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Unsupervised machine learning 
combined with 4D scanning 
transmission electron microscopy 
for bimodal nanostructural analysis
Koji Kimoto  1*, Jun Kikkawa  1, Koji Harano  1, Ovidiu Cretu  1, Yuki Shibazaki  2 & 
Fumihiko Uesugi  3

Unsupervised machine learning techniques have been combined with scanning transmission 
electron microscopy (STEM) to enable comprehensive crystal structure analysis with nanometer 
spatial resolution. In this study, we investigated large-scale data obtained by four-dimensional (4D) 
STEM using dimensionality reduction techniques such as non-negative matrix factorization (NMF) 
and hierarchical clustering with various optimization methods. We developed software scripts 
incorporating knowledge of electron diffraction and STEM imaging for data preprocessing, NMF, 
and hierarchical clustering. Hierarchical clustering was performed using cross-correlation instead of 
conventional Euclidean distances, resulting in rotation-corrected diffractions and shift-corrected maps 
of major components. An experimental analysis was conducted on a high-pressure-annealed metallic 
glass, Zr-Cu-Al, revealing an amorphous matrix and crystalline precipitates with an average diameter 
of approximately 7 nm, which were challenging to detect using conventional STEM techniques. 
Combining 4D-STEM and optimized unsupervised machine learning enables comprehensive bimodal 
(i.e., spatial and reciprocal) analyses of material nanostructures.

Modern scientific instrumentation techniques, such as scanning transmission electron microscopy (STEM), for 
material characterization can provide significantly larger experimental datasets than ever before. Four-dimen-
sional (4D)-STEM1–7 has recently been achieved by recording spatially-resolved electron diffractions s(u, v) with 
varying positions (x, y) of an incident probe, yielding 4D data I4D(x, y, u, v) , as illustrated in Fig. 1. Electron 
diffraction with a nanometer incident probe can be used to crystallographically characterize inhomogeneous 
materials8. 4D-STEM provides bimodal information from real (x, y) and reciprocal (u, v) spaces as microscopic 
maps and diffraction patterns, respectively. Because the data acquired by 4D-STEM can easily reach 1 GB (e.g., 
1284 pixels with 4 bytes per pixel), statistical or computational approaches are indispensable to extract repre-
sentative information. Electron microscopists have applied statistical3,5 or machine learning techniques2,4,9 to 
large experimental datasets. Such techniques include principal component analysis (PCA)10,11 and non-negative 
matrix factorization (NMF)12–14 for denoising, dimensionality reduction, and other tasks. Various software pack-
ages are available, including well-known machine learning libraries (e.g., scikit-learn) or packages dedicated to 
electron microscopy (e.g., py4DSTEM)15. Although several machine learning techniques can be applied using 
general software packages, in-depth discussion or optimization based on knowledge of electron microscopy has 
hardly been addressed.

Various applications of machine learning to 4D-STEM have been reported16. Similarly, we have reported on 
strain mapping17, atomic resolution18, and combining 4D-STEM with NMF to extract interpretable diffraction 
patterns19 from composite specimens of known crystalline materials. Since the investigated specimens often have 
unknown structures, we need to elucidate the experimental results without learning supervision.

In this study, we combined 4D-STEM with unsupervised machine learning, including dimensionality reduc-
tion and hierarchical clustering (Fig. 1). We prepared in-house scripts (i.e., macros) in software for electron 
microscopy (DigitalMicrograph, Gatan20) for data preprocessing, NMF, and hierarchical clustering while imple-
menting electron microscopy knowledge in its data processing and analyses. This study aimed to combine 
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optimized machine learning with material characterization to achieve bimodal (i.e., image and diffraction) 
crystallographic analysis at the nanometer scale.

Results
Outline of dimensionality reduction by NMF
An experimental diffraction pattern of actual materials is often a linear combination of multiple diffractions from 
overlapping domains; therefore, factorization and dimensionality reduction should be applied before cluster-
ing. We applied NMF for dimensionality reduction to experimental 4D-STEM data, which consisted of 3364 
diffractions (see METHODS). Among the available dimensionality reduction techniques, we found that NMF 
provides interpretable results (electron diffractions), whereas the well-known PCA is ineffective for dimensional-
ity reduction or component number estimation for 4D-STEM data19.

