
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2894  | https://doi.org/10.1038/s41598-024-53279-7

www.nature.com/scientificreports

Mental health and natural 
land cover: a global analysis 
based on random forest 
with geographical consideration
Chao Li  & Shunsuke Managi *

Natural features in living environments can help to reduce stress and improve mental health. Different 
land types have disproportionate impacts on mental health. However, the relationships between 
mental health and land cover are inconclusive. In this study, we aim to accurately fit the relationships, 
estimate the impacts of land cover change on mental health, and demonstrate the global spatial 
variability of impacts. In the analysis, we show the complex relationships between mental health 
and eight land types based on the random forest method and Shapley additive explanations. The 
accuracy of our model is 67.59%, while the accuracy of the models used in previous studies is usually 
no more than 20%. According to the analysis results, we estimate the average effects of eight 
land types. Due to their scarcity in living environments, shrubland, wetland, and bare land have 
larger impacts on mental health. Cropland, forest, and water could improve mental health in high-
population-density areas. The impacts of urban land and grassland are mainly negative. The current 
land cover composition influences people’s attitudes toward a specific land type. Our research is the 
first study that analyzes data with geographical information by random forest and explains the results 
geographically. This paper provides a novel machine learning explanation method and insights to 
formulate better land-use policies to improve mental health.

Natural land cover in people’s living environments positively affects human well-being and mental  health1–6, 
and this affect is mainly driven by ecosystem  services7–9. Greenspace could improve health and well-being10, 
through reducing  harm11–13, restoring  capacities2,14,15, and building  capacities16,17. However, 2.7% of the global 
seminatural or natural land was converted to other land types, specifically cropland and built-up area, from 1992 
to  201518. With a decrease in natural land cover, the estimated aggregate value of ecosystem services from 1997 
to 2011 was slashed by $4.3 trillion globally and  annually8. As the benefits of natural land cover are profound 
and  enormous8,9, the effects of land cover change on mental health are critical to structure land-use plans and 
strategies. With continuous global development and  urbanization18, the share of natural land cover in people’s 
living environments will continue to decrease. Due to the trade-off between economic development and the 
desire for natural land, there is an essential need to detect whether people are satisfied with the current land 
composition, how much alteration of land cover composition affects future mental health, and where the effects 
of a particular land type change are the highest.

The relationship between land cover and mental health has long been  investigated1,4,19,20. Natural environ-
ments could reduce air pollution, noise pollution, light pollution, and extreme heat, and increase physical activity 
and social contact, eventually improving health and well-being by mitigating  stress4,19,21,22. Reducing air pollution 
significantly benefits human well-being, especially in metropolitan  areas23. Some findings indicate that blue-
green spaces were critical to maintaining better mental status during the COVID-19 pandemic lockdown since 
they reduced stressor  exposure24. The findings of a controlled laboratory study show that the impacts of natural 
sounds and images on stress and mental status are  positive25. Substantial and significant evidence shows that 
people living in natural environments experience higher life satisfaction and  happiness2,26. An empirical study 
indicates that individuals have significantly better mental health if they move to greener areas, and the effects 
last several  years6. Furthermore, environmental degradation and the absence of green spaces are causal factors 
of mental health issues, according to a well-designed causation  study20. Green space disproportionately affects 
human health among different socioeconomic and demographic groups; thus, those variables must be carefully 
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 considered27. On the other hand, urban land cannot be simply regarded as a negative factor. People desire more 
urban land to support a better life when cities become  crowded28. Although the relationship between land cover 
and mental health has long been detected and discussed, the detailed impacts remain elusive. In other words, 
making the value of land cover change understandable and comparable is needed to achieve a sustainable society, 
maintain human mental health, and formulate public policies.

To probe the comparable values and impacts of land cover on mental health, quantitative land cover data play 
a distinct role in empirical analyses. Previous studies have used various land cover data, which describe either the 
share of one or several land types in a defined  area6,29–32, or the greenery index, mainly the Normalized Differ-
ence Vegetation Index (NDVI)33,34. Land cover data include several land types, which are more straightforward, 
but temporal resolution data is further extended by at least one  year35. While the NDVI can be obtained with 
the highest temporal resolution every eight days, it only depicts greenery. Although these two types of data have 
been widely used in previous studies, the land cover data are more suitable for the current research, which does 
not only concentrate on greenery. The monetary value of land covers can be  estimated36,37. For example, residents 
in Germany are willing to pay 23 euro for a 1-ha increase in green urban areas within 1000 m of their  houses30. 
The monetary value estimation follows the marginal substitute rate (MSR) between land cover and income. The 
MSR strongly relies on the marginal effects of land cover and income on well-being or mental health indicators 
from statistical  models37. Most previous studies apply this method, e.g. Ref.28–30. The accuracy of statistical models 
dramatically affects the reliability of the estimated monetary value, and the assumption of the models is vital. 
Currently, the linear assumption is still widely employed since it is straightforward and effective.

