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Classification and identification 
of agricultural products based 
on improved MobileNetV2
Haiwei Chen 1, Guohui Zhou 1*, Wei He 1, Xiping Duan 1 & Huixin Jiang 2

With the advancement of technology, the demand for increased production efficiency has gradually 
risen, leading to the emergence of new trends in agricultural automation and intelligence. Precision 
classification models play a crucial role in helping farmers accurately identify, classify, and process 
various agricultural products, thereby enhancing production efficiency and maximizing the economic 
value of agricultural products. The current MobileNetV2 network model is capable of performing the 
aforementioned tasks. However, it tends to exhibit recognition biases when identifying different 
subcategories within agricultural product varieties. To address this challenge, this paper introduces 
an improved MobileNetV2 convolutional neural network model. Firstly, inspired by the Inception 
module in GoogLeNet, we combine the improved Inception module with the original residual module, 
innovatively proposing a new Res-Inception module. Additionally, to further enhance the model’s 
accuracy in detection tasks, we introduce an efficient multi-scale cross-space learning module (EMA) 
and embed it into the backbone structure of the network. Experimental results on the Fruit-360 
dataset demonstrate that the improved MobileNetV2 outperforms the original MobileNetV2 in 
agricultural product classification tasks, with an accuracy increase of 1.86%.

Detecting and classifying agricultural products are fundamental means to maximize the economic value of 
agricultural produce. With the maturity and development of technologies such as computer image processing 
and deep learning, the process of agricultural product sorting, which is a crucial step in the deep processing of 
agricultural products, is gradually being replaced by automated machines1. By employing machine vision detec-
tion and automatic classification of agricultural products, we can not only avoid the issues associated with low 
efficiency, product damage, and varying classification standards in manual sorting but also enhance classification 
accuracy. This, in turn, contributes to the sustainable development of agriculture2.

The accuracy of agricultural product identification is crucial for the agricultural and food industries3. On one 
hand, the accuracy of agricultural product identification directly impacts quality control. Inaccurate identification 
may lead to erroneous quality assessments, thereby affecting the market competitiveness of agricultural products4. 
On the other hand, in the food supply chain, accurate identification of agricultural products is a key factor in 
achieving traceability. If identification is not accurate, it may result in difficulties in product traceability, making 
the trace-back and recall of problematic products more complex. Lastly, the accuracy of agricultural product 
identification is also vital for business analysis and decision-making. Accurate identification provides agricul-
tural enterprises with more precise data, aiding in the formulation of scientifically informed business strategies5.

In recent years, many experts have introduced various algorithms for the automatic classification of agri-
cultural products6. For example, Kang et al.7 developed and employed a lightweight backbone network called 
LedNet, combined with a feature pyramid network and an untracked spatial pyramid pool to enhance the model’s 
detection performance. In apple detection in orchards, they achieved a recall rate of 82.1% and an accuracy of 
85.3%. Chen et al.8 proposed a fruit image classification method based on multiple optimized convolutional 
neural networks. They first used wavelet threshold denoising on fruit images, followed by gamma transforma-
tion for image correction, and then introduced a SOM network for sample pre-learning, achieving accuracy of 
up to 99%.Costa et al.9 constructed a dataset containing 43,843 tomatoes with external defects and used fine-
tuned ResNet50 for tomato defect detection, achieving an average accuracy of 94.6% on the test set. MS et al.10 
proposed two different deep learning frameworks, with the better-performing one being a fine-tuned Visual 
Geometry Group-16 pretrained deep learning model, which achieved an accuracy of 96.75% on challenging 
fruit images. Rehman et al.11 used transfer learning to train the model, then enriched the feature set through 
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feature fusion, and finally optimized it using the Whale Optimization Algorithm (WOA) to classify six differ-
ent diseases of citrus plants, achieving an accuracy of 95.7%. Nasiri et al.12 proposed a method to distinguish 
healthy dates from defective ones, using a CNN model built with VGG-16. Through model optimization, they 
achieved an accuracy of 96.98%.