Dimensionality reduction by NMF represents the experimental data X as a linear combination of diffractions 
S, consisting of sparse positive diffractions as follows (Fig. 2):

(1)X = SC,
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Figure 1.   Schematic illustrating the combination of 4D-STEM and unsupervised machine learning in this 
study.
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Figure 2.   Schematic illustrating the dimensionality reduction using NMF for 4D-STEM.
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where C represents positive coefficients in real space, called maps in this article. If the maximum number of 
each coordinate tuple in the experiment is 

(

nx , ny , nu, nv
)

 and the total number of components is nk (nk <  < nxy), 
then X ∈ R

nuv×nxy
+  , S ∈ R

nuv×nk
+  , and C ∈ R

nk×nxy
+  , where nxy = nx × ny and nuv = nu × nv . This transformation 

from 4D data I4D
(

x, y, u, v
)

 to two-dimensional (2D) matrix X is necessary for matrix calculations in NMF, and 
the experimental diffraction pattern s(u, v) at each position is transformed into one-dimensional (1D) column 
vectors of X. NMF yields real-space maps ck

(

x, y
)

 and reciprocal-space diffractions sk(u, v) as row and column 
vectors of C and S, respectively (Fig. 2). Owing to this data transformation, various material information (e.g., 
domain sizes in real space and lattice parameters in reciprocal space) is not handled, and the bimodal informa-
tion in 4D-STEM cannot be used during NMF. Such bimodal information is fully exploited in the following 
hierarchical clustering in this study.

NMF in this study consists of the following steps:

(1)	 The number of components nk is assumed.
(2)	 Matrix C is generated with its elements being non-negative random numbers.
(3)	 S =

(

XC
T
)(

CC
T
)−1.

(4)	 Negative values in S are set to zero. Each column vector of S is normalized.
(5)	 C =

(

S
T
S
)−1(

S
T
X
)

.
(6)	 Negative values in C are set to zero. Each row vector of C is sorted by its l2 norm. The column vectors of S 

are also sorted according to the order of the corresponding row vectors of C.
(7)	 The mean square  error  (MSE) of  the  current  est imat ion is  ca lculated us ing 

MSE =
(

nxy × nuv
)−1 ∑

(X − SC)2 , and its convergence is judged by comparing it with the previous 
MSE. If the result does not converge, proceed to Step 3.

(8)	 To survey the global minimum, i.e., to avoid local minima, the NMF is performed multiple times from 
Steps 2 to 7, and the minimum MSE with the corresponding matrices S and C are obtained.

This alternate least-square (ALS) NMF procedure21 is the same as that reported by us19, and specific Digital-
Micrograph scripts for the NMF were presented as Supplementary Material (Sect. 1).

NMF has two technical difficulties: first is the possibility of convergence to a local minimum. To avoid local 
minima in this study, many computations were performed with different initial values (see Step 8 of the NMF 
procedure above) to find the optimal solution that yields the minimum MSE. The second issue is that the number 
of components, which is unknown, has to be assumed in advance for NMF (see Step 1). Although there is no 
established method to determine the number of components, we estimated the sufficient number of components 
nk by comparing the MSEs of PCA and NMF, as shown in the following section. We assumed a sufficiently large 
value (nk = 20), and the subsequent clustering allowed the validity of the selected value to be contemplated.

The normalization in Step 4 and the sorting in Step 6 are not necessarily required in general NMF algorithms, 
but they can improve the interpretability of the factorized diffractions and maps. In the actual experiment, the 
number of illuminated electrons is constant at each probe position, and the specimen thickness is nearly constant. 
Therefore, it is reasonable to normalize the scattering intensity of each diffraction in Step 4. The sorting of C and 
S in Step 6 helps to infer major components, as discussed below. The NMF was performed without regularization 
(which was implemented in the in-house script) because it does not lead to a substantial improvement.

Outline of hierarchical clustering using crystallographic similarity
Clustering is a standard procedure in unsupervised machine learning, and several algorithms are available. 
Because the number of components is unknown, we used hierarchical clustering. The similarity between vectors 
in general clustering procedures is evaluated using Euclidean distances or cosine similarity, but such conven-
tional measures are not related to the diffraction physics governed by Bragg’s law, 2dsinθ = � , where d is the 
lattice distance, θ is the scattering angle, and � is the wavelength of electrons. The scattering angle θ is critical in 
crystallography because it is directly proportional to the inverse lattice constant of the material. Accordingly, 
we used another similarity based on diffraction physics to generate a nested set of clusters and to represent the 
hierarchical tree as a dendrogram.

