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Development and validation 
of a cuproptosis‑related prognostic 
model for acute myeloid leukemia 
patients using machine learning 
with stacking
Xichao Wang 1, Hao Sun 1, Yongfei Dong 1, Jie Huang 1, Lu Bai 1, Zaixiang Tang 1,4*, 
Songbai Liu 2,4* & Suning Chen 3,4*

Our objective is to develop a prognostic model focused on cuproptosis, aimed at predicting overall 
survival (OS) outcomes among Acute myeloid leukemia (AML) patients. The model utilized machine 
learning algorithms incorporating stacking. The GSE37642 dataset was used as the training data, and 
the GSE12417 and TCGA-LAML cohorts were used as the validation data. Stacking was used to merge 
the three prediction models, subsequently using a random survival forests algorithm to refit the final 
model using the stacking linear predictor and clinical factors. The prediction model, featuring stacking 
linear predictor and clinical factors, achieved AUC values of 0.840, 0.876 and 0.892 at 1, 2 and 3 years 
within the GSE37642 dataset. In external validation dataset, the corresponding AUCs were 0.741, 
0.754 and 0.783. The predictive performance of the model in the external dataset surpasses that of 
the model simply incorporates all predictors. Additionally, the final model exhibited good calibration 
accuracy. In conclusion, our findings indicate that the novel prediction model refines the prognostic 
prediction for AML patients, while the stacking strategy displays potential for model integration.

Acute myeloid leukemia (AML) is a cytogenetically heterogeneous disease. It is defined by abnormal prolifera-
tion of progenitor cells in the bone marrow and peripheral blood1,2. AML is one of the most common leukemias 
and has a poor prognosis3. According to the National Cancer Institute’s SEER (Surveillance, Epidemiology, and 
End Results) database, from 2014 to 2018, AML accounts for 30% of new leukemia cases, second only to chronic 
lymphocytic leukemia (36%). The mortality rate for AML was 44.3% among all leukemia subtypes. Chemotherapy 
is the most conventional treatment for patients with AML. However, cure rates with conventional intensive 
chemotherapy remain low4. With advances in basic medical research, we have gained a better understanding of 
AML, particularly in terms of the potential mechanisms of AML, environmental and genetic risk factors, and 
new therapeutic approaches5. New therapies (especially targeted therapies and immunotherapy) and new clini-
cal studies are essential to improve the prognosis of AML patients6. Predicting the prognostic risk of patients 
combined with the new understanding is important for advancing clinical treatment.

Cuproptosis is a unique type of cell death because of the accumulation of intracellular copper. This is usually 
associated with the activity of mitochondria-associated proteins and Fe-S cluster proteins within the cell7. Also, 
leukemia exhibits a high mitochondrial metabolic state8,9. More and more studies are focusing on the relationship 
between cuproptosis and the hematological cancer process. A number of prediction models have been developed 
to make predictions about specific outcomes in AML patients in current clinical practice10–12. However, there are 
a number of problems with current research on the cuproptosis-related prediction model in hematology. Firstly, 
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the sample size for modeling is insufficient. Secondly, some models have poor predictive performance. Thirdly, 
some models lack generalization capabilities, especially in research using machine learning algorithms, which 
frequently experience the problem of overfitting.

The stacking strategy is an alternate option to address these problems. Stacking is a way of combining several 
low-level prediction algorithms into one high-level prediction algorithm13. It is used to combine the advantages 
of different algorithms and models to improve the prediction performance. In recent years, stacking has been 
gradually developed and applicated in the medical field14,15. However, the application of stacking in AML has 
not been reported.

Based on the fact, we aimed to construct a prognostic model to predict the overall survival (OS) of AML 
patients using machine learning algorithms with stacking. We established the cuproptosis-related prognostic 
model using the GSE37642 dataset and evaluated it in the GSE12417. Then, we used stacking to combine the 
linear predictors of different models. We constructed the final model with the stacking linear predictor and clini-
cal factors using the random survival forest algorithm. We hope that the novel statistical strategy can provide 
new insights for future studies.

