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On the nonlinearity 
of the foreperiod effect
Amirmahmoud Houshmand Chatroudi 1, Giovanna Mioni 2 & Yuko Yotsumoto 1*

One of the frequently employed tasks within the implicit timing paradigm is the foreperiod task. The 
foreperiod is the time interval spanning from the presentation of a warning signal to the appearance 
of a target stimulus, during which reaction time trajectory follows time uncertainty. While the typical 
approach in analyzing foreperiod effects is based on linear approximations, the uncertainty in the 
estimation of time, expressed by the Weber fraction, implies a nonlinear trend. In the present study, 
we analyzed the variable foreperiod reaction times from a relatively large sample (n = 109). We found 
that the linear regression on reaction times and log-transformed reaction times poorly fitted the 
foreperiod data. However, a nonlinear regression based on an exponential decay function with three 
distinctive parameters provided the best fit. We discussed the inferential hazards of a simplistic linear 
approach and demonstrated how a nonlinear formulation can create new opportunities for studies in 
implicit timing research, which were previously impossible.

Among the tools a researcher is equipped with to assess how time shapes perception and action, there exists the 
foreperiod  task1. Foreperiod (FP) is the duration between a warning stimulus and a subsequent target stimulus. 
When the FP is kept constant within the blocks, the reaction time (RT) to the target stimulus increases as FP 
lengthens (fixed foreperiod effect), whereas a variable foreperiod shortens RT as FP lengthens (variable foreperiod 
 effect2–8). Due to these temporal characteristics, the foreperiod task has been widely used in investigating the 
change of implicit timing mechanisms with aging (e.g. in  children9,10, in healthy  elderlies11,12, and in elderlies 
with cognitive  decline13) or among clinical populations (e.g.  schizophrenia14,  Parkinson15, and  autism16).

The increase of RT with duration in fixed foreperiod tasks has been collectively attributed to the clock-time 
uncertainty (scalar property of  time1,6,17,18). However, there’s an ongoing dispute regarding the mechanism driv-
ing the decrease in RT observed in the variable foreperiod task. This debate centers on two perspectives: one 
involves the conditional probability of target occurrence (hazard-based  theories19–24), while the other focuses 
on the relative frequency of memory traces, as proposed by the Multiple Trace Theory of Temporal Preparation 
 (MTP17,25,26). Nevertheless, in explaining the variable FP effect, both theories converge on considering the role 
played by time uncertainty.

In hazard-based studies, the hazard function (the probability of target occurring given it has not occurred 
yet over the unit of  time27,28) is blurred according to the Weber  ratio22,29. This temporal blurring accounts for the 
uncertainty associated with the estimation of elapsed  time30, and thus transforms the objective hazard function 
into a subjective anticipation  function31. The subjective hazard function is negatively correlated with the RT, 
and its neural representations in the cortex can be  found22,31. Moreover, MTP  theory17 and its precursor (trace 
 conditioning32) have also recognized the uncertainty associated with the elapse of time and have similarly incor-
porated the Weber ratio in their model formulations.

The Weber ratio dictates that the standard deviation of estimation linearly increases with the mean 
 duration18,30. Therefore, within a given temporal interval, the passage of time across shorter durations is more 
discernible than the passage of time across longer  durations33,34. In the context of the variable FP task (where 
FP durations are presented based on a uniform probability distribution shown in Fig. 1a), this means that the 
time passage across shorter durations increases the hazard rate (Fig. 1b) much faster than the passage of time 
across longer durations. Consequently, since reaction times are negatively correlated with the subjective hazard 
function, the relation between FP and RT will exhibit a negatively accelerating  pattern32,34, as depicted in Fig. 1c, 
and potentially takes the form of an exponential decay  function17 (illustrated in Fig. 1d). This is because shorter 
time intervals reduce the probability uncertainty faster, resulting in a quicker acceleration of RT (steeper slope 
in the first half of FP duration in Fig. 1c,d), while longer time intervals convey less information in resolving the 
probability uncertainty, leading to a slower acceleration of RT (gentler slope in the second half of FP duration 
in Fig. 1c,d).
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The exponential decay pattern of FP effect is also implicated by the MTP  theory17. The MTP theory assumes 
that the stored strength of activation for each moment in time (irrespective of their recency weight), is scaled 
based on the time uncertainty (the Weber ratio). That is, within the FP range, as the moment of target appear-
ance (critical moment) becomes more remote from the onset of the warning stimulus, the peak strength of 
each moment’s activation becomes lower, and temporally more dispersed (forming a gamma distribution of 
 activations32,37). Thus, the memory traces of shorter durations (i.e. earlier critical moments) which are formed 
from higher and more precise peaks of activations increase the preparatory state faster than the memory traces 
of longer durations (which result from lower peaks and more dispersed activations). This nonlinear increase in 
the preparatory state would then translate into the RT patterns in a form that resembles an exponential decay 
function (see Fig. 3c,e in Los et al.17). Hence, regardless of whether the FP effect arises from a subjective hazard 
function or the weighted strength of memory traces, the introduction of time uncertainty in these explanations 
assumes an inherent nonlinear pattern for the FP effect.