A practical complication in actual experimental data is that the obtained diffraction patterns may be rotated 
by the rotation of the crystal domain in the specimen, even for the same crystal structure. We transformed dif-
fractions s(u, v) into r − φ projected patterns s′(r,φ) , where r represents the scattering angle θ on the diffraction 
pattern and φ is the rotation angle. The similarity between the r − φ projected patterns was computed using 
cross-correlation, where a shift only along the φ axis was allowed. We evaluated the similarity between two pat-
terns s′(r,φ) using such a cross-correlation, and a rotation in the plane (u, v) of the diffractions s(u, v) could be 
corrected. The cross-correlation varies from − 1 to 1, with 1 at the peak representing the perfect similarity, and the 
peak off-centering reflecting the misalignment. The r − φ projection is often used in diffraction analyses, and the 
cross-correlation is also used to calculate the similarity and relative shift between 2D patterns22. The comparison 
of Euclidean distances and a cross-correlation is discussed in the following section using experimental results.

Experimental results and data preprocessing
Figure 3a shows a bright-field image constructed from the 4D-STEM data using a virtual bright-field detector of 1 
mrad in a semi-angle (= 2 nm−1) at the center of the diffractions, with c2D

(

x, y
)

=
∑

|u2+v2|<1 I4D . We calculated 
an integrated diffraction pattern (Fig. 3b) from the entire area, s2D(u, v) =

∑

x,y I4D , in which the brightness of 
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the diffraction is proportional to a logarithmic value of the signal intensity. The intensity of the center spot (i.e., 
the direct spot) shown in Fig. 3b was more than 100 times higher than that of the surrounding halo rings. Because 
of these halo rings, the specimen was considered to be amorphous. Since the scattering intensity of the halo rings 
is weak, less than 1/100 of the transmitted wave, the specimen thickness is considered to be sufficiently thin. The 
effect of dynamical diffraction can be approximately neglected, and the linear combination approximation of 
Eq. (1) is applicable. It should be noted that the nonlinear feature becomes evident in convergent beam electron 
diffraction in high-resolution STEM with a large convergence angle.

The diffraction patterns of the 4D-STEM data depend on the probe position, and Fig. 3c and d show selected 
diffractions obtained at positions c and d in Fig. 3a, respectively. Some areas present the regular spots of crystal-
line domains, as shown in Fig. 3d. Because the incident probe was illuminated coherently in small areas, the 
diffraction patterns exhibited speckle features that changed randomly with varying probe positions and were 
evident in the amorphous diffractions, as shown in Fig. 3c. A statistical approach is thus indispensable to dis-
tinguish regular crystalline spots from random speckle features.

The experimental data include subtle noise from the detection system and comparable quantum noise due to 
the limited number of electrons captured per pixel. Typically, hundreds of electrons are involved in each pixel, 
and it can contain tens of percent quantum noise according to the Poisson distribution. Although no normali-
zation or denoising was applied, minimal data preprocessing was performed prior to NMF. Each diffraction 
pattern was accompanied by an intense direct spot at the center, and this high-intensity area became dominant 
for calculating the MSE; however, the direct spot is insensitive to the crystal structure. We used a mask to cover 
the intense direct spot (right half of Fig. 3d) to select the structure-sensitive area. Additionally, the four corners 
were roundly masked in advance for the r − φ projection.

Dimensionality reduction of experimental results
We performed the NMF procedure on the experimental 4D-STEM data; the assumed number of components 
nk was varied from 5 to 30. The MSEs of all converged NMFs are plotted as filled circles in Fig. 4a. Some points 
were considered to be converging to local minima; however, the monotonic decrease suggests that the minimum 
value of each assumed nk was the optimal factorization. The MSEs of NMF and PCA deviated monotonically, 
and PCA exhibited a smaller MSE at a higher nk (see filled squares in Fig. 4a). This deviation has been reported 
by our group and another group4,19. The deviation suggests that NMF cannot reproduce the experimental noise 
owing to the lack of a negative value. Figure 4b shows the NMF results at each nk, showing the five major dif-
fraction patterns. We also found that as the number of components nk increased, the multiple components can 
be considered to an amorphous matrix. We confirmed a similar nk dependence using simulated data consisting 
of a known number of components, as shown in Sect. 5 of the Supplementary Material. Similar to Fig. 4a, the 
MSEs of the NMF for the simulated data became larger than those of the PCA when the assumed number became 
larger than the known number of components. We also found multiple amorphous components of the simulated 
data at higher nk (see Fig. S5), as shown in Fig. 4b. Consequently, we considered nk = 20 as a sufficient number 
of components to describe the experimental results.

