, and information richness. The HPPC test allows for the acquisition of the dynamic characteristics 
and internal parameters of lead–carbon batteries. It can assess the performance of batteries under different SOC 
and State of Health (SOH) conditions, offering a more comprehensive dataset. Previous research and industry 
trends have indicated that the HPPC method is an effective choice in this regard. Taking into account experi-
mental conditions, equipment availability, and prior experimental experience, HPPC is the most suitable method 
for our specific research  objectives18.

This study utilized a discharge rate of 0.2C for the battery discharge. Choosing a lower discharge rate helps 
reduce the dynamic response range of the battery during discharge, making the battery’s characteristics easier to 
observe and analyze. This facilitates a more precise investigation into the power characteristics, voltage response, 
and other dynamic features of the battery while mitigating the thermal effects and internal pressure variations 
within the  battery19.

The experimental steps are as follows: Set the temperature of the temperature chamber to 25 °C. ① Rest the 
fully charged 2 V battery unit for 2 h; ② Discharge at 0.2 C (3.34 A) constant current for 10 s; ③ Stand for 40 s; 
④ Charge at 3.34 A constant current for 10 s; ⑤ Stand for 40 s; ⑥ Discharge at 3.34 A current for 30 min; ⑦ 
Stand for 1 h; ⑧ Cycle steps ②–⑦ for 10 times, sampling time is set to 1 s. The HPPC experiment results are 
presented in Fig. 5.

Figure 6 shows a zoomed-in view of the battery terminal voltage curve during the HPPC experiment. Here, 
U0 represents the open-circuit voltage. Due to the compliance with Ohm’s law by the ohmic resistance and 

Figure 4.  Lead–carbon battery experiment site map.
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Figure 5.  Lead–carbon battery HPPC test terminal voltage curve.
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self-discharge resistance, there is an instantaneous change in voltage drop caused by the parallel connection of 
ohmic resistance and self-discharge resistance at the beginning and end of the current pulse. In the GNL model, 
the polarization resistance, represented in parallel as a resistor and capacitor, exhibits a hysteresis process in 
response to the current. Therefore, the voltage drop from U0 to U1 and the voltage rise from U2 to U3 are both 
caused by the parallel connection of ohmic resistance and self-discharge resistance. The segment from U1 to U2 
represents the zero-state response section, while the segment from U3 to U4 represents the zero-input response 
section.

OCV–SOC curve
The OCV curve of the lead–carbon battery is crucial in both equivalent model parameter identification and SOC 
estimation. Typically, the OCV–SOC relationship function serves as a crucial basis for parameter identification 
and SOC  estimation20. This is because the open circuit voltage of the battery is significantly influenced by factors 
such as battery aging (internal resistance), ambient temperature, and SOC. In this experiment, the influence of 
ambient temperature and battery aging on open circuit voltage is disregarded.

At a constant temperature of 25 °C, a fully charged 2 V lead–carbon battery cell was allowed to rest for 24 h 
to achieve internal dynamic equilibrium. Subsequently, a constant current discharge was conducted at a rate of 
0.2 C until the cutoff voltage reached 1.8 V, at which point the discharge was halted.

According to the fitted curve of the lead–carbon battery OCV–SOC depicted in Fig. 7, the OCV–SOC rela-
tionship of the lead–carbon battery demonstrates a generally linear variation. This linear correlation underscores 
the advantageous performance of lead–carbon batteries and is crucial for parameter identification and SOC 
estimation. The data for 11 sets of OCV–SOC curves are presented in Table 1.
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The functional relationship of OCV–SOC is shown in Eq. 20, which is obtained by fitting using the function 
toolbox.

Parameters of GNL model
When estimating the SOC of the battery, it is necessary to identify the relevant parameters of the battery’s second-
order GNL equivalent circuit model. In the system parameter identification process, the recursive least squares 
method with a forgetting factor is employed due to its advantages of not requiring prior statistical knowledge and 
having low computational complexity. In this study, the parameters R0, R1, R2, Rs, Cb, C1, and C2 of the GNL 
model were identified using the recursive least squares method with a forgetting factor. Ten sets of identification 
data are listed in Table 2.

In order to reduce the error of model parameter identification, this paper takes the average value of multiple 
battery parameters obtained by recursive least squares method as the initial value of parameters, the results 
are R0 = 3.74 ×  10−3 Ω, R1 = 2.31 ×  10−3 Ω, R2 = 1.71 ×  10−3 Ω, Rs = 12,646.8 Ω, C1 = 237.79 F, C2 = 12,592.13 F, 
Cb = 24,843.60 F.