In comparison, computer vision and multi-class support vector machines (SVM) have been used to classify 
different varieties of fruits, achieving an accuracy of 88.20%13. Siddiqi et al.14 studied fruit image classification 
based on the Inception v3 and VGG16 models, including transfer learning and fine-tuning. Experimental results 
showed that they could achieve an accuracy of 99.27% across 72 categories in the Fruit 360 dataset. Ghosh et al.15 
utilized the same pretrained convolutional neural network, ShuffleNetV2, and constructed convolutions with 
more feature channels. Their model reached an accuracy of 96.24% on 41 categories in the Fruit 360 dataset.

These research results demonstrate that methods for the automatic classification of agricultural products 
have made significant advancements in recognizing different types of fruits and have played a crucial role in 
improving classification accuracy. Previous studies have shown that models capable of extracting features more 
finely perform better in multi-class tasks, especially as the number of fruit categories to classify increases. In this 
regard, the Inception architecture of the GoogLeNet model16 has been instrumental in extracting features from 
feature maps using convolutional kernels of different sizes, and networks equipped with such modules often 
exhibit superior performance. For instance, Yang et al.17 improved the GoogLeNet model, with a primary focus 
on the Inception module. The enhanced model achieved a recognition accuracy of 99.58% in identifying diseases 
in rice leaves. On the other hand, Husaini et al.18 constructed Inception V3, Inception V4, and an improved ver-
sion called Inception MV4. These models significantly improved the recognition performance for breast cancer. 
In summary, the Inception modules, as seen in models like GoogLeNet, have been pivotal in enhancing feature 
extraction capabilities and improving classification accuracy across various domains, including agriculture.

With the success of Transformers in natural language processing19, attention mechanisms have also been 
introduced to the computer vision domain. For instance, the recently introduced Efficient Multi-scale Attention 
(EMA) module20 supports cross-spatial learning and has significantly improved performance in tasks such as 
image classification and object detection.

It should be noted that most research papers often focus on the classification of specific fruits and less on 
the classification of different fruits. For example, in the Fruit-360 dataset21, which contains 131 different fruit 
categories, there are few studies attempting to classify all these fruits simultaneously. This is primarily due to the 
diversity of fruit types, and testing each type of fruit would significantly increase the time and cost of research. 
Considering that agricultural product recognition and classification will inevitably be performed on embed-
ded devices, MobileNetv2, as a lightweight convolutional neural network architecture, is well-suited for such 
scenarios.

Therefore, this study introduces an innovative approach by applying an improved version of the MobileNetv222 
model to the Fruit-360 dataset, aiming to comprehensively train and classify all 131 fruit classes at once. This 
initiative is designed to address the shortcomings in existing research and provide a more comprehensive solution 
for classifying different fruits. The main contributions of this study can be summarized as follows:

1.	 The introduction of the Res-Inception module, which combines residual and Inception modules, has been 
implemented to better extract features and achieve improved classification results for all 131 categories in 
the Fruit-360 dataset.

2.	 Inspired by the Transformer concept, we introduced the Efficient Multi-scale Attention (EMA) module for 
cross-spatial learning, which has a significant impact on improving recognition accuracy.

3.	 We compared our model’s accuracy with state-of-the-art algorithms, considering its relatively fewer param-
eters, making it suitable for most embedded devices, and achieved an impressive accuracy of up to 99.96%.

Related work
Multiclass recognition
In the preceding literature, the primary focus has been on the recognition of a limited number of agricultural 
product categories. In Ref.23, an integrated model was introduced, combining bottleneck features from two 
multitask deep convolutional neural networks (ResNet-50 and ResNet-101). However, this multitask frame-
work included only two branches dedicated to fruit recognition. In Ref.24, a fruit recognition algorithm based 
on convolutional neural networks (CNN) was proposed. Initially, the Selective Search algorithm was employed 
to extract image regions, followed by the use of entropy from fruit images to select specific areas. These regions 
were then utilized as inputs for training and recognition within the CNN neural network. Despite achieving 
certain success in fruit recognition, this method still exhibits limitations in recognizing a diverse range of fruit 
categories. In Ref.25, a novel artificial intelligence system was presented for fruit classification. The approach 
involved the extraction of features from fruit images using two-dimensional fractional Fourier entropy with a 
rotation angle vector grid. Subsequently, a five-layer stacked sparse autoencoder was employed as the classifier. 
The system demonstrated significant success on an 18-class fruit dataset, achieving a noteworthy 95.08% micro-
average F1 score. Considering CNN and transfer learning approaches, this study26 proposed an effective date 
classification model and created a dataset containing eight different categories of date fruits for model training. In 
Ref.27, an automatic pineapple classification method was introduced. This method utilized an embedded onboard 
computing processor, servos, and ultrasonic sensors to create a knocking machine integrated with a conveyor 
belt for automatic separation of pineapples. Concurrently, the performance of a convolutional neural network 
(CNN) based on deep learning was tested, with the developed CNN model achieving an optimal accuracy rate 
of 0.97. These studies underscore the challenges in achieving comprehensive recognition across a wide variety 
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of agricultural product categories. Therefore, this paper opts for the Fruit-360 dataset, encompassing 131 fruit 
classes, to address the need for a model capable of recognizing a diverse range of fruits in various scenarios.