Figure 5 shows the NMF results obtained assuming nk = 20. The matrices C and S providing the minimum 
MSE were fully transformed into diffraction sk(u, v) and map ck

(

x, y
)

 pairs. The pairs were sorted according to the 
l2 norm of each map, as indexed from 0 to 19. The brightness of the diffractions and maps in Fig. 5 was set in the 
same lookup tables, in which low intensity of diffractions is enhanced to visualize the weak intensity features (see 
the intensity bar in the upper right of Fig. 5). Low-index (e.g., k = 0–3) components exhibited dispersed intensity 
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Figure 3.   4D-STEM experimental results. (a) Virtual bright-field STEM image. (b) Integrated diffraction 
pattern of the entire scanning area. (c) and (d) Selected diffraction patterns obtained at positions (c) and (d) 
indicated in panel (a).
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in maps ck and no intense peaks in diffractions sk, suggesting an amorphous matrix. By contrast, high-index (e.g., 
k = 9–19) components exhibited precipitates in the maps and crystalline spots in the diffraction patterns. The 
sorting roughly distinguished between an amorphous matrix and small crystalline precipitates.

Although NMF was performed without 2D information, factorized diffractions sk(u, v) exhibited symmetric 
spots as well as actual diffractions of thin specimens (e.g., white arrows on s19). It should be noted that diffraction 
patterns of a thin crystalline specimen generally show symmetric spots due to the elongation of reciprocal lattice 
rods. The high-index maps exhibited a small precipitate with a diameter of several nanometers (e.g., 4 × 4 pixels). 
The factorized diffractions with symmetric spots are consistent with small crystalline precipitates observed in the 
maps. Because the adjacent pixels of the maps were independently processed in NMF, the precipitates detected 
in the maps were not artifacts due to speckle features but actual crystalline domains.
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Some dark spots are seen in low-index diffractions (e.g., s0–s2), and it is due to the assignment of some 
amorphous signals to crystalline components. This is a known artifact of NMF, the so-called unnatural drop of 
Shiga et al.12. The dark spots seen in Fig. 5 are faint, and they cannot be recognized in a linear intensity display, 
as shown in Fig. S9. Since the primary purpose of NMF is to extract the crystalline signals, these unnatural 
drops can be neglected.

As shown in Fig. 5, sorting by the l2 norm of the maps suggests that low-index components correspond to 
amorphous and high-index components to crystalline. However, it is difficult to quantitatively assess the degree 
of crystallinity from the intensity of crystalline spots (see Sect. 7 of the Supplementary Material). To interpret 
these NMF results crystallographically, the clustering described below is necessary.

Similarities in factorized diffractions and maps
After dimensionality reduction by NMF, hierarchical clustering was performed for comprehensive nanostruc-
tural analyses. Evaluation of the similarity (or distance) between the components was required for clustering. 
We measured various similarity values in the diffractions sk(u, v) of matrix S and the maps ck

(

x, y
)

 of matrix C 
to select a suitable function for hierarchical clustering in 4D-STEM.

First, we calculated a well-known statistical parameter, the correlation coefficient, between 1D vectors. 
Figure 6a and b show the correlation coefficients in the 20 factorized diffractions sk(u, v) and maps ck

(

x, y
)

 , 
respectively. Figure S1a and b show tableaus of the scattering plots of the maps and diffractions. The low-index 
diffractions (dashed triangle in Fig. 6a) exhibited positive correlation coefficients (e.g., 0.84 between s0 and s1
)), suggesting their similarities. The corresponding low-index maps (dashed triangle in Fig. 6b) exhibited weak 
negative correlation coefficients (e.g., − 0.26 between c0 and c1 ), suggesting a relative complementarity between 
the amorphous areas. The high-index (k > 9) diffractions and maps exhibited low correlation coefficients (Fig. 6a 
and b). Therefore, the correlation coefficient was unsuitable for clustering because it could not assess the similar-
ity between the high-index crystalline diffractions. We also calculated other well-known distances, including 
the Euclidean distances and cosine similarity (Fig. S2); however, they were unsuitable for finding similarities 
between the high-index crystalline diffractions as well as the correlation coefficient. Consequently, the conven-
tional statistical distances of diffractions can only distinguish amorphous and crystalline domains, and cannot 
reflect similarities in the crystalline diffraction patterns, which are indispensable for the clustering in this study.