UDDS discharge test
To validate the accuracy of the GA-MIUKF algorithm in SOC estimation, this study adopts the Urban Dynamom-
eter Driving Schedule (UDDS) test proposed by the Society of Automotive Engineers (SAE)21. The UDDS test 
simulates the usage scenarios of lead–carbon batteries under different charge/discharge rates, temperatures, 
and cycling conditions, allowing for the assessment of their performance, lifespan, and prediction of real-world 
performance. This is crucial for the selection and application of lead–carbon batteries.The current data for the 
UDDS cycle is scaled based on  literature22, utilizing the actual voltage, current, and capacity of lead–carbon 
batteries. The battery terminal voltage curve is depicted in Fig. 8, and the UDDS cycle current curve is shown 
in Fig. 9. The current curve for a single cycle is illustrated in Fig. 10. In the validation process, the GA-MIUKF 
algorithm will be applied to estimate the SOC of the lead–carbon battery under UDDS conditions, and the results 
will be compared with the actual SOC values to evaluate the accuracy and reliability of the proposed algorithm 
in real-world driving scenarios.

Estimating lead–carbon battery SOC with GA‑MIUKF algorithm
Based on the algorithm described above, a program is developed to import the UDDS simulated test data and the 
parameter data identified from the battery model in Table 2 into the GA-MIUKF algorithm, MIUKF algorithm, 
and UKF algorithm programs. Through online simulation, a comparison is made between UKF and MI-UKF 
in estimating the SOC of the lead–carbon battery. The performance of the GA-MIUKF algorithm in estimating 
SOC under UDDS conditions is evaluated.

The SOC estimation for the lead–carbon battery is conducted in a real-world environment, not just in inter-
mediate states. The averaging method, compared to other common methods, provides more flexibility and 
adaptability, considering changes across the entire SOC range rather than being limited to intermediate states. 

(20)
Uoc(soc) = 63.88× soc7 − 208.3× soc6 + 267.5× soc5 − 171.3× soc4

+ 57.15× soc3 − 9.389× soc2 + 0.659× soc + 1.965

Table 1.  The data of the selected 11 sets of OCV–SOC curves.

SOC (%) 100 90 80 70 60 50 40 30 20 10 0

Voltage (V) 2.137 2.035 2.028 2.021 2.014 2.007 2.000 1.994 1.988 1.982 1.975

Table 2.  GNL model parameters of lead–carbon battery under different SOC.

SOC R0 (Ω) R1 (Ω) R2 (Ω) Rs (Ω) C1 (F) C2 (F) Cb (F)

1 3.59 ×  10−3 1.41 ×  10−3 3.71 ×  10−3 12,657 140.57 9978.52 6674.40

0.9 3.74 ×  10−3 2.57 ×  10−3 2.47 ×  10−3 14,753 126.35 11,363.62 16,686.00

0.8 3.89 ×  10−3 1.74 ×  10−3 1.54 ×  10−3 11,677 381.15 10,808.07 16,686.00

0.7 3.70 ×  10−3 2.38 ×  10−3 1.38 ×  10−3 12,777 359.45 14,064.94 33,372.00

0.6 3.74 ×  10−3 2.97 ×  10−3 2.11 ×  10−3 11,352 211.34 7335.83 33,372.00

0.5 3.89 ×  10−3 1.37 ×  10−3 0.90 ×  10−3 12,447 346.70 17,646.28 33,372.00

0.4 3.74 ×  10−3 3.13 ×  10−3 1.40 ×  10−3 12,886 130.41 12,574.69 33,372.00

0.3 3.74 ×  10−3 3.13 ×  10−3 0.89 ×  10−3 13,629 144.59 18,654.61 33,372.00

0.2 3.59 ×  10−3 2.10 ×  10−3 1.05 ×  10−3 11,952 299.59 10,902.61 16,686.00

0.1 3.59 ×  10−3 1.37 ×  10−3 0.90 ×  10−3 13,348 349.79 18,014.05 33,372.00
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Figure 8.  Terminal voltage curve under UDDS working condition.
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Figure 9.  Discharge current curve under UDDS working condition.
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Figure 10.  Discharge current curve under single UDDS working condition.
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Therefore, selecting the averaging method as the initial SOC value is more conducive to adapting to the battery’s 
behavior at different SOC levels. For a fully charged battery, the default initial SOC is set to 1.