Recognition of agricultural product subcategories
Accurate recognition of subcategories within agricultural products is widely recognized as a challenging task in 
the field of image recognition. Due to the diversity of agricultural products, a single type may encompass multiple 
varieties or subtypes, making fine-grained classification a complex and crucial undertaking. One primary chal-
lenge of existing models28 in agricultural product classification is their poor performance in handling subtypes 
with similar features. To address this issue, we introduce an efficient multi-scale cross-space learning module 
with attention (EMA) and an Inception module to enhance the accuracy of recognizing subcategories within 
agricultural products. The efficient multi-scale cross-space learning module (EMA) reorganizes certain channels 
into batch processing dimensions and divides channel dimensions into multiple sub-features to ensure the even 
capture of spatial semantic features within each feature group. The EMA mechanism utilizes excitation to assess 
the importance of different parts of the input data for the current task and uses modulation to adjust the weights 
of these parts, optimizing the model’s performance. The advantage of this mechanism lies in its ability to extract 
important information relevant to the current task, thereby reducing interference from irrelevant information 
and improving fine-grained classification capabilities. The Inception module, as shown in Fig. 1, captures dif-
ferent image features by simultaneously using multiple scales of convolutional kernels and max-pooling layers. 
This enables the network to learn across multiple feature scales.

Real‑time processing and efficiency
In the context of agricultural product harvesting, real-time processing and efficiency are critical concerns29. In 
scenarios with limited resources, some models may require more computational resources, thereby limiting their 
feasibility in practical applications. Particularly, larger models may not perform well in such resource-constrained 
situations. To address this issue, the development of lightweight models has made significant progress in recent 
years, with the MobileNet series being a prominent highlight30. MobileNetv2, as a lightweight convolutional 
neural network architecture, is specifically designed to operate in resource-constrained environments such as 
mobile devices and embedded systems. It has been widely applied in image recognition and computer vision 
tasks. One key feature of this network is depthwise separable convolution, as illustrated in Fig. 2. It decomposes 
standard convolution operations into two steps: depthwise convolution and pointwise convolution. This reduces 
computational costs while effectively capturing image features. Additionally, MobileNetv2 introduces an inverted 
residual structure, enhancing the network’s non-linearity and making it more suitable for various image features, 
especially in edge cases and low-quality images. The design focus of MobileNetv2 is on lightweight characteristics, 
making it an ideal choice for embedded devices and mobile applications. In the agricultural domain, particu-
larly in the context of agricultural product harvesting, the application of such lightweight models contributes 
to improving real-time processing and efficiency while overcoming limitations posed by limited computational 
resources.

Methodologies
Overall framework
As shown in Fig. 3, we divided the dataset into a training set, a validation set, and a test set. During the model 
training phase, we utilized the training set and the validation set to train the Improved-MobileNetv2 model, 
resulting in a trained model. During the testing phase, we directly tested the test set using this model.

