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Reliability of patient‑specific gait 
profiles with inertial measurement 
units during the 2‑min walk test 
in incomplete spinal cord injury
Romina Willi 1, Charlotte Werner 1, László Demkó 1, Rob de Bie 2, Linard Filli 1,3, Björn Zörner 1, 
Armin Curt 1 & Marc Bolliger 1*

Most established clinical walking tests assess specific aspects of movement function (velocity, 
endurance, etc.) but are generally unable to determine specific biomechanical or neurological deficits 
that limit an individual’s ability to walk. Recently, inertial measurement units (IMU) have been used 
to collect objective kinematic data for gait analysis and could be a valuable extension for clinical 
assessments (e.g., functional walking measures). This study assesses the reliability of an IMU‑based 
overground gait analysis during the 2‑min walk test (2mWT) in individuals with spinal cord injury (SCI). 
Furthermore, the study elaborates on the capability of IMUs to distinguish between different gait 
characteristics in individuals with SCI. Twenty‑six individuals (aged 22–79) with acute or chronic SCI 
(AIS: C and D) completed the 2mWT with IMUs attached above each ankle on 2 test days, separated by 
1 to 7 days. The IMU‑based gait analysis showed good to excellent test–retest reliability (ICC: 0.77–
0.99) for all gait parameters. Gait profiles remained stable between two measurements. Sensor‑based 
gait profiling was able to reveal patient‑specific gait impairments even in individuals with the same 
walking performance in the 2mWT. IMUs are a valuable add‑on to clinical gait assessments and deliver 
reliable information on detailed gait pathologies in individuals with SCI.

Trial registration: NCT04555759.

Gait impairments are prevalent among individuals with neurological  disorders1, affecting more than 60% of these 
 patients2. These impairments often show common gait abnormalities, such as slower gait speed, shorter stride 
length, and poor body  balance3. Given that gait function is integral to daily life  activities4, disturbances in gait 
often represent the initial stages towards loss of mobility and  independence2,5. As such valid, reliable, and sensi-
tive assessments of walking function are crucial in quantifying gait impairments in individuals with neurological 
disorders, thereby enabling these impairments to be therapeutically addressed.

A variety of clinical tests exist to assess walking function. They range from assessments of walking ability 
during different activities to timed measures determining how many meters one can walk in a given time or how 
long it takes to walk a given distance. Each of these measures has specific advantages and limitations. However, 
gait speed (derived from timed measures) is probably the most established clinical outcome to monitor walking 
function, as it can be considered as a key feature of locomotor control and is easy to assess in clinical  practice6. 
The main drawback of timed measures is their inability to assess specific individual deficits or gait characteristics 
underlying a gait impairment.

Locomotion is controlled at multiple levels of the central nervous system (CNS), i.e. cortical, subcortical, 
brainstem and spinal  networks7,8. Various domains, such as pace, rhythm, variability, asymmetry, postural con-
trol, etc.9–11 can partly describe these physiological systems. Assessing these different domains of locomotor 
function by gait analysis allows the construction of individual gait profiles that are unique to each person, similar 
to “fingerprints”, particularly after spinal cord injury (SCI)9. For gait analysis, optical motion capture (OMC) 
systems are considered the gold  standard12. However, these systems come with the disadvantages of high cost, 
the need for expert operation, time-consuming setup and the fact that it is restricted to a laboratory  setting13, 
which does not make them practical for everyday clinical use.
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In recent years, inertial measurement units (IMU) have been used as a possible alternative to objectively assess 
 gait14 and could be a valuable extension of standard functional gait tests. Compared to OMC, IMUs are compact, 
inexpensive, easy to operate and can be combined with functional walking tests, making them convenient for 
clinical applications or gait assessments even in the home  environment13. Even a sparse IMU setup of only two 
IMUs attached to the lower extremities can provide reliable spatiotemporal gait parameters in individuals with-
out neurological movement  disorders15. In individuals with mild walking impairments, sensor setups have been 
developed that show high validity and good test–retest reliability in several neurological  diseases16–18. However, 
a previous study has shown that the detection of gait events by such IMU setups is unreliable in individuals with 
slow walking speeds (< 1.2 m/s) and short stride lengths (< 1.0 m)19, often observed in individuals with severe 
gait impairments. A new sensor setup and algorithm for IMU-based gait analysis (ZurichMOVE, https:// zuric 
hmove. com) has recently been validated in individuals with severe SCI, walking at slow speeds (mean walking 
speed of 0.76 ± 0.17 m/s) in a laboratory  environment20. The IMU modules consist of a tri-axial accelerometer, 
a tri-axial gyroscope, and a tri-axial magnetometer that record at a sampling rate of 200 Hz. Due to indoor 
magnetic field distortions, the magnetometer data was excluded from the data  analysis20. The setup involves 
two sensors attached laterally just above each ankle, and the developed algorithms provide valid spatiotemporal 
parameters even for individuals with severe walking impairments walking at very low speeds. Using such IMU 
setups in combination with timed measures would allow us to understand individuals’ gait characteristics and 
interpret mechanisms that lead to changes in gait performance over consecutive assessments. Nevertheless, 
prior to combining an IMU-setup and the implemented algorithms with a timed measure like the 2mWT, their 
reliability must be established.