Despite early descriptive efforts in modeling the non-linearity of the FP  effect2,38–40, the typical approach 
in analyzing the relation between RT and FP has stagnated at the assumption of linearity (applying analysis of 
variances (ANOVAs) and linear regressions to RTs or log-transformed RTs). In this formulation, the intercept 
differences between two conditions (or the main effect in an ANOVA) is regarded to reflect an additive change 
in the pattern of FP which is mainly attributable to a cognitive cost, motor limitation or a general slowing down 
of the  RT11,13,38,41,42. The slope difference (or an interaction in an ANOVA) is then interpreted as a measure of 
change in the size of the FP effect between  conditions9,13. However, applying a linear analysis to a phenomenon 
that is nonlinear by nature can pose serious statistical and inferential problems (see “Discussion”).

One inferential difficulty observed in variable FP studies is that between conditions and/or age groups, one 
population is generally slower, and consequently, has more room for reducing its RT over the duration of the 
 foreperiod11,13,33. In such cases, the RT pattern results in interaction effects (or slope differences) which one may 
ascribe to the changes in the size of FP effect (i.e. changes in the amount of RT reduction per unit of time). How-
ever, this pattern can be alternatively explained by a simple increase in the amount of RT that can be reduced in a 

Figure 1.  The blurring effect of applying Weber ratio to the objective hazard  rate22,35. Panel (a) indicates a 
foreperiod range of 0.5 to 2 s, where the probability distribution of foreperiod intervals follows a uniform 
distribution. The blue dashed line represents the objective probability distribution. The red solid line shows the 
same distribution blurred according to the Weber ratio (φ = 0.49). Panel (b) shows the hazard function derived 
from panel (a). Note that the steep slope of blurred hazard rate in the beginning gradually decreases over longer 
durations. Panel (c) shows the inverted hazard function (mirrored; multiplied by − 1). The mirrored blurred 
hazard rate correlates positively with RT patterns in variable FP tasks. Note the steeper slope of mirrored blurred 
hazard rate in shorter durations. Panel (d) shows the potential nonlinear model for capturing the variable FP 
effect. Parameter ‘a’ in this exponential function is the y-intercept. This parameter corresponds to the amount 
participants can reduce their RT over the span of FP (the range of RT modulation). Parameter ‘b’ is the rate of 
decay, corresponding to the size of FP effect. Parameter ‘c’ is a constant (asymptote) corresponding to the motor/
cognitive limitation. Thus, the assumption is that participants cannot improve their RT by reaching to zero, 
rather they will fixate at a constant RT due to motor/cognitive limitations. Note that the hazard function in panel 
(b) is derived from the continuous uniform probability density in panel (a). Therefore, the hazard function in 
panel (b) corresponds to the instantaneous rate of event occurrence given it has not occurred  yet28,36. This value 
can exceed 1.
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FP task (increase in the range of RT modulation, parameter ‘a’ in Fig. 1d), leaving the size of FP effect (parameter 
‘b’ in Fig. 1d) unaltered. Therefore, it is conceivable that an interpretable model of the FP effect is required to 
have at least three parameters: a nonlinear parameter for quantifying the rate of RT decay over time (indicating 
the size of FP effect), a multiplicative parameter for capturing the range of RT modulation, and a constant that 
can capture the motor/cognitive limitation factors.

Hence, in the present study we attempted to shed light on whether linear approximations, widely used by the 
implicit timing and RT studies, can sufficiently capture the pattern of variable FP data. In doing so, we compared 
the fit of linear regression with different nonlinear regression models using Bayesian information criterion  (BIC43) 
in a relatively large sample to find which model better describes the FP effect.