Subsequently, we transformed the diffractions sk(u, v) into r − φ projected diffractions s′k(r,φ) . Figure 6c 
illustrates the projection for the first component (k = 0) from s0(u, v) to s′0(r,φ) as an example. The ϕ rotation of 
diffraction sk(u, v) becomes a shift along the ϕ axis of s′0(r,φ) . We evaluated the maximum cross-correlations 
between s′k(r,φ) while neglecting the lateral shift along the r axis (Fig. 6d). Contrary to the correlation coefficient 
of sk(u, v) (Fig. 6a), the maximum cross-correlations (Fig. 6d) exhibited variations in the high-index diffractions 
of s′k(r,φ) (large triangle (ii) in Fig. 6d), that is, several high-index diffractions were similar after rotating the 
diffraction in the (u, v) plane. We performed clustering using this similarity measure in the following section.
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To investigate the similarity of the real-space distribution, we can also calculate the maximum cross-corre-
lations between maps ck

(

x, y
)

 (Fig. 6e) considering 2D lateral (x, y) shifts. Unlike the conventional correlation 
coefficient (Fig. 6b), the cross-correlation exhibited high similarities in the high-index maps (triangle in Fig. 6e), 
which suggests that the crystalline precipitates have a similar shape but are located at different positions (see the 
maps ck(x, y) in Fig. 5). The differences between Figs. 6a and 6d and that between Figs. 6b and e were due to the 
difference between the correlation coefficient and cross-correlation. Consequently, the 2D cross-correlation, as 
compared to the correlation coefficient of the 1D vectors, provided additional information.

Hierarchical clustering using cross‑correlation of r − φ projected diffractions
The factorized results were hierarchically clustered based on the crystallographic similarities of diffractions, as 
mentioned above. We wrote DigitalMicrograph scripts for the clustering from scratch, and all the Python libraries 
(e.g., Matplotlib23,24) were only used for drawing dendrograms. The written clustering steps were as follows: (a) 
select the two most similar diffractions from all diffraction components using cross-correlations of the r − φ 
projected diffractions; (b) calculate an integrated diffraction from the two selected diffractions after correcting 
for each φ rotation; (c) reconstruct all diffraction components from the diffractions not selected in Step a and 
the integrated diffraction in Step b; and (d) return to Step a until all diffractions are clustered.

Figure 7 shows dendrograms drawn using Matplotlib in DigitalMicrograph. Dendrograms are generally drawn 
along the component index and distance axes. To clarify clustering, we first illustrate a dendrogram in which 
the horizontal axis is not a distance but an agglomerative sequence from 0 to 19 (Fig. 7a). Another dendrogram 
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summations without shift correction, whereas maps ii’ and iii’ are integrated results with shift correction to 
visualize average precipitate shapes.
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(Fig. 7b) with the pseudo-distance along the horizontal axis was also generated in accordance with conventional 
dendrograms. Since the cross-correlation between two diffractions becomes the maximum of one for the exact 
match diffractions, we defined the pseudo-distance as the deviation from one (i.e., 1 − cross-correlation value). 
The pseudo-distances did not monotonically increase in the agglomerative sequence (see two arrows in Fig. 7b) 
possibly owing to the reduction in quantum noise in the integrated diffraction. In other words, we can improve 
the signal-to-noise ratio using clustering, which is convenient for actual experimental data in which quantum 
noise is inevitable.

Cross-correlation is commonly used to determine the similarity between 2D patterns. Based on the cross-
correlation values, we identified four groups (i.e., clusters) i–iv, as shown in Fig. 7b. Groups i–iv consisted of 
components (0, 1, 2, 3, 5), (4, 12, 16), (6, 8, 9, 10, 13, 15, 11, 19, 17, 14, 7), and (18), respectively.