This study aimed to investigate whether the ZurichMOVE sensor setup and the newly developed algorithms 
can reliably assess gait characteristics of individuals with SCI performing a 2mWT. Firstly, test–retest reliability 
of the sensor setup was evaluated in two measurements performed within a week. Subsequently, we describe 
whether the setup is sufficiently sensitive to discern various gait profiles among individuals with comparable 
walking performance.

Methods
Participants
Individuals with SCI were recruited at the Spinal Cord Injury Center of the Balgrist University Hospital. The 
inclusion criteria were acute/subacute (1–6 months) or chronic (> 6 months) SCI, age ≥ 18 years and able to walk 
at least 10 m with/without braces, assistive devices at a minimum walking speed of 0.17 m/s.

The exclusion criteria were current orthopaedic issues, major psychosis, depression, a history of severe heart 
conditions, and other neurological diseases.

Procedure
The study has been approved by the Ethical Committee of the Canton of Zurich (BASEC 2020-01473) and was 
conducted in accordance with Good Clinical Practice (GCP) guidelines and the Declaration of Helsinki. Prior 
to enrolment, written informed consent has been obtained from all participants. Individuals were invited to 
participate on 2 test days, separated by 1 to 7 days. On the first day, a familiarisation run of the 2-min walk test 
(2mWT) was performed. After a break of at least 30 min, another 2mWT was performed. On the second test 
day, the 2mWT was repeated. In addition, the lower extremity motor score (LEMS) was assessed on the first day.

Sensor setup
Spatiotemporal gait parameters were assessed by two IMU sensors (ZurichMOVE, https:// zuric hmove. com) 
(measuring 35 × 35 × 12 mm and weighing 18 g)21. More details on the IMU sensor modules are described in a 
previous  study21. They were attached to the ankles just above the lateral malleolus with an elastic Velcro strap 
(Fig. 1).

Assessment of gait profiles
Gait profiles were created consisting of sensor-derived parameters that could be divided into spatiotemporal 
measures (gait cycle parameters expressed as mean of multiple strides) and dynamic features (representing the 
inconsistency of spatiotemporal measures across the  strides20. Spatiotemporal gait parameters except smoothness 
were calculated using a previously developed  algorithm20 and they were extracted for each cycle, namely: stride 
velocity (m/s), stride time (s), step time (s), swing time (s), relative swing time (%), stance time (s), relative stance 
time (%), double support (s), relative double support (%), stride length (cm), horizontal foot displacement in 
frontal plane (cm), vertical foot displacement in sagittal plane (cm) and smoothness (see Supplementary Table 1 
for the detailed description of each parameter). The algorithm identified turning steps as steps that deviated 
more than 30° from the main movement direction. One step before the turn, the steps taken during the turn, 
and one step immediately after the turn were excluded from the analysis. Smoothness was calculated based on 
analytical models from Balasubramanian et al.22. Dynamic features of gait were deduced by calculating symme-
try and variability parameters from all sensor-derived spatiotemporal parameters. Symmetry (symmetry index: 
SI = L−R

max
× 100)23 and variability ((coefficient of variance: COV = σ

µ
 ), σ = standard deviation; μ = mean)) were 

calculated. Gait parameters were grouped in functional domains according to the  literature9,10,24,25. This resulted 
in five gait domains with the corresponding parameters defined in Table 1. To generate a visual representation 
of the gait profiles, we normalized the data by converting them into z-scores, using the data of the first day as 
a basis for this transformation. During this process, for each subject, we calculated the mean values across all 
their gait cycles, then used these z-scores to create a radar graph, providing a clear visual depiction of the data.

https://zurichmove.com
https://zurichmove.com
https://zurichmove.com
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2‑min walk test
The 2mWT was performed according to the Guidelines of the American Thoracic  Society26, except that the 
hallway length was 35 m (instead of 30 m). The decision to alter the length was prompted by the narrowness 
of the corridor. By extending it to a length of 35 m, more space was available for the turns. For safety reasons, 
individuals were accompanied by an examiner walking behind each individual to allow them to set the pace.