The advantage of machine learning methods is their high accuracy. The goodness of fit in previous studies that 
use traditional regression methods is no more than 20%. Using the same dataset, the performance of the fine-
tuned machine model still exceeds that of the traditional linear model. The relationship between mental health 
and land cover is mainly assumed to be  linear29,32,38, quadratic, or  logarithmic30,31,36. The linear relationship in this 
context is direct and unambiguous, suggesting a clear and definitive stance toward a specific land type. This stance 
can manifest in several distinct ways; i.e., it can be significantly positive, significantly negative, or not significant 
at all. These models are based on an uncomplicated assumption that the amounts of certain land types always 
have the same effect on mental health, regardless of the current land cover status. In this case, people should live 
in an environment with only the land type that has the most positive effect on their mental health. This is the 
main shortcoming of this assumption, and it is far from reality. On the other hand, the nonlinear relationship is 
more in line with reality. Preferences for certain land types depend on the current land cover  allocation30,31,36. If 
the land cover in the living environment is too singular, it might have relatively negative impacts on residents. 
For example, a living environment with only urban land might lead to mental stress, while an area that includes 
only forest or grassland usually does not allow people to live conveniently. Thus, the fundamental idea is to build 
a nonlinear model. There are two types of widely used nonlinear models based on variable transformation with 
fundamental ordinary least squares (OLS). One assumes that the relationship between the coverage of land types, 
and well-being is  logarithmic31, and the other assumes that the relationship is  quadratic30,36. In the logarithmic 
relationship assumption, when certain coverage continues to increase, the effect of this land type on well-being 
or mental health decreases, but the direction of this attitude does not  change31. In the quadratic relationship 
assumption, when the share of land cover changes, the intensity of effects on mental health will vary and may 
even alter the direction of the impact. Although these nonlinear assumptions are better than linear assumptions, 
they still have a low level of accuracy. The accuracy of machine learning methods, such as random forest, typically 
exceeds 60%20,39. A high level of accuracy means that the relationships estimated by the trained model are closer 
to the actual situation. To make the policies based on the analysis results reliable, we should make assumptions 
similar to the real world. Machine learning has fewer assumptions on the relationships than previous  methods39. 
Therefore, the use of machine learning methods is valid and reasonable.

To estimate the impacts of land cover change on mental health, relatively precise relationships between land 
cover and mental health are desired. This study employs 100,956 observations drawn from an international sur-
vey of 37 countries and applies a nonparametric machine learning method, namely, random forest, to obtain a 
high-fit model. However, because the random forest model is typically model-agnostic, we employ effective tools 
to make the results understandable. A well-developed theory, namely, Shapley value, could fairly distribute the 
contribution among a group of contributors in a coalition based on game  theory40,41. We could regard the features 
obtained from our survey as the contributors in a coalition, and the coalition leads to a mental health status. For 
example, assuming that one individual’s mental health score is 30, the forest in her/his environment might con-
tribute 1.3 scores to her/his mental health, which could be estimated through the Shapley value method. It must 
be noted that if we accumulate the Shapley values of all features, the result will be equal to the value estimated by 
the machine learning model. This method also has disadvantages, that is, the explanations provided by Shapley 
values are focused on evaluating each individual case. This means that this method is not capable of producing 
generalized insights or conclusions. Therefore, we create a novel way, i.e., a geographically weighted connection, 
to link feature values with their Shapley values. Simply, we use random forest to fit the relationship between 
mental health and its factors, Shapley values to investigate the factors’ impacts on mental health quantitively and 
individually, and geographically weighted connections to generalize the explanation. According to explainable 
and accurate results, our research provides more information that can be used to formulate sustainable land-use 
policies to improve residents’ mental health.