Improved‑MobileNetv2
When dealing with an increased number of agricultural product categories, especially in classifying subcategories, 
existing models, particularly the original MobileNetv2, have some limitations in accuracy. This can lead to errors 
in recognizing different types of agricultural products by automated equipment, reducing production efficiency, 
and causing economic losses. To address this issue, we propose an agricultural product recognition model based 
on the improved MobileNetv2. As shown in Fig. 4, the improved model primarily focuses on the backbone archi-
tecture, which is the core part of the model. By enhancing the network’s feature extraction capabilities, we aim to 
improve the accuracy of subcategory recognition. We introduce the improved Res-Inception module to replace 
the original residual module. Additionally, between every two modules, we introduce an efficient multi-scale 

Figure 1.   Inception specific structure.
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spatial attention module, implementing cross-space learning (EMA). This improvement aims to enhance the 
model’s accurate recognition capability of agricultural product subcategories. Firstly, comparative experiments 
on the Fruit-360 dataset demonstrate that our improved model achieves higher recognition accuracy. Subse-
quently, through ablation experiments on different modules of the improvement, we can observe the impact of 
our improved modules on the model’s accuracy. Through these two experiments, we conclude that our improved 
MobileNetv2 network achieves superior performance and detection accuracy. This optimization is expected to 
better adapt to the recognition tasks of different agricultural product subcategories in complex scenarios. Below 
is a detailed introduction to the two improved modules.

(a) Standard convolution filters

(b) Depthwise convolutional filters
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(c) 1×1 convolutional filters called pointwise convolution in the context of
depthwise separable convolution

Figure 2.   The conventional convolutional filters shown in (a) have been substituted with two distinct layers: 
depthwise convolution as illustrated in (b) and pointwise convolution as depicted in (c). Dk is the spatial 
dimension of the kernel assumed to be square and M is the number of input channels and N is the number of 
output channels.
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Figure 3.   The overall framework of the model.
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Res‑Inception module
Inspired by the Inception structure, we introduced two larger convolutional kernels, namely Dwise 5 × 5 and 
Dwise 7 × 7, into the depthwise separable convolution model, as shown on the left side of Fig. 5. This improve-
ment aims to enhance our model’s capability to extract feature information. When the stride (Stride) is set to 
1, the model will execute the module on the left. To avoid the issue of the model becoming overly deep, which 
could potentially decrease its performance, we introduced a connection between the input and output of this 
module. When the stride is not equal to 1, the model will continue to execute the original depthwise separable 
convolution module. This design allows us to extract more feature information while effectively controlling the 
convolutional depth, thereby improving the model’s performance.

Backbone network with EMA
We embed the EMA module into the backbone network of the model. EMA primarily involves partitioning 
channels into several sub-groups and assigning different weights to different regions of the feature maps within 
these sub-feature groups, as shown in Fig. 6. This module first divides the input feature map x ∈ R

c×h×w into g 
groups along the channel dimension, with g set to 8 in this experiment, to learn different semantics, denoted as 
groups and represented as x = [x0, x1, ..., xg−1], xi ∈ R

c//g×h×w.

Input

Output

Conv2d

Res-Inception

Res-Inception

EMA

Conv2d

avgpool

FC

2

n

Figure 4.   Improved MobileNetv2 framework.
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Figure 5.   Res-Inception module.
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As shown in Fig. 6, EMA employs three parallel paths to extract features from groups. Two of these paths 
use 1 × 1 convolutions, while the third path employs a 3 × 3 convolution. In the two 1 × 1 convolution paths, 
we perform one-dimensional horizontal pooling and one-dimensional vertical pooling, followed by aggregat-
ing the outputs of both channels through simple multiplication. This results in two tensors, one from the 1 × 1 
branch and the other from the 3 × 3 branch. Next, we utilize 2D global average pooling to encode global spatial 
information from the output of the 1 × 1 branch, while transforming the output of the 3 × 3 branch into the cor-
responding dimension shape, denoted as R1×c//g

1
× R

c//g×hw
3

31. The formula for the 2D global pooling operation 
is represented as follows.

By performing a matrix dot product operation on the outputs from the parallel processing described above, 
we obtain the first spatial attention map. Similarly, we employ 2D global average pooling to encode global spatial 
information from the 3 × 3 branch, while the 1 × 1 branch is directly transformed into the corresponding dimen-
sion shape before the joint activation mechanism of channel features, denoted as R1×c//g

3
× R

c//g×hw
1

 . Then, 
we obtain the second spatial attention map, preserving complete and precise spatial positional information. 
Subsequently, the output feature maps within each group are computed as an aggregation of the two generated 
spatial attention weight values, followed by passing through a Sigmoid function. This process captures pixel-level 
pairwise relationships and emphasizes global context for all pixels. The final output of EMA is of the same size 
as the input x, which is highly efficient and effective for stacking into modern architectures.