Braces and/or habitual assistive devices were permitted but must be kept similar across the assessments. The 
individuals were instructed to walk as far as possible but safely within two minutes. They were allowed to take 
rest breaks if needed, but time continued running during the break.

The participants were asked to wear closed, comfortable shoes. Shoes with high heels (> 3 cm) were excluded. 
Shoes were identical for both assessments.

Statistics
Sample size calculation
Sample size calculation for the assessment of test–retest reliability was conducted using the formula proposed by 
Walter et al.19. The formula was implemented in an online calculator (https:// wnari fin. github. io/ ssc/ ssicc. html). 
The sensor-derived parameters were validated with an infrared marker-based motion capture  system20 which 
is considered the gold standard in modern gait analysis due to their high level of  precision27 Based on the high 
accuracy of the sensor-derived parameters as demonstrated in this validation study, we anticipated that the true 
intraclass correlation coefficients (ICC) would be as well excellent with a value of approximately 0.95, and a mini-
mal acceptable ICC set at 0.85. The significance level was chosen as 0.05 at a power of 0.8. Repetitions were set 
to 2. Based on these considerations, the minimal required sample size for the study was determined to be n = 25.

Test–retest reliability
ICCs (two-way mixed effect, total agreement) were calculated to determine test–retest reliability of all parameters 
between the first and second  day28. ICC values have been interpreted according to the recommendation of Koo 
et al.29: < 0.5: “poor”, 0.5–0.74: “moderate”, 0.75–0.9 “good”, and > 0.9 “excellent”. Bland–Altman plots have been 
created to estimate the absolute agreement between the two measurements.

The standard error of measurement ((SEM = SD ×
√
(1− ICC) ), SD = standard deviation)30 and the Minimal 

Detectable Change ( MDC = SEM × 1.96×
√
2)31 were calculated based on the respective formulas.

Figure 1.  Positions of the sensors attached laterally above the ankles.

Table 1.  Allocation of gait parameters into gait domains. Domains were adapted from Refs.9,10,24,25.

Domain Parameters

Pace Stride length, swing time variability and stride velocity

Variability Step time variability, stance time variability, stride velocity variability, stride length variability

Rhythm Step time, stance time, swing time

Asymmetry Step time asymmetry, stance time asymmetry and swing time asymmetry

Postural control Stride length asymmetry, double support

https://wnarifin.github.io/ssc/ssicc.html


4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3049  | https://doi.org/10.1038/s41598-024-53301-y

www.nature.com/scientificreports/

Consistency of gait profiles
To assess the consistency of the gait profiles between days 1 and 2, the sum of the absolute z-score values was 
calculated and then compared using a t-Test.

Ethical approval
The Ethics Committee of the Canton of Zurich (BASEC 2020-01473) approved this study. All participants gave 
written informed consent before data collection began.

Results
Participant characteristics
Twenty-eight individuals with moderate to severe gait impairments have been recruited for this study and 
assessed. Data of two individuals had to be excluded from the analysis due to technical problems with the sen-
sors. Data of 26 individuals (age: 57.1 ± 14.6) with SCI (AIS C: 7; AIS D: 19) were analysed in this study. Further 
demographic characteristics of the study participants are depicted in Table 2.

Test–retest reliability
In total, 8608 strides of 26 individuals with SCI were included in the analysis. The mean distance in the 2mWT 
did not differ between the test days (p = 0.086) and was 105 m ± 54 m (min–max: 20–234 m) on the first day and 
109 m ± 54 m (min–max: 25–241 m) on the second day. On average, the testing days were spaced 3.6 ± 1.65 days 
apart. The number of strides did not differ between the tests (p = 0.322), with an average of 165 strides (min–max: 
79–252) in the first and 166 strides (min–max: 79–258) in the second 2mWT. The gait parameters showed good 
to excellent ICCs (0.84–0.99 for spatiotemporal measures and 0.77–0.99 for dynamic measures). More details 
about the averaged gait parameters, ICCs, SEM and MDC can be found in Table 3. No significant difference in 
any parameters was found between days 1 and 2. The Bland–Altman plots of the parameters showed a reasonable 
agreement between the days (Fig. 2).