Results
To assess whether the FP effect is better described by linear or nonlinear functions, reaction time data were 
collected from a variable foreperiod task (Fig. 2a) in the laboratory (n = 69) and online settings (n = 40). The 
reaction time data were subsequently fitted by mixed-effect linear and nonlinear regressions. Importantly, among 
the nonlinear formulations (see Method), the nonlinear equivalent of the commonly used linear analysis of log-
transformed  RT9,13,16 (corresponding to the Exponential 1 model) and log–log transformed RT (corresponding 
to the Power 1 model) were included (see Supplementary Materials for details). Moreover, among the various 
nonlinear formulations, we hypothesized that an exponential function with three parameters provides the best 
fit of RT data.

The model comparison results from the data collected in the laboratory (Table 1) and online settings 
(Table 2) both show that the linear model provided the worst fit relative to the best-fitting model based on BIC 
(BF01 = 5.15e46 and 2.55e14 for laboratory and online settings, respectively). The best-fitting model both for the 
data collected in the laboratory and online as hypothesized was the exponential function with three distinctive 
parameters (BF for Exponential 3 versus the second-best fitted model = 3.77e14 and 212.94 for laboratory and 
online datasets, respectively).

Moreover, results of model comparisons also indicated that the log transformation function (correspond-
ing to the Exponential 1 model, see Supplementary Materials), substantially underfitted the data relative to the 
exponential with three parameters (BF01 = 3.61e43 and 2.37e11 for laboratory and online datasets, respectively). 
Similarly, log–log transformation function (corresponding to the Power 1 model, see Supplementary Materials) 
performed poorly relative to the Exponential 3 model (BF01 = 7.85e15 and 413.97 for laboratory and online 
datasets, respectively).

Figure 2.  Task specifications (a) and group-level regression fits for data collected in the laboratory (b), and 
online (c). The shaded areas in (a,b) reflect 95% confidence bounds.
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Figure 2 shows the group-level fit of Exponential 3 and linear functions for laboratory and online datasets. 
Subject-level fits of Exponential 3 to both datasets (Figs. S1 & S2), as well as estimated coefficients (Tables S1 & 
S2) can be found in the supplementary materials.

Discussion
In the present study we aimed to evaluate whether the conventional linear regression, commonly used in FP 
research, can achieve comparable performance to nonlinear regression models when fitting the variable FP 
effect. Additionally, we aimed to unravel which nonlinear formulation of variable FP effect provides the best 
fit. For this purpose, data from a relatively large sample of participants in a controlled laboratory setting, and 
subsequently, in an online setting was collected and analyzed. Our hypothesis was that the best-fitting model 
would be an exponential function with three distinctive parameters: a nonlinear parameter for capturing the 
negatively accelerating decay rate of FP effect (parameter ‘b’ in Fig. 1d). This parameter corresponds to the size 
of FP effect. A multiplicative term for capturing the range of RT modulation (parameter ‘a’ in Fig. 1d). Impor-
tantly, this parameter is the y-intercept term, and thus will express what RT theoretically would be at time zero 
(obtaining RT at time zero might not be experimentally feasible; for a discussion on this matter, see Los et al.32). 
Finally, an additive constant term for capturing the motor/cognitive limitation factors (parameter ‘c’ in Fig. 1d). 
This parameter would be the asymptote, and thus captures the amount of RT that does not change with FP 
duration (Fig. 1d). Our results unequivocally demonstrated that both in the laboratory and online settings the 
linear model provided the worst fit of the variable FP effect, whereas an exponential model with three parameters 
outperformed all other models.

The pattern of an exponential decay function fits well with the nonlinearity imposed by the Weber  ratio22: 
the steeper slope of RT improvement during shorter intervals versus the gentle slope of RT decrease during the 
longer intervals of a given FP. Relatedly, it has been shown that practice can substantially reduce the Weber ratio, 
changing the negatively accelerating function into a negative linear relation between RT and  FP35. The negatively 
accelerating decay of FP effect also aligns well with the finding that larger range and smaller average FP increases 
the FP  effect33. Moreover, the nonlinearity of FP effect has also been attributed to the more frequent subjec-
tive representation of medium  durations1. Thus, it is proposed that such an unbalanced subjective distribution 
diminishes the RT differences between the medium and longer durations of an FP.