Materials and methods
Data collection and processing
We downloaded RNA-seq data (FPKM values) of 151 patients and corresponding clinical information in TCGA-
LAML database from the Genomic Data Commons (GDC) Data Portal (https://​portal.​gdc.​cancer.​gov). A total 
of 136 AML patients with complete survival information were retained.

The GSE37642 and GSE12417 Datasets were downloaded from GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo). After excluding samples without complete survival information, 553 and 240 patients were finally 
included. We adjusted the batch effects using the “normalizeBetweenArrays” function of the “limma” R package16.

We downloaded the transcriptome data for the BeatAML cohort from the supplementary file of the article17. 
We also downloaded the clinical and survival information. After integrating the data, 377 patients were eventu-
ally included.

Identifying cuproptosis‑related genes
We reviewed 10 cuproptosis-related genes (CRGs) from the literature7. We used Spearman rank correlation 
analysis between CRGs and RNA18. To obtain a sufficient number of genes and a low AIC, we used the following 
selection criteria to indicate RNA related to cuproptosis: Rank correlation coefficients | Rs |> 0.4 and P < 0.05 
(Table S1).

Identification and gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) 
analysis of overall survival (OS)‑related CRGs
The GSE37642 dataset was used to identify CRGs associated with AML survival using univariate Cox hazard 
regression (P < 0.05). We used GO and KEGG analysis to unravel the main functions of OS-related CRGs in 
AML with the “clusterProfiler” package19,20.

Development and validation of CRGs model
The GSE37642 dataset was used as the training dataset. The validation datasets were the GSE12417 dataset and 
the TCGA-LAML cohort. We imputed the missing clinical factors using the random forest approach using the 
“missForest” package21.

Among the already identified CRGs, we used Cox hazard regression to identify CRGs associated with the 
prognosis of AML. The Spike-and-slab Lasso was used for further variable selection with R package “BhGLM”, 
and we performed tenfold cross-validation with 10 replicates to select an optimal model based on the cross-
validated partial log-likelihood (CVPL). It has advantages over Lasso in terms of variable selection and parameter 
estimation22,23. Stepwise regression was conducted using the “stepAIC” function to obtain the optimal gene 
combinations. Finally, we calculated the following risk scores, and used “cox.zph” function from the “survival” 
package to test the proportional hazards assumption (P > 0.05 was considered to be consistent with the propor-
tional hazards assumption).

where n refers to the gene number; βirefers to the coefficient of the gene; and Expi refers to the expression level 
of the gene.

We evaluated the performance of the model in terms of both discrimination and calibration. Discrimination is 
the ability of the model to distinguish between patients at different risks24. Cumulative/dynamic time-dependent 
receiver operating characteristic (ROC) curves at 1, 2 and 3 years were plotted using the “survivalROC” pack-
age. The area under the ROC curve (AUC) for different years was used to express the discriminatory power of 
the assessment model over different time scales. The larger values of the AUC provide stronger discriminatory 
power25. We calculated the optimal cut-off value for the linear predictor using the “survminer” package. Accord-
ing to the cut-off value, we divided the patients into two groups with different risks. We used Kaplan–Meier 
survival analysis to assess the prognostic value of the linear predictor.

Calibration is used to measure the relative difference between the risk of death, specifically the agreement 
between the predicted risk of death and the observed risk of death24. Calibration plots at 1, 2 and 3 years were 
plotted by the “rms” package to assess the calibration of the Cox hazards model, with a better fit of the curve to 
the diagonal indicating a better calibration of the model26. As for the machine learning model, we calculated 

Risk score =
(

∑n

i=1
βi ∗ Expi

)

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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the predicted survival probability of each individual at different survival time points. Then, we computed the 
predicted survival probability for the entire population. We compared the predicted survival probability with 
the actual survival probability of the population to assess the calibration. The actual survival probability of the 
population was obtained from the Kaplan–Meier survival analysis.

Potential relevance of prediction model to therapeutic targets and drug targets
We examined the correlation between cuproptosis-related linear predictors and therapeutic targets using Pearson 
correlation analysis. Therapeutic targets were systematically reviewed from several previous reports27–29. The 
therapy targets included: ASXL1, BCL2, CD33, CTLA4, CD47, CHEK1, DOT1L, FLT3, IDH1, IDH2, MCL1, 
MDM2 and PLK1.