The Bland Altman plots of the dynamic parameters can be found in Supplementary Fig. 1.

Consistency of gait profiles
The comparison of the absolute summed z-scores between day 1 (11.07 ± 6.13) and day 2 (10.37 ± 5.1) revealed 
no significant difference (p = 0.1228). Figure 3A shows the gait profile of 4 individuals who covered almost the 
same distance in the 2mWT. All four individuals show a similar profile on both testing days, illustrating the 
within subject consistency of the gait profiles. However, gait profiles also illustrate that gait characteristics may 
differ between individuals with comparable walking distance in the 2mWT (Fig. 3B). This is in accordance with 
the substantial left–right asymmetry in the LEMS (left: 10, right: 25) found for subject 02, whereas subject 13 
achieved the maximal score of 25 with both legs.

Table 2.  Detailed demographic characteristics of the individuals with spinal cord injury who participated 
in the study. Data are presented as mean ± SD or number (percentage). NLI neurological level of injury, AIS 
American Spinal Injury Association Impairment Scale, LEMS lower extremity motor score, WISCI II walking 
index for spinal cord injury II.

Variable Value

Age (year) 57.1 ± 14.6

Sex

 Male 16 (62)

 Female 10 (38)

Height (cm) 174.4 ± 10.2

Weight (kg) 76.4 ± 18.5

BMI (kg/m2) 25.0 ± 4.6

NLI

 Tetraplegic 14 (54)

 Paraplegic 12 (46)

AIS-grade

 C 7 (27)

 D 19 (73)

Type of injury

 Traumatic 14 (54)

 Non-traumatic 12 (46)

LEMS (max score 50) 43 ± 16

Years since injury 5.0 ± 5.8

WISCI II (range) 8–20

Distance 2mWT (range) (m) 20–241
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The z-scores for all individuals, calculated for day 2 are presented in Supplementary Table 2.

Discussion
Gait impairments are frequently seen in neurological diseases. Therefore, it is essential to objectively assess walk-
ing impairments in order to offer appropriate physical therapy interventions, measure the success of treatments, 
and monitor disease progression.

The present study aimed to assess the reliability of IMU-based gait parameters in individuals with SCI. The 
main findings of the present study are that in individuals with SCI, (1) the presented setup showed good to 
excellent test–retest reliability for all extracted gait parameters, (2) individuals with SCI show consistent gait 
profiles between two measurements within 1 week, and (3) the sensor setup is suitable to detect patient-specific 
gait characteristics and distinguish patient-specific gait impairments.

Test–retest reliability of spatiotemporal parameters
It has been demonstrated previously that spatiotemporal gait parameters assessed with IMUs show high validity 
and good test–retest reliability in individuals with Parkinson’s  disease16, multiple  sclerosis17, and  stroke18 with 
mild gait impairments. Typically, the algorithms used to calculate spatiotemporal parameters rely on detecting 
gait events such as heel strike or foot off. Different methods are used to detect these events, and based on their 
complexity, they show different robustness against individual differences and disturbed  gait32. Typically, the 
robustness of gait event detection algorithms decreases with poorer walking ability of an individual, as they usu-
ally rely on fixed thresholds, which makes them prone to fail in poor  walkers20. The algorithm used in this study 
uses adaptive thresholds to detect each individual’s gait cycles and gait  events20. This approach resulted in good to 
excellent reliability (ICC: 0.77–0.99) of spatiotemporal and dynamic parameters, even in individuals with severe 
gait impairments. ICCs were higher than 0.75 for all parameters, corresponding to good to excellent  reliability29. 
It is known that the walking protocols used to collect the gait data have an influence on its  reliability6. Walking 
speed and cadence for instance can be reliably assessed over 10 m in  SCI33, therefore requiring only a few steps 
to be accurate. However, a higher number of steps is needed to assess dynamic parameters reliably. In elderly and 
those with Parkinson’s disease, continuous walking protocols with at least 15 strides are recommended to assess 
reliable dynamic  parameters34,35. We used a continuous walking protocol (2mWT) that resulted in assessments 
of at least 79 strides per individual, allowing for a detailed and reliable analysis of different aspects of walking 
function. To further increase the reliability of spatiotemporal and especially dynamic parameters, the IMU-based 
assessment could also be done during a 6-min walk test, which is also considered to be reliable in  SCI36. However, 
longer testing protocols and the related exhaustion should be avoided in the case of poor walkers.