The early studies attempting to model the non-linearity of variable FP effect remained at a descriptive level. 
 Niemi38 only tangentially illustrated that the variable FP effect can be captured by an exponential function with 
two parameters. Polzella et al.40 found that the FP effect decreased linearly in conditions with no catch trials while 
it followed a quadratic trend in conditions with catch trials. It is worth noting that these classic studies relied on 
collecting excessive RT data (more than 100 trials per condition and foreperiod) from a few participants (n = 4).

Applying linear analysis to a naturally nonlinear phenomenon can lead to significant statistical and inferen-
tial challenges. This is because a change in a parameter of an underlying nonlinear phenomenon (as might be 
the intention of an experimental manipulation) can affect the slope and intercept of a fitted linear regression 

Table 1.  Comparison of models fitted to the data collected in the laboratory (in-person). The rows are sorted 
according to BIC. The winning model based on BIC and AIC is Exponential 3. All digits shown are rounded to 
two decimal places. BF corresponds to the Bayes Factor in support of the Exponential 3.

Model df AIC ΔAIC AICc BIC ΔBIC BIC weight BF

Exponential 3 7  − 2454.48 0  − 2454.25  − 2425.22 0 1 1

Power 3 5  − 2378.99 75.49  − 2378.87  − 2358.09 67.13 0 3.77e14

Power 1 5  − 2372.92 81.56  − 2372.8  − 2352.02 73.2 0 7.85e15

Exponential 2 6  − 2353.41 101.08  − 2353.23  − 2328.33 96.9 0 1.10e21

Power 2 5  − 2348.71 105.78  − 2348.58  − 2327.81 97.42 0 1.42e21

Exponential 1 6  − 2249.71 204.77  − 2249.54  − 2224.63 200.59 0 3.61e43

Linear 6  − 2235.19 219.29  − 2235.01  − 2210.11 215.11 0 5.15e46

Table 2.  Comparison of models fitted to the data collected online. The rows are sorted according to BIC. 
The winning model based on BIC and AIC is the Exponential 3. All digits shown are rounded to two decimal 
places. BF corresponds to the Bayes Factor in support of the Exponential 3.

Model df AIC ΔAIC AICc BIC ΔBIC BIC weight BF

Exponential 3 7  − 1161.71 0  − 1161.3  − 1136.27 0 0.99 1

Exponential 2 6  − 1147.35 14.36  − 1147.05  − 1125.54 10.72 0 212.94

Power 1 7  − 1149.66 12.05  − 1149.25  − 1124.21 12.05 0 413.97

Power 2 7  − 1137.74 23.97  − 1137.33  − 1112.3 23.97 0 160,411.3

Exponential 1 7  − 1109.33 52.38  − 1108.91  − 1083.88 52.38 0 2.37e11

Power 3 6  − 1104.68 57.03  − 1104.37  − 1082.87 53.4 0 3.94e11

Linear 7  − 1095.37 66.34  − 1094.96  − 1069.92 66.34 0 2.55e14
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simultaneously. This, in turn, confounds the interpretation of the linear parameters and smears the true underly-
ing effect. Figure 3 demonstrates that a selective change in the y-intercept (panel a) or the rate of decay (panel b) 
of an underlying exponential function (red squares compared to blue circles) can simultaneously affect the slope 
and the intercept of the best-fitting linear regression equations (red dashed lines compared to blue solid lines). 
Moreover, a true difference between conditions might go unnoticed as identical linear equations can accommo-
date changes from different nonlinear parameters (in panels a and b, the best-fitting linear red dashed lines have 
identical equations even though the datapoints (i.e., red squares in each panel) were created by selectively chang-
ing the y-intercept or the rate of decay of the underlying exponential function (i.e. blue circles), respectively).

To overcome the nonlinearity of RT data in foreperiod tasks some methods have been  proposed42,44,45. Among 
them, the log transformation of RT is a common  approach9,13,16. However, our results clearly demonstrated that 
log (Exponential 1) and log–log (Power 1) transformations substantially underfit the data relative to the expo-
nential function with three parameters. Therefore, these makeshift methods, in addition to inferential difficulties, 
are suboptimal solutions to the nonlinearity of variable FP effect.