We predicted the chemotherapy drugs based on the Cancer Drug Sensitivity Genomics (GDSC) database 
using the “pRRopheticPredict” function of the “pRRophetic” R package30. The Wilcoxon test was used to compare 
the differences in drug sensitivity between the two groups.

To identify potential drug targets, we analyzed protein-drug interactions within survival-related CRGs using 
the Drug-Gene Interaction database (DGIdb, https://​dgidb.​org). Records with an interaction score greater than 
1.0 were collected.

Stacking learning & machine learning
Construction of stacking linear predictor
As is shown in Fig. 1, we first randomly divided the training data (GSE37642 dataset) into 10 equal groups 
(n = 550/10 = 55 observations), which are called “folds”. Secondly, we fit sub-models using nine of the ten folds, 
calculating the linear predictor in the remaining fold. This process was repeated 10 times, ensuring each fold 
had a linear predictor. Thirdly, we stacked the linear predictor of each sub-model with the observed outcome 
of the training data. Fourthly, we fitted the estimates of the models and outcomes with Cox hazards regression 
combining a generalized additive model. We also imposed a non-negative restriction on the coefficients. Fifthly, 
we estimated the weights for each sub-model using the limited-memory quasi-Newton method (L-BFGS-B). 
Finally, we obtained the stacking linear predictor by combining the predicted values of the sub-models with 
their corresponding weights.

Machine learning algorithms
We utilized four machine learning algorithms to develop a survival prediction model, including random survival 
forest (RSF), survival support vector machine (survival-SVM), generalized boosted regression modeling (GBM), 
and eXtreme Gradient Boosting (XGBoost). The RSF is a random forest method for the analysis of right-censored 
survival data31. This method uses the “randomForestSRC” R package. The survival-SVM is an approach based on 
SVM, which searches through the utility functions of covariates to obtain utility values that are as consistent as 
possible with the corresponding observed failures32. The GBM is a nonparametric method for building a collec-
tion of decision tree sequences. It iteratively increases the basis functions so that each additional basis function 

Figure 1.   The workflow of stacking. The linear predictors of each sub-model were integrated by tenfold cross-
validation using Cox regression combined with a generalized additive model, and the weights of each model 
were obtained by the L-BFGS-B optimization algorithm.

https://dgidb.org
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further reduces the chosen loss function33. The XGBoost is a tree-based approach that handles unscaled data. 
tenfold cross-validation with Grid search was used on the whole dataset for hyperparameter tuning to identify 
the optimal configurations34. The hyperparameters tuned, ranges and final configurations for these machine 
learning models are available in Table S2.

We employed these algorithms to construct the model, utilizing the stacking linear predictor and clinical 
factors. Subsequently, the crude performance of these four models is used to select the optimal machine learn-
ing model for building the final model. Internal validation was carried out by a 1000-times bootstrap method.

Improvement of ELN recommendation
We redefined the risk groupings for AML by integrating the ELN2017 groups, along with the new risk groups 
distinguished by the RSF model. Then we compared differences in risk among the groups.

Statistical analysis
All statistical analyses were performed using R (version 4.1.0). Student’s t-test or Mann–Whitney test was used to 
determine the relationship between the linear predictor and clinical factors. P < 0.05 was considered statistically 
significant. Survival curves were analyzed using the log-rank test. Bonferroni correction was used to control 
for Type I errors.

Results
Participant characteristics
Demographic and clinical characteristics of these populations are detailed in Table 1. After adjusting for batch 
effects, the genetic data in the three datasets are comparable.

Identification and functional enrichment analysis of OS‑related CRGs in AML
The workflow for this study is illustrated in Fig. 2. The reviewed CRGs are listed in Table S3. A list of the 3170 
genes obtained through Spearman correlation is provided in Table S4. We identified 122 copper death-related 
genes associated with AML prognosis by univariate Cox hazard regression (Table S5). KEGG results indicated 
the activity of these CRGs in the process of phagocytosis and mRNA surveillance pathway (Figure S1A). Addi-
tionally, these genes were involved in the process of macroautophagy and ‘De novo’ protein folding (Figure S1B).