Experiments
Experimental details
Datasets
Fruit-360 is a dataset containing 90,483 fruit photographs. As shown in Table 1, the series contains 131 differ-
ent types of fruits of different species32. The size of these pictures is 100× 100 pixels. Because of the needs of 
the model, further processing of this dataset will be described in the subsection on graphical processing. These 
images were obtained by shooting a short twenty-second video of the fruit while it was slowly rotated by a motor, 
and then extracting frames/images from that movie. White paper is being used as a background for capturing 
an image of fruits. The algorithm is then applied to eliminate the background of each fruit. This is important to 
ensure that the data can be easily accessed and used by other researchers, promoting transparency and repro-
ducibility in scientific research.

Evaluation indicators
In this study, the performance of the model is presented in the form of a variant of the 2× 2 confusion matrix. 
as shown in the Fig. 7.

Precision, recall and accuracy are used to evaluate the performance of the network model for fruit recogni-
tion. The precision, recall and accuracy rates are calculated as follows:

Precision: A metric that measures the proportion of samples that were predicted as positive by the model and 
were actually positive, out of all the samples predicted as positive.

Accuracy: A metric that measures the proportion of correctly classified samples out of the total number of 
samples.
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Recall: A metric that measures the proportion of samples that were correctly predicted as positive by the 
model, out of all the samples that were actually positive.

F1 score: A metric that provides a balanced evaluation of a model’s performance by combining both precision 
and recall. It is the harmonic mean of precision and recall, and represents the overall accuracy of the model in 
identifying positive samples.

(3)Accuracy =
TP + TN

TP + FN + FP + TN
.

(4)Recall =
TP

TP + FN
.

Table 1.   Datasets of fruit-360.