Fitting mixed-effect nonlinear regressions to FP effect can open new avenues for time perception research. 
Future studies can elucidate how each of the three parameters proposed here would vary with age, different 
attentional capacities, task difficulties, and task modalities (for a review, see Niemi & Näätänen1). More impor-
tantly, it is vital to determine whether the non-linearity pattern of FP is held constant among age groups and 
task conditions, or it varies with different conditions (for example, a power function may better fit FP data 
from elderlies due to differences in their time uncertainties). Lastly, in a within-subject design, the proposed 
exponential function possesses the power to capture over- and underestimations of FPs among conditions. This 
was not so far attainable due to the crudity of the linearity assumption. As depicted in Fig. 4, in a within-subject 
design, if one condition leads to the overestimation of time, the rate-of-decay parameter can selectively capture 
the multiplicative overestimation (changes in the rate of the  clock46,47) while the y-intercept parameter captures 
the additive overestimation (changes in the switch  latency47). These overestimations are captured independently 
by each of the aforementioned parameters without affecting the motor/cognitive constant. Hence, nonlinear 
regression models create new opportunities in implicit timing research, contributing to a better understanding 
of how characteristics of ‘time’ affect the pattern of FP effect.

Figure 3.  The interpretability problems of fitting a linear model to the variable FP effect. The blue circles are 
the RT points generated assuming an exponential function with three parameters. The lines are the best linear 
fits. In panel (a), the red squares show a change in the y-intercept of the exponential function (i.e. the range 
of RT modulation). The red dashed line represents the best linear fit. Compared to the best fit of the original 
data (the blue solid line), both the intercept and slope of the red dashed line have simultaneously changed. In 
panel (b), the red squares represent a change in the rate-of-decay of the original data (blue circles). Note that 
the slope and intercept of the linear fit (red dashed line) are both affected (compared to the blue solid line). In 
panel (c), the red squares indicate a change in the constant (asymptote) of the original exponential function. It 
is only in this scenario that the intercept of a linear function selectively captures the change without affecting 
the slope (generally representing a motor/cognitive cost, see text). Moreover, comparison of the red dashed lines 
between panel (a) and panel (b) illuminates that a linear model can remain insensitive to selective changes in 
the parameters of an underlying nonlinear function (in this case, y-intercept and rate-of-decay of an exponential 
function resulted in the same linear fits, i.e. red dashed lines with equal equations).
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Limitations
The present study aimed to clarify the nonlinear shape of the variable foreperiod effect based on the RTs in the 
current trials. However, it has been suggested that foreperiod intervals in the previous trials also contribute to the 
downward trend of FP-RT function in the current  trials48. This contribution has been attributed to the forepe-
riod’s asymmetric sequential  effect17,32,34,48. It is noteworthy that the shape of such an asymmetric sequential effect 
also exhibits a nonlinearity pattern that is qualitatively similar to an exponential function with three parameters 
(e.g. Fig. 5 in Los et al.32). However, whether the nonlinear pattern of the asymmetric sequential FP effect (on top 
of temporal anticipation) directly contributes to the exponential shape of FP-RT remains unclear. In the present 
study, the trial sequence was not organized in a way that we can specifically address this hypothesis. Therefore, 
it remains the topic of future investigations to qualify the nonlinear shape and contributions of sequential effects 
to the FP-RT function in current trials.

A corollary of studies investigating the sequential effects has been that the variable foreperiod effect is not 
solely determined by temporal preparation. Rather, it is a context-dependent effect relying on different variables. 
For instance, previous research has shown that a shift in the modality of the warning stimuli, as well as, event-
specific (sequential action)  biases49 can change the slope of the FP-RT effect in current  trials50. More importantly, 
the temporal context (whether the previous trials have consistently been short or long) can modulate the slope 
of the FP-RT effect in a manner that is compatible with an arousal-based  explanation51. In the present study, we 
did not investigate the contributions of context-dependent variables. Nonetheless, the approach in quantifying 
the context (sequential) variables affecting the FP-RT has been based on linear  analyses17,32,34,48–51. Thus, it is 
worthwhile to assess whether the nonlinear pattern of the FP-RT effect is qualitatively sensitive to context vari-
ables (whether under the manipulation of different context variables, distinct nonlinear functions describe the 
FP effect). Moreover, should the exponential function with three parameters provide the best fit, it is important 
to discern which parameters are selectively impacted. This is because, as pointed out before (Fig. 3a), a change in 
the slope of the FP-RT function under the linear analysis (given the underlying function is exponential) might 
not be due to a true change in the foreperiod effect.