Our study aims to investigate the relationships between land cover in individuals’ living environments and 
mental health, land cover’s impacts on mental health, and spatial variability of the relationships. It follows a 
cross-sectional observational design and involves a random sample of 100,956 participants from 37 countries. 
Data on mental health, demographic, and socio-economic features of the participants, including self-report 
mental and physical health, income, gender, job, educational background, and emotional well-being, will be 
collected through interviews, alongside geographical locations and land cover ratio extracted from the remote 
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sensing dataset. A machine learning method, namely random forest, will be employed to examine associations 
between land cover ratio variables and mental health status while accounting for potential confounders. Shap-
ley values are applied to compute the contribution of each land type to individuals’ mental health status, and 
then we use geographically weighted connections to estimate the marginal effects of each land type change. The 
study’s findings will be discussed in terms of land cover change implications for mental health, emphasizing the 
environmental role in improving mental health.

Data and methods
Data information
Survey information
Our study employs an international survey conducted by Kyushu University, Japan, from July 2015 to March 
2017, covering 37 countries, including both developed and developing countries. Gallup executed the survey in 
each country through online and/or face-to-face methods. Gallup is the most experienced team in the global 
well-being survey, so the survey was able to represent each country’s demographics based on their sampling 
database. The investigation periods for each country were generally less than one month. The survey team created 
a matrix representing different age groups and genders to align with the demographics of the general population. 
Subsequently, they conducted recruitment and gathered responses until each cell in the matrix was filled. 
Moreover, to guarantee the reliability of the survey, the same questionnaires were used, while currency-related 
questions were based on local currencies. The population and GDP of these countries accounted for 68.58% of 
the global population and 82.67% of the worldwide GDP in 2017, respectively (Supplementary Material Table S2). 
This survey obtained self-reported individual mental health and several other demographic and socioeconomic 
characteristics. The total number of observations that were recorded was 100,956. However, due to a lack of 
geographical location or records, 95,571 observations were kept. In addition, because some individuals did not 
provide income information, 89,273 observations are used in the current calculations (descriptive statistics of the 
features shown in Supplementary Material Table S3). Except for geographical location and income information, 
for each respondent, all other variables of interest are completely and validly fulfilled.

The ethics review committee for Kyushu University, Japan approved all experimental protocols used for the 
survey, and all methods were carried out according to the relevant guidelines and regulations. All survey methods 
were carried out following relevant guidelines and regulations. At the beginning of the survey, respondents were 
informed about the survey’s aim and their rights to participate voluntarily. All respondents provided informed 
consent before responding to the questionnaire.

Mental health
We include the twelve-item General Health Questionnaire (GHQ-12) in the survey to assess individual mental 
health. The GHQ-12 is a widely used self-report tool designed to evaluate an individual’s mental health and 
psychological well-being, commonly employed in clinical and research  contexts42–44. The GHQ-12 comprises 
12 items that aim to assess an individual’s experience over a specified period using a Likert scale. These 12 items 
ask the respondents to answer whether they have recently “(1) been able to concentrate on whatever you are 
doing?”, “(2) lost much sleep over worry?”, “(3) felt that you are playing a useful part in things?”, “(4) felt capable 
of making decisions about things?”, “(5) felt constantly under strain?”, “(6) felt you could not overcome your dif-
ficulties?”, “(7) been able to enjoy your normal day-to-day activities?”, “(8) been able to face up to your problems?”, 
“(9) been feeling unhappy and depressed?”, “(10) been losing confidence in yourself?”, “(11) been thinking of 
yourself as a worthless person?”, and “(12) been feeling reasonably happy, all things considered?”. Each item of 
the GHQ-12 has four potential answer options, specifically, “not at all,” “no more than usual,” “rather more than 
usual,” and “much more than usual,” arranged from the most negative value represented by 0 to the most positive 
value represented by 3. For example, for the question (1), if the participant’s answer is “much more than usual,” 
the score of this question should be 3, because this question is positive direction, whereas for the question (2), 
the same answer would rate as 0, since this question is negative direction. The mental health assessment score 
is computed as the summed score of all 12 items. Thus, the output variable of our study is a discrete numeric 
variable ranging from 0 to positive. The current random forest method is designed to execute either regression 
or classification. The algorithm performs the classification task using the discrete output variable, assuming the 
output is categorical. However, adjacent scores of the mental health assessments are related; i.e., they are ordinal 
rather than categorical. Figure 1 illustrates the statistical distribution of the mental health assessment scores. 
Most people receive 24 points in the assessment, and significantly more people score between 24 and 30 points 
than other range. In this situation, if we were to perform the random forest classification, then the classifica-
tion accuracy for the people with lower or higher scores would be extremely low due to the unbalanced output 
distribution. Thus, we assume that the mental health assessment score is continuous.