Fruit types No. of images Fruit types No. of images Fruit types No. of images

Apple Braeburn 656 Grape blue 1312 Pear Monster 656

Apple Crimson snow 592 Grape pink 656 Pear red 888

Apple golden 1 640 Grape white 656 Pear stone 948

Apple golden 2 656 Grape white 2 656 Pear Williams 656

Apple golden 3 642 Grape white 3 656 Pepino 656

Apple Granny Smith 656 Grape white 4 629 Pepper green 592

Apple pink lady 608 Grapefruit pink 656 Pepper orange 936

Apple red 1 656 Grapefruit white 656 Pepper red 888

Apple red 2 656 Guava 656 Pepper yellow 888

Apple red 3 573 Hazelnut 621 Physalis 656

Apple red delicious 656 Huckleberry 656 Physalis with husk 656

Apple red yellow 1 656 Kaki 656 Pineapple 656

Apple red yellow 2 891 Kiwi 622 Pineapple mini 656

Apricot 656 Kohlrabi 628 Pitahaya red 656

Avocado 570 Kumquats 656 Plum 598

Avocado ripe 657 Lemon 656 Plum 2 562

Banana 656 Lemon Meyer 656 Plum 3 1204

Banana lady finger 602 Limes 656 Pomegranate 656

Banana red 656 Lychee 656 Pomelo sweetie 603

Beetroot 600 Mandarine 656 Potato red 600

Blueberry 616 Mango 656 Potato red washed 604

Cactus fruit 656 Mango Red 568 Potato sweet 600

Cantaloupe 1 656 Mangostan 402 Potato white 600

Cantaloupe 2 656 Maracuja 656 Quince 656

Carambula 656 Melon Piel de Sapo 984 Rambutan 656

Cauliflower 936 Mulberry 656 Raspberry 656

Cherry 1 656 Nectarine 656 Redcurrant 656

Cherry 2 984 Nectarine flat 640 Salak 652

Cherry rainier 984 Nut forest 872 Strawberry 656

Cherry wax black 656 Nut Pecan 712 Strawberry wedge 984

Cherry wax red 656 Onion red 600 Tamarillo 656

Cherry wax yellow 656 Onion Red Peeled 595 Tangelo 656

Chestnut 603 Onion white 584 Tomato 1 984

Clementine 656 Orange 639 Tomato 2 897

Cocos 656 Papaya 656 Tomato 3 984

Corn 600 Passion fruit 656 Tomato 4 639

Corn husk 616 Peach 656 Tomato cherry red 656

Cucumber ripe 522 Peach 2 984 Tomato heart 912

Cucumber ripe 2 624 Peach flat 656 Tomato Maroon 494

Dates 656 Pear 656 Tomato yellow 632

Eggplant 624 Pear 2 928 Tomato not ripened 612

Fig 936 Pear Abate 656 Walnut 984

Ginger root 396 Pear Forelle 936 Watermelon 632

Granadilla 656 Pear Kaiser 402 Total 90,483
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In which TP represents the true positives (the number of target frames correctly predicted as belonging to 
the positive class), FP represents false positives (the number of target frames incorrectly predicted as belonging 
to the positive class), and FN represents false negatives (the number of target frames that actually belong to the 
positive class but are incorrectly predicted as belonging to the negative class).

Experimental setup
The software environment used in the experiments includes TensorFlow 2.10 and Python 3.9. The computer 
configuration is as follows: 12th generation Intel(R) Core(TM) i7-12650H 2.30 GHz processor; 48.0 GB of RAM; 
NVDIA GeForce RTX 4060 laptop GPU; Cuda 11.3.1 and Cudnn 8.2.1. All experiments were conducted for 100 
epochs with a batch size of 32. During the model training process, we employed the Adam optimizer and the 
cross-entropy loss function, with all other parameters set to their default values.

Experimental design
To quantitatively evaluate the performance of the improved model, we conducted tests on the Fruit-360 dataset. 
We performed ablation experiments to assess the importance of the Res-Inception and EMA modules within 
the model, providing deeper insights into their impact on model performance. In order to demonstrate the ver-
satility of our proposed model, we conducted experiments on different datasets. Additionally, we compared our 
proposed model with state-of-the-art classification frameworks to demonstrate that our proposed classification 
framework outperforms other popular object detection frameworks in terms of accuracy.

Experimental results obtained on Fruit360 using an improved‑MobileNetv2
This paper conducted model training on the Fruit360 dataset for 100 epochs and obtained the training results as 
shown in Fig. 8. The left side of Fig. 8 displays the loss curve of the improved MobileNetv2 model, which reflects 
the predictive performance of the algorithm regarding target quality. The horizontal axis represents training 
epochs, and the vertical axis represents the overall loss. Observing the graph, it is evident that the overall loss 
rapidly decreases during training and stabilizes after around 80 epochs. These results indicate that the improved 
MobileNetv2 model exhibits excellent convergence performance. The right side of Fig. 8 presents the accuracy on 
the training set and validation set, with the horizontal axis representing epochs and the vertical axis represent-
ing accuracy. It can be observed that the accuracy on the training set steadily increases, while the validation set 
exhibits some fluctuations in the first 80 epochs but stabilizes afterward. This suggests that our improved model 
is well-suited for agricultural product classification tasks. Because the heatmap is too large, it is divided into 6 
generated in the attached, the first 5 maps have 22 categories each and the last map has 21 categories.

Ablation experiments
Table 2 presents the results of ablation experiments conducted on the Improved-MobileNetv2 model. The experi-
ments involved four different configurations: the baseline configuration, enabling only the Res-inception module, 
enabling only the EMA (Excitation and Modulation Attention) module, and enabling both the Res-inception 
module and the EMA module simultaneously. The results show that enabling either the Res-inception module or 
the EMA module has a positive impact on the model’s performance. Particularly, when both the Res-inception 
module and EMA module are enabled simultaneously, the model performs the best, achieving the highest F1 
score (99.97%), precision (99.96%), and overall accuracy (99.97%). This indicates that the combination of the 
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Figure 7.   Confusion matrix.
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Res-inception module and EMA module is crucial for improving the accuracy and performance of the Improved-
MobileNetv2 model in agricultural product classification tasks.