In the present study, FP durations (less than two seconds in duration) were investigated using a simple RT 
task. Thus, whether the findings of the present study can be generalized to FP-RT patterns in choice RT tasks, and/
or other temporal ranges requires further investigations. Specifically, it is probable that under larger FP ranges 
the assumption of the asymptotic decline of RT (parameter ‘c’ in Fig. 1d) might not hold (e.g. due to fatigue). This 
point might especially be valid since under foreperiod ranges in the order of minutes, an FP task bears similarities 
to the Psychomotor Vigilance Task  (PVT52) where goal-setting aspects play a vital  role53.

Figure 4.  An exponential function with three parameters can selectively capture additive and multiplicative 
(under-) overestimation of time in a within-subject design. The blue line reflects an arbitrary reference function. 
The red circles represent RT under additive or multiplicative overestimations. The black line reflects the fit of 
the Exponential 3 function. Under the additive overestimation (panel (a)), foreperiod intervals are anticipated 
earlier than they should by a constant value (e.g. by 0.5 s as reflected by y = f (x + 0.5) ; red circles relative to 
the blue reference line). Such an overestimation is selectively captured by changes in the y-intercept parameter 
(y-intercept parameter of the black line relative to the blue reference function). Under the multiplicative 
overestimation (panel (b)), foreperiod intervals are expected earlier than they should by a constant rate (e.g. 
by 50% as reflected by y = f (x × 1.5) ; red circles relative to the blue reference line). Such an overestimation is 
independently captured by the rate-of-decay parameter of the Exponential 3 function (black line relative to the 
blue reference function).
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Method
Participants
Hundred ten university students participated. Seventy participants were tested in person at the Department of 
General Psychology (University of Padova, Italy); data from one subject was removed from further analysis (see 
analysis), leaving 69 participants in the final analyses (mean age 24 years old SD = 2.37; male = 34; mean years 
of education = 14.92; SD = 1.71). The remaining 40 participants (mean age 22.90 years old SD = 2.45; male = 11; 
mean years of education = 14.30; SD = 1.91) performed the FP task remotely (online).

Apparatus
The stimuli consisted of a grey circle (diameter = 3.82°) and a grey cross (3°), displayed at the center of a lighter 
grey background screen. A thin circle was initially displayed for 500 ms (Inter-Trial-Interval, ITI), followed by 
a thicker circle that could last for one of the following interval durations: 480, 720, 960, 1200, 1440, 1680, or 
1920 ms. After the duration had elapsed, a cross appeared in the center of the circle for 500 ms. Participants 
were instructed to press the spacebar as fast as possible whenever the cross appeared in the center of the thicker 
circle, following the protocol commonly used in variable foreperiod tasks. Participants were not provided with 
any information about stimulus durations.

Procedure
Participants tested in-person were seated in a quiet room at an approximate distance of 60 cm from the computer 
screen (15.6″) that produced and recorded experimental events via PsychoPy  Software54. For those tested online, 
the recruitment process was carried out either in class or using the common procedure adopted to recruit par-
ticipants at the Department of General Psychology, University of Padova, Italy. Upon agreeing to participate in 
the study, these individuals received a link to perform the task. The experiment, created using  PsychoPy54, was 
identical to the in person testing and was hosted by Pavlovia (Open Science Tools, Nottingham, UK). Participants 
tested remotely were instructed to perform the task in a quiet room and to be seated approximately 60 cm from 
their computer screen.

All participants had normal or corrected-to-normal vision and normal hearing. Participation was voluntary, 
and no compensation was provided for participating in the study. All participants signed an informed consent 
prior to the participation, in accordance with the Declaration of Helsinki. The experiment was approved by the 
Ethics Committee of the Department of General Psychology of the University of Padova.