Development and validation of the cuproptosis‑related risk score
In the dataset of GSE37642, we screened and obtained 22 genes from the 122 OS-related CRGs using the Spike-
and-slab lasso method (Figure S2). Then, we obtained a risk score containing 14 OS-Related CRGs genes through 
stepwise regression. The risk score is presented below:

The time-dependent ROC at 1, 2 and 3 years demonstrated the good discriminative power of the risk score 
across different time horizons (Fig. 3C). Patients were divided into high-risk groups and low-risk groups based 
on the cut-off value of the risk score (0.08), revealing significant differences in the two survival curves (Fig. 3A,B). 
The calibration plots (Fig. 3D) indicated the good calibration accuracy of the model.

In the validation dataset of GSE12417, the time-dependent ROC curves (Fig. 4C), the survival curves of 
the two risk groups (Fig. 4A,B), and the calibration plots (Fig. 4D) all demonstrated strong performance of 
prediction.

We categorized the patients into two groups by age, specifically those below and above 60 years old. Across 
different age groups, the CRGs model consistently exhibited the ability to classify patients into high and low risk 
groups, with p-values for the log-rank test being less than 0.05 (Figure S3,S4).

Potential relevance of risk score in tumor‑immune microenvironment
Pearson correlation analysis (Fig. 5) revealed negative correlations between the risk score and the mRNA expres-
sion levels of CD33 (R =  − 0.16, P < 0.01), CD47 (R =  − 0.17, P < 0.01), IDH2 (R =  − 0.21, P < 0.01). Conversely, the 
risk score was positively related to the mRNA expression levels of CHEK1 (R = 0.08, P = 0.05), FLT3 (R = 0.11, 
P < 0.01), IDH1 (R = 0.09, P = 0.04), MCL1 (R = 0.16, P < 0.01). IC50 was calculated for each AML patient in 
the two different risk groups. We plotted the top 10 different significantly different treatment-sensitive drugs 
(Figure S5). Risk scores could be used to predict sensitivity to these drugs for AML patients. Using the DGIbd 
database, we identified 18 CRGs as targets among the 50 predicted drugs (Table 2).

Construction of stacking linear predictor
Predictors from an international collaborative study35 and a study validated by multiple independent cohorts36 
were reviewed to construct the stacking linear predictor. Through tenfold cross-validation, we obtained the 
weights of the sub-linear predictors (CRGs: 0.68; 4-mRNA model: 0.25; 24-Gene model: 0.07). The stacking 
linear predictor is constructed by the following equation:

Riskscore = 0.5170× ARPC5L + 0.7593× CYP19A1− 0.3070× ESYT1− 0.2311

× FDXR + 0.3795×HSPD1− 0.0791× IGLL1+ 0.3644× KRBOX4+ 0.2472

× PLPP3− 0.4239× RIOK2+ 0.4301× STK25− 0.3409

× TNKS2+ 0.2820× TRIM8− 0.3810× ULK1+ 0.2613× ZMIZ1

Stackinglp = 0.68× CRG′slp+ 0.25× 4mRNAmodel′slp+ 0.07× 24genemodel′slp
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where lp refers to the linear predictor of the model.
We compared the predictive abilities of sub-models and stacking linear predictors. We observed an improved 

predictive ability of stacking linear predictors compared to the sub-models (Fig. 6). The stacking model was 
evaluated using a 1000-times bootstrap method and showed high discrimination with an average AUC of 0.810 
(95% CI: 0.773–0.847) (Figure S6). The model with stacking linear predictor performs better in the external 
validation dataset than the model with a simple combination of all predictors. (Figure S7).

Development and validation of the RSF model
We constructed a multivariate Cox hazard regression analysis using the established stacking linear predictor along 
with certain clinical factors to investigate whether the predictor could be used as an independent prognostic 
factor. In the GSE37642 dataset, the stacking linear predictor emerged as an independent prognosis predictor 
for AML patients after adjusting for age and FAB stage (P < 0.001). The comprehensive model was constructed 
using the obtained stacking linear predictor, age, and FAB stage, using each of the four machine learning methods 

Table 1.   Distribution of variables in the populations.