As shown in Fig. 9, enabling each module leads to a certain degree of performance improvement in the 
model. Particularly, when both the Res-inception and EMA modules are enabled simultaneously, the model’s 

Figure 8.   Experimental results of the improved MobileNetv2.

Table 2.   Improved-MobileNetv2 ablation experiments.

Res-inception EMA F1 scores Precision Accuracy

98.20% 97.43% 98.11%

✓ 98.30% 97.69% 99.23%

✓ 98.34% 98.46% 99.47%

✓ ✓ 99.97% 99.96% 99.97%

Figure 9.   Ablation experiments of improved-MobileNetv2.
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performance reaches its optimal state. Therefore, the concurrent application of these modules proves to be highly 
beneficial for the enhancement of our model.

Comparative experiments
Higher accuracy significantly improves production efficiency and increases economic returns in the automated 
agricultural product classification process. Therefore, this section compares the accuracy of the improved model 
with the original MobileNetV2 model. Additionally, we compare the accuracy of the improved model with that 
of AlexNet33, VGG1634, ResNet34, ResNet5035, emphasizing further the advantages of the improved model.

Comparison the results of different datasets with experiments
The improved MobileNetv2 model is suitable for agricultural product classification. In order to explore the 
model’s generalization capability, we selected fruit recognition and fruit and vegetable image recognition datasets 
from the Kaggle Datasets. We conducted training and testing on both the MobileNetv2 model proposed in this 
study and the enhanced MobileNetv2 model. The fruit recognition dataset consists of 23 different categories of 
fruits, totaling 44,406 images with resolutions of and. This dataset includes images of various fruits typically found 
in supermarkets and fruit shops, making it highly relevant for supermarket applications. The fruit and vegetable 
image recognition dataset comprises 36 types of fruits and vegetables, with a total of 3115 images collected from 
Bing Image Search. This dataset encompasses a wide variety of fruit and vegetable images, including those har-
vested in fields, picked from trees, and freshly harvested. Such diversity is advantageous for visual applications, 
particularly in the context of robotic fruit picking. By training and testing the models on these datasets, we can 
assess their performance and generalization ability across different agricultural product classification tasks.

Table 3 provides a performance comparison between MobileNetv2 and Improved-MobileNetv2 models on two 
different datasets. Firstly, for the "Fruit Recognition" dataset, Improved-MobileNetv2 outperforms MobileNetv2 
significantly across all performance metrics. It achieves an impressive 99.62% precision, 99.61% recall, and an 
astonishing 99.59% F1 score, with an overall accuracy of 99.62%. In contrast, MobileNetv2 exhibits slightly lower 
performance on the same dataset with a precision of 97.32%, recall of 97.24%, an F1 score of 96.49%, and an 
overall accuracy of 97.26%. This demonstrates the significant performance improvement achieved by Improved-
MobileNetv2 in the "Fruit Recognition" task. On the "Fruits and Vegetables Image Recognition" dataset, we again 
observe the outstanding performance of Improved-MobileNetv2. It attains a precision of 97.01%, recall of 96.58%, 
an F1 score of 96.54%, and an overall accuracy of 96.46%. In comparison, MobileNetv2 performs less impressively 
on the same dataset with a precision of 95.32%, recall of 95.01%, an F1 score of 94.69%, and an overall accuracy 
of 95.03%. This indicates that Improved-MobileNetv2 excels in the "Fruits and Vegetables Image Recognition" 
task as well. In summary, Improved-MobileNetv2 demonstrates outstanding classification performance on both 
datasets, surpassing the MobileNetv2 model significantly. Particularly in the "Fruit Recognition" task, the per-
formance improvement achieved by the proposed model enhancements is notably remarkable. This underscores 
the significant importance of the model improvements presented in this study for enhancing the accuracy and 
performance of agricultural product classification.

As there are so many different types of fruits and vegetables in the dataset, we chose the first six categories 
as representatives to produce a confusion matrix to show the effect of different models on the recognition of the 
dataset, as shown in Fig. 10.