Our experimental protocol consisted of four blocks of 42 trials each (with six repetitions for each temporal 
interval). Thus, the number of trials per foreperiod was set to 24 repetitions, which is in general agreement 
with the number of trials used per foreperiod in previous studies of simple RT  task7,11,13,15,16,19,20,55. In the online 
experiment, four blocks were administrated for each subject as planned. For the data collected in the laboratory, 
the majority of participants underwent four blocks (n = 36 out of 70 participants). However, due to a technical 
issue, 25 (out of 70 participants) went through five blocks and the remaining 9 (out of 70 participants) under-
went three blocks. All participants, irrespective of the number of blocks they underwent, were included in the 
analysis reported here (for a detailed analysis of each subgroup, see Supplementary Materials). To acquaint 
participants with the task, a practice phase was included, consisting of 7 trials, with one presentation for each 
temporal interval.

Analysis
Prior to fitting regression models, for each participant and for each FP, we collapsed all trials. Next, trials with 
extreme outliers (three times the interquartile interval below the first quartile (Q1) or above the third quartile 
(Q3)) were identified and  removed56. This resulted in removal of 2.95% and 2.94% trials from the laboratory 
(in-person) and online datasets, respectively. The RTs in the remaining trials, per participant and per FP, were 
averaged and used for subsequent analyses.

The focus of the present study was to address the neglected nonlinearity in the mainstream average-based 
approaches to the FP-RT analysis. Therefore, in the present study, we summarized the data per participant and 
foreperiod by taking the average of RT distributions (following the standard analysis method of the mainstream 
previous research on FP  effect8,9,19,32,34). However, using distributional analyses (e.g. drift–diffusion  models57, 
or event history  analysis58), might provide additional insights into the underlying nonlinearity of summarized 
RT distributions.

After averaging trails per participant and per FP, outlier participants were detected as follows: first, a linear 
regression was separately fitted for each participant; subsequently, participants whose fitted slope showed an 
extreme upward trend (three times the interquartile interval below Q1 or above Q3) were removed from further 
analysis. This procedure resulted in the removal of data from one participant in the laboratory dataset.

In order to compare the fit of the linear model against nonlinear formulations, a mixed-effect linear regres-
sion and several nonlinear mixed-effect regression models were created. The fitting procedure was based on the 
maximum likelihood method using nlme package (v3.1–15359 in R). The fixed effect in each model was always the 
intercept for each of the terms specified in the model’s formula (Table 3). Participants were specified as random 
effects, and the random structure was kept maximal whenever possible. The goodness-of-fit of maximal random 
structure was compared against the minimal structures and the assumption of independence of random effects 
was tested. Consequently, the model with the lowest BIC was selected. Heteroskedasticity was observed for most 
fits of data collected online. To overcome this, the variance function of all models was structured with Varpower 
function in nlme  package59. For comparison between models, Akaike information criterion  (AIC60), small sample 
Akaike information criterion  (AICc61), BIC and BIC weights were reported. AIC is generally regarded as a liberal 
criterion, whereas BIC is a more conservative criterion that penalizes  overfitting59. AICc is a corrected version of 



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2780  | https://doi.org/10.1038/s41598-024-53347-y

www.nature.com/scientificreports/

AIC that is proposed for small sample sizes. AIC and AICs values converge as sample size becomes  larger61. ΔAIC 
is calculated by subtracting the AIC value for each model from the model with the minimum  AIC62. Therefore, 
the best-fitting model, based on AIC, is forced to have zero ΔAIC. Similarly, ΔBIC is calculated by subtracting 
the BIC value for each model from the model with the minimum BIC (the best-fitting model). Therefore, the 
best model based on BIC is forced to have zero ΔBIC. ΔBIC values are then used to approximate the Bayes factor 
(BF) in support of the best-fitting model relative to other  models63 (see Supplementary Materials). BIC weight 
is the relative likelihood of the model given the data (normalized to sum to 1).

In all models presented below, ‘Y’ is RT and ‘X’ is FP. Moreover, parameter ‘a’ reflects the range of RT modula-
tion, parameter ‘b’ reflects the size of FP effect (RT reduction). Parameter ‘c’ reflects the motor/cognitive limita-
tion constant. The models tested were as follows:

The nonlinear Power 1 model corresponds to fitting a linear regression to the log–log transformed RT (see 
Supplementary Materials). The nonlinear Exponential 1 model corresponds to fitting a linear regression to the 
log-transformed RT (see Supplementary Materials).

Data availability
Reported data and analysis scripts from all experiments are openly available on the Open Science Framework 
(https:// osf. io/ km27b/).
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