Variables GSE37642 (N = 553) GSE12417 (N = 240) TCGA-LAML (N = 131)

Median survival time (day) 353 396 577

Age (Mean ± SD) 54.90 ± 14.81 56.98 ± 14.72 53.46 ± 16.25

Status, n (%)

Dead 406 (73.4) 150 (62.5) 80 (61.1)

Alive 127 (26.6) 90 (37.5) 51 (38.9)

FAB, n (%)

0 22 (4.1) 6 (2.5) 12 (9.2)

1 113 (21.0) 68 (28.3) 32 (24.4)

2 164 (30.5) 79 (32.9) 32 (24.4)

3 26 (4.8) 0 (0) 13 (9.9)

4 121 (22.5) 53 (22.1) 27 (20.6)

5 66 (12.3) 25 (10.4) 12 (9.2)

6 22 (4.1) 9 (3.8) 2 (1.5)

7 3 (0.6) – 1 (0.8)

Missing 16 (2.9) – –

Runx1 mutation, n (%)

Yes 75 (15.2) – –

No 419 (84.8) – –

Missing 59 (10.7) – –

Runx1.runx1t1 fusion, n (%)

Yes 30 (5.4) – –

No 523 (94.6) – –

ELN2017, n (%)

1 – – 29 (22.5)

2 – – 73 (56.6)

3 – – 27 (20.9)

Missing – – 2 (1.5)

ARPC5L (Mean ± SD) 10.12 ± 0.51 10.03 ± 0.54 8.13 ± 0.51

CYP19A1 (Mean ± SD) 5.61 ± 0.27 5.81 ± 0.25 5.07 ± 0.30

ESYT1 (Mean ± SD) 9.06 ± 0.64 8.98 ± 0.56 10.93 ± 0.53

FDXR (Mean ± SD) 6.15 ± 0.50 6.18 ± 0.50 6.85 ± 0.42

HSPD1 (Mean ± SD) 11.61 ± 0.59 11.57 ± 0.55 10.29 ± 0.64

IGLL1 (Mean ± SD) 7.23 ± 1.59 7.56 ± 1.69 9.47 ± 2.21

KRBOX4 (Mean ± SD) 6.77 ± 0.61 6.75 ± 0.89 7.30 ± 0.25

PLPP3 (Mean ± SD) 7.14 ± 0.81 7.09 ± 0.78 5.93 ± 0.38

RIOK2 (Mean ± SD) 7.68 ± 0.47 7.58 ± 0.54 7.16 ± 0.28

STK25 (Mean ± SD) 7.72 ± 0.46 7.60 ± 0.53 8.37 ± 0.48

TNKS2 (Mean ± SD) 9.15 ± 0.54 9.09 ± 0.67 9.56 ± 0.41

TRIM8 (Mean ± SD) 8.96 ± 0.65 8.96 ± 0.66 9.25 ± 0.77

ULK1 (Mean ± SD) 8.20 ± 0.53 8.23 ± 0.48 8.82 ± 0.74

ZMIZ1 (Mean ± SD) 10.47 ± 0.60 10.51 ± 0.54 10.04 ± 0.86
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(RSF, Survival-SVM, GBM, and XGBoost). Figure S8 shows the time-dependent AUC of stacking final models 
based on these four machine learning methods, and it turns out that the RSF algorithm has the optimal model 
discrimination. Therefore, we used the RSF-based stacking model to construct a prediction model for AML 
patients. The 1, 2 and 3 years AUCs of the model were 0.840, 0.876 and 0.892 (Fig. 7A). 1000-times bootstrap 
method showed mean AUC = 0.878 (95% CI: 0.848–0.908) (Figure S9). In the external validation dataset (TCGA), 
the model achieved AUC values of 0.741, 0.754 and 0.786 at the 1, 2 and 3 years, respectively (Fig. 7B). As shown 
in Fig. 7D,E, the calibration of the model is still acceptable. We merged the two datasets and validated the model 
in the merged dataset. The result is still stable in this dataset (Fig. 7C,F).Figure S10 shows dead probabilities 
prediction plots generated using this prediction model for 3 patients. Three patients had different probabilities 
of death at different times, suggesting that the prediction model may have moderate differences in predicting 
survival for patients.