Table 3.  Test–retest reliability and minimal detectable change of spatiotemporal parameters. Data are 
presented as mean ± SD or number, 95%-confidence intervals in parentheses. ICC intra-class correlation, MDC 
minimum detectable change, SEM standard measurement error.

Parameter
Mean ± SD
Day1

Mean ± SD
Day2 ICC Agreement interpretation SEM MDC

Stride velocity (m/s) 0.94 ± 0.48 0.96 ± 0.47 0.98 (0.965–0.993) Excellent 0.07 0.20

Stride time (s) 1.51 ± 0.57 1.46 ± 0.51 0.97 (0.938–0.988) Excellent 0.08 0.23

Step time (s) 0.75 ± 0.29 0.73 ± 0.25 0.97 (0.939–0.988) Excellent 0.04 0.12

Swing time (s) 0.51 ± 0.12 0.50 ± 0.11 0.96 (0.918–0.983) Excellent 0.02 0.06

Relative swing time (%) 35.94 ± 6.60 36.15 ± 5.95 0.99 (0.969–0.994) Excellent 0.70 1.95

Stance time (s) 1.00 ± 0.50 0.96 ± 0.43 0.97 (0.935–0.987) Excellent 0.07 0.20

Relative stance time (%) 64.06 ± 6.60 63.85 ± 5.95 0.99 (0.969–0.994) Excellent 0.70 1.95

Double support (s) 0.25 ± 0.23 0.23 ± 0.19 0.96 (0.911–0.982) Excellent 0.04 0.11

Relative double support (%) 14.28 ± 6.77 13.95 ± 6.06 0.98 (0.957–0.991) Excellent 0.86 2.37

Stride length (cm) 117.92 ± 33.88 119.76 ± 32.94 0.98 (0.962–0.992) Excellent 4.29 11.90

Horizontal foot displacement (cm) 4.20 ± 1.62 4.25 ± 1.57 0.93 (0.859–0.970) Excellent 0.40 1.10

Vertical foot displacement (cm) 11.41 ± 2.33 11.15 ± 2.22 0.84 (0.681–0.925) Good 0.88 2.44

Smoothness  − 2.88 ± 0.21  − 2.85 ± 0.24 0.85 (0.696–0.929) Good 0.09 0.26

Step time asymmetry (%)  − 1.62 ± 17.82 1–1.73 ± 17.01 0.99 (0.981–0.996) Excellent 1.61 4.47

Swing time asymmetry (%)  − 1.74 ± 16.61  − 1.64 ± 16.00 0.98 (0.957–0.991) Excellent 2.21 6.11

Stance time asymmetry (%) 1.92 ± 9.33 1.56 ± 8.92 0.98 (0.951–0.990) Excellent 1.32 3.67

Stride length asymmetry (%) 0.32 ± 5.35  − 0.11 ± 5.23 0.77 (0.545–0.888) Good 2.53 7.01

Stride length variability 0.08 ± 0.03 0.08 ± 0.04 0.79 (0.583–0.900) Good 0.02 0.05

Stride velocity variability 0.10 ± 0.04 0.10 ± 0.04 0.87 (0.72–0.939) Good 0.02 0.04

Stance time variability 0.08 ± 0.04 0.07 ± 0.03 0.85 (0.695–0.31) Good 0.01 0.03

Step time variability 0.10 ± 0.09 0.10 ± 0.08 0.97 (0.931–0.986) Excellent 0.02 0.04

Swing time variability 0.10 ± 0.07 0.10 ± 0.06 0.97 (0.926–0.985) Excellent 0.01 0.03
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Consistency of gait profiles
Recovery of gait is of high relevance for individuals with incomplete  SCI37. Restoration of gait consists of improve-
ments in functional (e.g. speed, endurance) as well as qualitative (e.g. kinematic, biomechanical)  aspects38. 
However, typical clinical measures such as timed measures only assess functional gait recovery and do not 
inform about movement quality. This is a limitation for clinical trials in neurological disorders, as outcome 
measures focusing purely on functional gait recovery can miss important information on gait recovery or disease 
progression. For example, it has been shown that variability parameters for step time and stance time are able 