Insets i–iv in Fig. 7b show the integrated diffractions and maps of the four groups. Group i represents amor-
phous areas, whereas the remaining groups represent crystalline precipitates. The three crystalline groups, ii–iv, 
were distinguished by the Bragg angle of the diffraction spots. The diffraction spots of groups ii–iv corresponded 
to lattice distances of 0.259, 0.228, and 0.191 nm, respectively. This suggests that the three diffraction spots should 
be examined as the first phase of crystalline precipitation. It should be noted that no spot was recognized in the 
conventional diffraction (Fig. 3b) integrated from the entire area. Identifying the three crystalline precipitate 
groups from the 3364 experimental diffractions would be challenging without the optimized unsupervised 
machine learning.

The integrated maps i–iv shown in Fig. 7b are summations without relative-shift correction; therefore, the pre-
cipitates were randomly distributed and their shapes were unclear. Because relative shifts could be measured using 
cross-correlation (see Fig. 6e), we calculated the shift-corrected integrated maps of groups ii and iii, as shown 
in maps ii’ and iii’ of Fig. 7b. We found that the typical grain size of the precipitates was approximately 7 nm in 
diameter, which is difficult to quantify using conventional STEM (see Sect. 6 of the Supplementary Material).

4D-STEM provides bimodal data, such as real-space maps and reciprocal-space diffractions. Although cluster-
ing (Fig. 7) was performed using the diffraction similarities, the map similarities could also be used for cluster-
ing, as shown in Fig. S3, where no group appeared within a short pseudo-distance. Therefore, diffractions, as 
compared to maps, seem to be advantageous for crystallographic analysis.

Discussion
Material characterization based on clustered groups
We analyzed the nanostructure of high-pressure annealed metallic glass Zr-Cu-Al25. Metallic glasses have 
attracted substantial interest because of their properties such as high strength and significant elastic elongation. 
As the inhomogeneity of a crystal structure is related to its material properties, structural changes using various 
treatments have been studied. However, nanometer-sized precipitates are difficult to detect using conventional 
diffractometry (e.g., electron or X-ray diffraction). The early stage of crystalline precipitation in various amor-
phous materials is an essential topic in crystallographic studies and for evaluating various material properties 
such as mechanical strength.

We elucidated the observed crystalline peaks in Fig. 7 based on several known phases, including ZrCu (B2), 
AlCu2Zr, Zr2Cu, and ZrCu (B19’, ICSD 167,596). The B19’ structure yields the following peaks: 0.254, 0.227, and 
0.193 nm of d110, d102, and d021, corresponding to the 0.259, 0.228, and 0.191 nm peaks of groups ii, iii, and iv, 
respectively. All the crystalline precipitates were identified as the B19’ phase. The B19’ phase has been observed 
at the sub-micrometer scale26; therefore, our results indicate the early stage of crystalline precipitates. These 
nanometer-order precipitates are thought to be the seeds for further grain growth. It should be emphasized 
that NMF and 4D-STEM could statistically analyze all diffraction patterns. Therefore, our proposed structural 
analysis is comprehensive and quantitative while avoiding bias due to a small sampling.

Detection limit and validation of NMF using simulated data
The minimum size of the crystalline precipitates detectable by 4D-STEM is comparable to the incident probe 
size. The precipitates inclined from the low-index axes could not be detected owing to the lack of clear diffraction 
spots; however, 4D-STEM, as compared to other electron microscopy techniques, effectively detects crystalline 
precipitates. Various other microscopic techniques (e.g., STEM/TEM imaging) are available to assess nano-
structures (e.g., crystallinity). In the case of high-resolution STEM/TEM imaging, crystalline precipitates may 
be missed if they are out of focus due to the short depth of focus ( �/α2 ). Low-resolution STEM/TEM techniques 
may not be able to resolve the planar spacing along the high-index axes. By contrast, 4D-STEM can easily detect 
higher-order crystalline reflections and amorphous halo rings simultaneously. For small particles, the diffraction 
rods in the reciprocal space are elongated, reducing the likelihood of missing electron diffraction spots. In the 
present study, the presence and diameter of crystalline precipitates are unknown a priori; therefore, a robust and 
statistical analyses such as 4D-STEM should be used first.