To further validate the predictive power of the model, we assessed the combined effect with ELN2017 risk 
stratification in the BeatAML cohort. In the BeatAML cohort, AML patients were divided into “Favorable”, 
“Intermediate” and “Adverse” groups according to ELN2017 criteria. We plotted the survival curves for these 
three groups, the separation between the “Intermediate” and “Adverse” groups was not clear (the P value of the 
log-rank test is 0.2; Fig. 8A). Subsequently, patients in the BeatAML cohort were classified into new risk groups 
based on the RSF model. We merged the ELN2017 grouping criteria and the RSF model’s grouping criteria: The 
ELN Favorable group is considered a low-risk group, the ELN “Intermediate” group and the RSF low-risk group 
or ELN “Adverse” group and the RSF low-risk groups are considered an intermediate group and the remaining 
three subgroups are a high-risk group. We additionally plotted the survival curves for these new three groups. 
The P value of the log-rank test between the three groups was less than 0.01, and the P value of the log-rank test 
between the medium-risk group and high-risk group was 0.011 (Fig. 8B).

Discussion
We identified 14 cuproptosis-related genes (CRGs) associated with OS in AML patients. We reviewed these 14 
CRGs in the context of AML progression. The study on the epigenetic and genetic heterogeneity of AML showed 
that high expression of IGLL1 is associated with cell cycle and DNA repair37. RIOK2 has been reported as a poten-
tial therapeutic target for AML. Deletion of RIOK2 leads to reduced protein synthesis and ribosomal instability, 
leading to apoptosis in leukemia cells38. At the same time, RIOK2 inhibition targets protein synthesis instead of 
targeting the PI3K/AKT/mTOR pathway, a pathway that is implicated in the mechanism of AML publication. 

Figure 2.   The workflow of this study.
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This suggests potential clinical validity in AML therapy38,39. High expression of STK25 has been reported to be 
associated with poor prognosis in AML patients, and the silence of STK25 promotes AraC-induced apoptosis 
and inhibits AML cell proliferation40. ULK1 has been reported as a potential therapeutic target for AML, and 
ULK1 itself is a key gene associated with autophagy41. ULK1 inhibitors effectively induce mitochondria-mediated, 
caspase-dependent apoptosis in FLT3-ITD-mutated leukemia cell lines and primary leukemia cells42. We also 
reviewed these 14 CRGs in the context of cell death. FDXR is essential for the biogenesis of iron-sulfur (Fe-S) 
clusters, and the instability of Fe-S clusters may further contribute to the onset of cuproptosis43. HSPD1 has also 
been reported to be associated with cuproptosis44. TRIM8 has emerged as a crucial regulator of cell survival, 
apoptosis, and oxidative stress in various pathological processes45. However, no study has reported a correlation 
between TRIM8 and cuproptosis. Other genes have also been confirmed to be strongly associated with leukemia 
or other diseases46–49. We did not find any report on KRBOX4. In aggregate, these studies indicate the potential 
significance of biomarkers in the context of cuproptosis and AML progression.

Intensive chemotherapy is currently the main treatment for AML patients, but it is not suitable for all indi-
viduals due to age and other comorbidities. Targeted therapies offer new treatment strategies. The CRGs risk 
score was negatively correlated with CD33, CD47, and IDH2, and positively correlated with CHEK1, FLT3, 
IDH1, and MCL1. This suggests that patients may not respond well to the former inhibitors but may benefit 