Comparison the results of different models with experiments
To evaluate the classification performance of the improved MobileNetv2 model, we selected four other models 
for comparison: AlexNet, VGG16, ResNet34, and ResNet50. The performance of each model was compared by 
evaluating their F1 scores, accuracy, and the number of parameters, as shown in Table 4.

In this table, we compared the performance metrics of different models, including F1 score, accuracy, and 
the number of parameters. Considering five different models, namely ResNet34, ResNet50, VGG16, AlexNet, 
and the improved MobileNetv2 model. The F1 score considers the balance between precision and recall, and 
the improved MobileNetv2 model performed the best in this regard, with the highest F1 score (0.99), followed 
by VGG16 and AlexNet with F1 scores of 0.96 and 0.97, respectively. ResNet34 and ResNet50 had F1 scores of 
0.92 and 0.93, respectively.Accuracy reflects the proportion of samples correctly classified by the model. Here, 
the VGG16 model performed the best with an accuracy of 98.60%, followed by AlexNet (98.03%) and ResNet50 
(97.45%), while ResNet34 and the improved MobileNetv2 had accuracies of 97.21% and 99.96%, respectively. 
The number of parameters in the model indicates its complexity, and generally, fewer parameters are preferred 
because fewer parameters usually mean a more lightweight model. The improved MobileNetv2 model had the 
fewest parameters (3,028,211), while VGG16 and AlexNet had more parameters (70,781,891 and 62,378,344, 
respectively).

Table 3.   Comparison of improved-MobileNetv2 and MobileNetv2 experimental results.

Model Dataset Precision Recall F1 Accuracy

MobileNetv2
Fruit recognition 97.32% 97.24% 96.49% 97.26%

Fruits and vegetables image recognition 95.32% 95.01% 94.69% 95.03%

Improve-MobileNetv2
Fruit recognition 99.62% 99.61% 99.59% 99.62%

Fruits and vegetables image recognition 97.01% 96.58% 96.54% 96.46%
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Overall, the improved MobileNetv2 model excels in both F1 score and accuracy while having fewer param-
eters, making it advantageous in terms of performance and model lightweightness. It’s worth noting that AlexNet 
has a relatively shallow network structure, consisting of only 5 convolutional layers and 3 fully connected layers, 
whereas VGG16 has a very deep network structure, comprising 16 convolutional layers and 3 fully connected 
layers. The innovation of ResNet (Residual Network) lies in the introduction of "residual blocks," with ResNet34 

Figure 10.   (a) Is the confusion matrix tested by MobileNetv2 on the fruit recognition dataset, (b) is the 
confusion matrix tested by MobileNetv2 on the fruits and vegetables image recognition dataset, (c) is the 
confusion matrix tested by Improved-MobileNetv2 confusion matrix tested on the fruit recognition dataset, 
and (d) is the confusion matrix tested on the fruits and vegetables image recognition dataset by Improved-
MobileNetv2.

Table 4.   Comparison of the accuracy of different models.

ResNet34 ResNet50 VGG16 AlexNet Improved-MobileNetv2

F1 0.92 0.93 0.96 0.97 0.99

Accuracy 97.21% 97.45% 98.60% 98.03% 99.96%

Parameters 21,350,915 23,856,131 70,781,891 62,378,344 3,028,211
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and ResNet50 containing 34 layers and 50 layers of ResNet networks, respectively. Compared to ResNet34, 
ResNet50 adds additional convolutional layers and residual blocks. In contrast to these models, the improved 
MobileNetv2 model not only achieves higher accuracy but also has fewer parameters. Figure 11 illustrates the 
comparative results of these models.

Conclusions and future work
Given the diverse nature of agricultural products and the presence of similar subcategories, which can lead to 
accuracy issues in classification, this paper proposes an improved MobileNetv2 agricultural product recognition 
model. By innovatively introducing Res-Inception and EMA, this model significantly enhances accuracy in agri-
cultural product classification tasks. The improved MobileNetv2 network demonstrates outstanding performance 
and can be widely applied in the agricultural product classification field. Future research directions will focus 
on how to utilize image augmentation techniques for data augmentation while reducing network parameters, 
all while maintaining accuracy, to further enhance classification accuracy. This will help make the model more 
efficient and suitable for a broader range of agricultural product classification tasks.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors upon reasonable request.
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