Figure 11 illustrates the battery terminal voltage curve estimated by the GA-MIUKF algorithm. Under varying 
current conditions, the captured battery terminal voltage by GA-MIUKF nearly overlaps with the actual battery 
terminal voltage, demonstrating the tracking and capturing capabilities of the GA-MIUKF algorithm. The SOC 
estimation results for the lead–carbon battery by GA-MIUKF are observed to be accurate.

In this research, the Coulomb counting method was selected for the estimation of the battery’s actual State 
of Charge (SOC). By measuring the integral current within the battery testing system, real-time acquisition of 
the cumulative charge allows for the inference of SOC variations. This approach, characterized by its intuitive 
and efficient nature, synergizes with precise experimental instrument measurements, providing a comprehensive 
understanding of the battery’s dynamic  state23. Figures 12 and 13 depict the comparative curves and error curves 
for SOC estimation of lead–carbon batteries under UDDS conditions using GA-MIUKF, UKF, and MIUKF 
algorithms, respectively.

Utilizing the GA-MIUKF algorithm for State of Charge (SOC) estimation in lead–carbon batteries and com-
paring the results with those obtained from UKF, MIUKF, and actual measurements, the following outcomes were 
obtained: the average error in SOC estimation for the UKF algorithm was 3.5%; for the MIUKF algorithm, it was 
2.7%; and for the GA-MIUKF algorithm, it was 2.0%. Evidently, in comparison to traditional UKF and MIUKF 
algorithms, the estimation results derived from the GA-MIUKF algorithm demonstrate higher precision. There-
fore, the GA-MIUKF algorithm can effectively enhance the accuracy of SOC estimation in lead–carbon batteries.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time(s) 104

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Ba
tte

ry
Vo

lta
ge

(V
)

Actual Value
GA-MIUKF

Figure 11.  Lead–carbon battery terminal voltage curve estimated by GA-MIUKF.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time(s) 104

0

0.2

0.4

0.6

0.8

1

S
O
C

Actual Value
MIUKF
GA-MIUKF
UKF

2.6 2.65 2.7 2.75
104

0.32

0.34

0.36

0.38

0.4

Figure 12.  GA-MIUKF, UKF and MIUKF estimate the SOC comparison curves of lead–carbon batteries.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3347  | https://doi.org/10.1038/s41598-024-53370-z

www.nature.com/scientificreports/

Conclusion
By constructing a second-order GNL equivalent circuit model to simulate lead–carbon batteries and validating 
it in UDDS simulated operating conditions, this experiment’s results demonstrate that using the GA-MIUKF 
algorithm for estimating lead–carbon battery SOC yields more accurate results, with an average estimation error 
of only 2.0%. Compared to traditional UKF and MIUKF algorithms, the SOC estimation method based on the 
GA-MIUKF algorithm better adapts to the characteristics of lead–carbon batteries, significantly improving SOC 
estimation accuracy and stability. This method holds practical value, providing robust support for state estimation 
in high-power energy storage batteries, while also offering substantial assistance in battery parameter identifica-
tion and optimization. Taking into account the diverse computational environments that this algorithm may 
encounter in practical applications, ranging from powerful computing systems to resource-constrained devices, 
the challenges associated with its deployment on different platforms are underscored. In future investigations, 
the focus will be on exploring the adaptability of the algorithm within distinct computational environments, 
with special consideration given to the performance constraints of resource-constrained devices, such as 8-bit 
microcontrollers (like Arduino) or 32-bit microcontrollers (like ESP). This dimension of research will contribute 
to a more comprehensive understanding of the applicability of the GA-MIUKF algorithm, offering practical 
recommendations for real-world applications.

Future research directions could further explore the application of the GA-MIUKF algorithm in SOC estima-
tion for other types of batteries. Additionally, consideration can be given to applying it in areas such as battery 
fault diagnosis and health management. This would help expand the algorithm’s application scope, enhance its 
applicability in different battery systems, and provide new directions for further research in the field of battery 
 technology24 (Supplementary Information).

Data availability
The data employed in this study originates from actual experimental tests. Comprehensive test data for lead and 
charcoal, inclusive of a data availability statement, is detailed in the paper. Requests for raw data or analysis results 
can be directed to the corresponding author, facilitating collaboration with fellow researchers.
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