Figure 3.   Identification of a risk signature for OS in the GSE37642 dataset. (A) The optimal cutoff value of risk 
score; (B) The Kaplan–Meier plot shows patient OS differences based on risk score stratification; (C) The 1, 2 
and 3 years ROC curves; (D) The calibration plot.
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from blocking CHEK1, FLT3, IDH1, and MCL1. CHEK1 plays a crucial role in the DNA damage response by 
halting the cell cycle and allowing ample time for DNA repair. In AML, where DNA damage is frequent, CHEK1 
abnormalities may lead to an inadequate cellular response to DNA damage, increasing AML cell survival and 
proliferation50. FLT3 mutations may cause aberrant activation of the FLT3 signaling pathway, contributing to the 
abnormal proliferation of AML cells. FLT3 inhibitors induce apoptosis and increase the sensitivity of AML cells 
to other drugs51. Mutated IDH1 is relatively common in AML, especially the R132H mutation, which can alter 
metabolic pathways and affect cell differentiation, creating an environment for AML to occur52. In AML, MCL1 
is commonly overexpressed and helps maintain AML cell survival. Strategies to inhibit MCL1 are thought to be 
a way to treat AML by driving AML cells into apoptosis53.

To date, there has been a proliferation of articles focusing on the utilization of omics data29. In addi-
tion, machine learning and deep learning methods are gaining popularity among researchers in the field of 
medicine54,55. On the one hand, machine learning algorithms are employed for feature extraction56. On the other 
hand, machine learning and deep learning algorithms are directly applied for classification or survival analysis57. 
However, machine learning tends to overfit training data, possibly capturing localized answers within a particu-
lar patient sample or a small group of samples, which may not generalize to broader patient populations58. To 

Figure 4.   Validation of a risk signature for OS in the GSE12417 dataset. (A) The optimal cutoff value of risk 
score; (B) The Kaplan–Meier plot shows patient OS differences based on risk score stratification; (C) The 1, 2 
and 3 years ROC curves; (D) The calibration plot.
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address the problem, we used stacking to combine three prediction models and computed the stacking linear 
predictor. Then, we used the machine learning method to fit the final model, incorporating the stacking linear 
predictor and clinical factors. The model developed in this study exhibits superior effectiveness compared to 
the sub-models. Moreover, the stability of the machine learning model featuring stacking linear predictors was 
confirmed in external validation dataset.

The model in this study outperforms previous models in terms of predictive performance. Unlike other previ-
ous models, which lacked sufficient validation, we fully validated our model, including internal validation using 
the bootstrap method and external validation, demonstrating its generalization capability. The bootstrap method 

Figure 5.   Pearson correlation of the risk scores of the targets of immunotherapy and targeted therapy. (A-C) 
The negative correlations between the risk score and the mRNA expression levels of CD33, CD47, and IDH2; 
(D-G) The positive correlations between the risk score and the mRNA expression levels of CHEK1, FLT3, IDH1, 
and MCL1.

Table 2.   18 OS-related CRGs targeted by the drugs by DGIdb. 18 survival-related CRGs are selected by the 
Drug-Gene Interaction database with an interaction score greater than 1.0.

Gene HR 95%CI P-value Number of drugs Drug name

BAP1 0.61 0.45–0.83  < 0.001 2 OLAPARIB, PANOBINOSTAT​

CDKN2A 0.77 0.63–0.93 0.01 5 MILCICLIB MALEATE, HMN-214, GSK-461364, PALBOCICLIB, ABEMACICLIB

CYP19A1 1.82 1.27–2.61  < 0.001 10 ANASTROZOLE, TESTOLACTONE, EXEMESTANE, LETROZOLE, CHEMBL1077603, CHEMBL572637, 
AMINOGLUTETHIM, ATAMESTANE, ARIMIDEX, ISOPROPYL ALCOHOL