Figure 2.  Bland–Altman plots to assess test–retest reliability. The averages of the two measurements were 
plotted against the differences. The solid lines represent the means and the dashed lines the 95% limits of 
agreement.
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to distinguish between healthy controls and individuals with MS in the absence of clinical gait impairments as 
determined by the  EDSS39. Also, for fall prediction, spatiotemporal and dynamic parameters are more sensi-
tive than functional outcomes like walking  speed40. This highlights the potential of sensor-derived gait profiles 

Figure 3.  Radar chart illustrating the 15 gait characteristics organised by domains. (A) Shows the consistency 
of the gait profile from day 1 (D1) to day 2 (D2) for four individuals with a similar performance in the 2-min 
walk test. (B) Shows different gait strategies used by individuals, albeit same walking distances. Two show 
similar gait profiles (right subplot) and two show profoundly different gait profiles (left subplot).



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3049  | https://doi.org/10.1038/s41598-024-53301-y

www.nature.com/scientificreports/

as a sensitive tool to characterise and monitor gait parameters in individuals with gait impairments. We could 
demonstrate that gait profiles assessed with IMUs were reliable in SCI, which is a prerequisite for their clinical 
implementation. In addition, the derived gait profiles were able to reveal different gait patterns in individuals 
with comparable walking performance. Studies in stroke survivors have identified several altered kinematic 
gait patterns including decreased knee flexion and decreased dorsiflexion during the swing phase compared to 
healthy controls. In order to achieve sufficient foot clearance despite these kinematic alterations, patients often 
develop compensation strategies (e.g., pelvic hiking and circumduction)41. Our data shows that individuals with 
SCI with a similar 2mWT performance can also utilize different gait strategies. For example, Fig. 3B illustrates 
that subject 02 uses more compensatory movements (reflected in a more asymmetrical gait pattern) than subject 
13. This can be explained by the profound left–right lower limb muscle strength asymmetry (assessed by the 
LEMS) of subject 02, while subject 13 has identical (maximal) muscle strength in both legs. Thus, IMU-based 
gait analysis allows us to identify patient-specific deficits that cannot be determined by a simple timed walking 
test. This is of high relevance for longitudinal assessments in SCI. Measurements of gait over time after injury 
can inform us about primary adaptations in motor behaviour as response to injury and, over time, demonstrate 
mechanisms of improvement (i.e., compensation vs regeneration).

It has been shown in individuals with a neurological disease that the walking speed differs when measured 
in clinical vs community  environments42. These results align with a study performed with individuals with 
Parkinson’s disease, where a significant difference has been found for all gait parameters between laboratory 
and free-living  environments10. Therefore, it is crucial to move the assessment of gait out of the laboratory 
and into more real-life environments such as at home and in the community. IMUs allow to capture gait over 
extended periods and can help to provide a more comprehensive picture of individuals’ gait  deficits6. However, 
the automatic recognition of walking bouts during everyday life remains challenging, especially for patients 
with a distinct pathological gait pattern. Further, the threshold for determining the minimum number of steps 
required to classify an activity as walking remains  unknown9. IMUs could be used in large, multicentre, cohort, 
and longitudinal studies, as well as in trials investigating different treatments, where they can facilitate the col-
lection and improve the quality of gait data.

Limitations
A limitation of this study is the absence of reference data from healthy individuals, which hinders the ability to 
compare and quantify the pathological nature of gait patterns in individuals with SCI. Given that the primary 
objective of this study was to assess reliability and sensitivity of gait parameters in detecting inter-individual 
differences, reference data collection from healthy individuals was not pursued. However, acquiring such data 
will be the next crucial step towards enabling the quantification of the extent of pathology in the gait patterns 
of individuals with spinal cord injuries.

It’s worth noting that the z-scores were computed to visualize the spatiotemporal parameters among individu-
als with SCI and to highlight the potential of sensor-derived parameters in identifying distinct walking strategies. 
However, the calculated z-scores should not be used to compare different spatiotemporal parameters against 
each other, as normal distribution was not given in all scores.

Conclusion
This study demonstrated good to excellent test–retest reliability for all gait parameters of an IMU-based gait 
analysis in individuals with SCI. Based on these findings, IMU-based gait analysis is clinically feasible (simple 
handling, time effective) to complement gait assessments while providing detailed and objective measures of 
gait characteristics and changes over time.

Data availability
The data sets collected and analysed as part of the current study are available from the corresponding author 
upon reasonable request.

Received: 12 February 2023; Accepted: 30 January 2024
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