Although NMF is an established technique for dimensionality reduction, we have validated our NMF pro-
cedure using simulated data with quantum noise, as described in Sect. 5 of the Supplementary Material. Even 
in the presence of severe quantum noise, the crystalline domains with weak signals (1%) were detected by the 
NMF. When a sufficient number of components that are larger than the simulated components is assumed, the 
NMF estimates multiple amorphous domains (Fig. S5). Additionally, the MSE of NMF becomes higher than 
that of PCA at a sufficient number of components. These features are similar to the abovementioned NMF of the 
experimental results in Fig. 4, suggesting that the assumed number (nk = 20) of components is sufficient for the 
experimental results. Further discussion on the detectability and linearity of the NMF procedure is provided in 
Sect. 5 of the Supplementary Material.
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In summary, we combined 4D-STEM and unsupervised machine learning for nanostructural analysis. Dimen-
sionality reduction of experimental diffractions (3364) was achieved using NMF, resulting in sparse (20) inter-
pretable diffractions and maps. Hierarchical clustering was performed based on the similarity between electron 
diffractions using 2D cross-correlations of r − φ projected diffractions instead of conventional Euclidean dis-
tances for 1D vectors. We obtained bimodal information from clustering, namely rotation-corrected diffractions 
and shift-corrected maps. Based on the dendrogram, we identified four groups, i.e., one amorphous and three 
crystalline groups with different diffraction spots. The three rotation-corrected diffraction patterns with different 
diffraction spots allowed the crystal structure of the precipitates to be identified. We also performed a real-space 
analysis of the three crystalline groups and evaluated the average particle size using the shift-corrected map of 
each crystalline group. Such investigations could not be achieved without combining 4D-STEM and unsupervised 
machine learning optimized with the knowledge of microscopic and diffraction techniques. This combination 
enables comprehensive bimodal real and reciprocal analyses, and it is applicable to various materials, such as 
metals, ceramics, and polymers.

Methods
We analyzed a metallic glass Zr50Cu40Al10 specimen subjected to high-pressure (5.5 GPa) and high-temperature 
(880 K) treatments. The detailed structural and mechanical properties of the specimen are provided in our pre-
vious report27. A specimen for 4D-STEM was prepared by mechanical polishing and Ar ion milling (PIPS-II, 
Gatan) at 2 kV or less. We performed a 4D-STEM experiment using an electron microscope (Titan, Thermo 
Fisher Scientific) at an accelerating voltage of 300 kV. The 4D-STEM data were obtained in an 87 × 87 nm2 area 
using a 1.5 nm scan step (58 × 58 pixels) and a diffraction of 128 × 128 pixels (i.e., I4D ∈ R

58×58×128×128 ). We 
realized a small convergence semi-angle of 0.5 mrad using a small 0.5 μm diameter aperture (i.e., high angular 
resolution), and we were able to clearly distinguish crystalline spots from amorphous halo rings. The spatial 
resolution of the present 4D-STEM experiment depended on the diffraction limit, and the probe had a 2 nm full 
width at half maximum. The scan step of 1.5 nm was optimized to the probe size. Diffractions were acquired with 
an exposure time of 10 ms using a charge-coupled device detector (US1000 series, Gatan), and its intensity was 
converted into the number of electrons. The probe deflection system of the electron microscope was carefully 
aligned, and the center spot position of diffractions (see Fig. 3b) was stabilized during incident probe scanning 
using de-scanning coils.

We processed all data using the DigitalMicrograph software (Gatan), which allows the electron microscope 
system to be controlled and data to be analyzed through various functions (e.g., slicing, matrix operations, 
cross-correlation) and programming statements (e.g., for loops)22,28. Although Python is implemented in the 
latest version of DigitalMicrograph (above GMS 3.4), we prepared in-house DigitalMicrograph scripts from 
scratch for preprocessing, slicing (e.g., 4D to 2D data transformation), NMF, sorting, hierarchical clustering, 
data conversion, and other data processes. The present NMF procedure followed the procedure reported21. Our 
DigitalMicrograph script, which is simple, as compared to modern NMF algorithms29, is presented in Sect. 1 of 
the Supplementary Material; however, obtaining fast computational algorithms was not within the scope of this 
study. Instead, we aimed to combine a modern scientific instrument with data science based on the knowledge of 
characterization techniques; our in-house scripts provide transparency and enable customization. We also used 
the SciPy30,31 and Matplotlib23,24 libraries to draw dendrograms using Python implemented in DigitalMicrograph.

Data availability
The datasets generated during this study are available from the corresponding author upon reasonable request.

Code availability
The part of codes for unsupervised machine learning used to perform this study are described in Sect. 1 of the 
Supplementary Material.
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