HSPA9 0.78 0.64–0.94 0.01 1 CHEMBL33859

HSPD1 1.35 1.12–1.61  < 0.001 2 CETRORELIX, DIAPEP-277

IDH2 0.78 0.66–0.93 0.01 4 ENASIDENIB, VENETOCLAX, SARA​CAT​INIB, QUIZARTINIB

ITGA4 0.82 0.71–0.93  < 0.001 6 NATALIZUMAB, VEDOLIZUMAB, CHEMBL88478, FIRATEGRAST, ABRILUMAB, SENKTIDE

KCNJ2 1.2 1.06–1.36 0.01 1 DRONEDARONE HYDROCHLORIDE

MME 1.21 1.05–1.39 0.01 8 CANDOXATRIL, LCZ696, SAMPATRILAT, SLV-334, SACUBITRIL, PEPINEMAB, ILEPATRIL, GALLOPAMIL

MPST 0.75 0.61–0.91  < 0.001 1 THYROXINE

PDCD4 0.74 0.59–0.92 0.01 1 PACLITAXEL

PLCG2 1.3 1.07–1.57 0.01 1 IBRUTINIB

PPAT 1.4 1.16–1.69  < 0.001 3 AZATHIOPRINE SODIUM, MERCAPTOPURINE, AZATHIOPRINE

PPP2CA 0.73 0.61–0.87  < 0.001 1 LB-100

PSMD3 0.81 0.69–0.95 0.01 1 CARFILZOMIB

SLC39A14 1.21 1.07–1.36  < 0.001 1 NORTRIPTYLINE

TBXAS1 0.85 0.76–0.95  < 0.001 1 PYRIDINE

VCP 0.74 0.61–0.9  < 0.001 1 CB-5083
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also helps to address the problem of biased estimation under small samples. Meanwhile, we fully considered the 
model evaluation metrics. The corresponding calibration curves for the machine learning methods are plotted.

The primary highlight of this paper is the enrichment focus on the cuproptosis study within AML, coupled 
with the standardized model construction process. The second highlight of this paper is the combination of 
machine learning with stacking, which facilitates the combination of multiple omics data and multiple existing 
models. Most importantly, this strategy effectively mitigates the challenge of overfitting. Several limitations per-
tain to this study. Firstly, the datasets employed here may still have the potential heterogeneity after being adjusted 
and had limited availability of common clinical factors. However, we demonstrated the stability and generaliz-
ability of our findings through sensitivity analyses in datasets with potential heterogeneity. Secondly, despite the 
existence of ELN2022 recommendations, we opted for the ELN2017 grouping standard due to the absence of an 
AML dataset containing sufficient genetic data to define ELN2022 groups. However, our study provided a new 
strategy for integrating risk scores and validated the feasibility of the strategy at different dimensions. The lack 
of clinical data limits further studies of the correlation between the integrating risk score and clinical factors.

In conclusion, our study used stacking and machine learning to establish a prognostic model for OS predic-
tion in AML patients. The model exhibited superior performance in external datasets compared to machine 
learning models that directly incorporate predictors. Furthermore, the model offers novel insights into potential 
risk stratification and treatment strategies. It is our anticipation that the insights garnered from our investigation 
into cuproptosis within AML prognosis, facilitated by statistical research strategies, will enhance the diagnosis 
of AML, drive innovations in treatment approaches, and contribute to the extension of patient survival.

Figure 6.   Comparison of 1-, 2- and 3-year ROC curves for different sub-models and stacking model. (A, 
B): The 1, 2 and 3 years ROC curves of sub models in GSE37642; (C): The 1, 2 and 3 years ROC curves of the 
stacking model in GSE37642; (D, E): The 1, 2 and 3 years ROC curves of sub-models in GSE12417; (F): The 1, 2 
and 3 years ROC curves of the stacking model in GSE12417.
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Figure 7.   Identification and validation of RSF model with stacking linear predictor. (A) The 1, 2 and 3 years 
ROC curves of RSF model in training dataset (GSE37642); (B, C) The 1, 2 and 3 years ROC curves of RSF model 
in validation dataset (TCGA and merged data); (D) The calibration plot of RSF model in training dataset; (E, F) 
The calibration plot of RSF model in validation dataset.

Figure 8.   The Kaplan–Meier plot. (A) The Kaplan–Meier plot shows patient OS differences based on ELN 
stratification; (B) The Kaplan–Meier plot shows patient OS differences based on new stratification; Bonferroni-
corrected P < 0.017 was considered statistically significant.
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Data availability
Raw microarray datasets of GSE37642 and GSE12417 were downloaded from GEO database. (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE37​642, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE12​
417). RNA-seq data and corresponding clinical information in TCGA-LAML database were downloaded from 
the Genomic Data Commons Data Portal (https://​portal.​gdc.​cancer.​gov/​repos​itory). The transcriptome data 
and clinical information for the BeatAML cohort during this study are included in the published article (and 
its Supplementary Information files). (Functional genomic landscape of acute myeloid leukaemia | Nature).
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