Global land cover data
For the land cover, we use remote sensing data compiled by Tsinghua University, China (http:// data. ess. tsing 
hua. edu. cn/), because, to our knowledge, it is the dataset with the highest global resolution, at approximately 
30 m. This dataset provides information on the 2017 global land cover. It classifies land cover into ten categories: 
cropland, forest, grassland, shrubland, wetland, water, tundra, urban land, bare land, and snow/ice35. We cal-
culate the areas of each land type surrounding our survey respondents with these data. To estimate the impact 
of land cover in our analysis, we use the percentages of each land type within a radius of 5000 m around each 
respondent,following a previous  study30. Previous theory indicates that distance and accessibility to the natural 
environment would influence the relationship between land cover and mental  health45. However, in large spatial 
analyses, especially multi-regional  studies29–31, using a land cover ratio within a certain distance is still acceptable, 
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because with a higher ratio of a land type, the residents have a higher possibility to access that land type or do 
some activities in that land type. Eight land types are used to examine the land cover data; the tundra and snow/
ice land types are rarely present within the analyzed area. After running the random forest analysis, we estimate 
the Shapley values of each land type. In this study, we regard urban land as artificial land cover, while other types 
are considered natural.

Other control variables
We add several other control variables because mental health status may differ according to people’s 
socioeconomic and demographic characteristics; these variables are age, gender, employment, educational 
background, the ratio between individual income and GDP per capita in the respondent’s country (RI) (RI’s 
computation is summarized in Supplementary Materials), emotion in the surveyed week, number of children, 
self-reported health, self-reported personality, and evaluation of living environment. Among these control 
variables, employment, educational background, and self-reported personality are categorical. We use the one-
hot encoding method to convert them into a series of dummy variables. Thus, every respondent has 49 features 
and one output variable in the analysis. Importantly, we include emotions in the past week to illustrate the 
emotional well-being; these emotions are “pleasure”, “anger”, “sadness”, “enjoyment”, and “smile”. Emotional well-
being is a factor of mental  health46. The GHQ12 is considered an aggregated score of mental health. Although 
there are some similar aspects between emotional well-being and the GHQ-12, we investigate each emotion’s 
impact on mental health by employing it as an independent variable. The descriptions of the features are listed 
in Supplementary Materials Table S4.

Figure 1.  The statistical distribution of mental health assessment (the color blocks are arranged alphabetically 
from bottom to top according to the first letter of the country. Detailed numbers are listed in Supplementary 
Materials Table S1).

Table 1.  Statistic indicators of potential models. Note: Information on the best model is in bold.

Model Task Accuracy RMSE MSE MAE

OLS Regression 42.55% 4.77 22.8 3.65

OLR Classification 13.43% – – –

SVM Regression 33.40% 5.14 26.44 3.81

AdaBoost Regression 22.62% 5.54 30.71 4.52

GBM Regression 46.01% 4.63 21.43 3.51

Random forest Regression 47.19% 4.57 20.9 3.42

XGBoost Regression 47.01% 4.58 20.96 3.47

MLP Regression 44.67% 4.65 21.61 3.55
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Data analysis
Model pre‑selection
To detect influential factors on mental health and confirm the relationship between mental health and land cover, 
linear regression methods, such as OLS and ordered logistic regression (OLR), are widely applied, e.g., Ref.6,28,38,47. 
These studies evaluate the monetary values of land cover through OLS estimation because OLS is straightfor-
ward to explain. Additionally, the investigations that employ the OLR are theoretically more reasonable since 
mental health evaluation is used as a discrete variable rather than a quantitative and continuous variable in most 
 studies6,38. OLR is a typical classification function based on logistic regression. However, these two models rely 
on linear assumptions and thus cannot directly illustrate the importance of predictors on the outcome variable. 
Stated another way, based on the linear assumption, a 1-unit increase in a certain land type always has the same 
effect on an individual’s mental health, whatever is the status quo. This is not consistent with the actual situation. 
Generally, when the computational complexity of the algorithm matches the complexity of the data, the fitting 
results are better. Linear models’ computational complexity is relatively lower, so they cannot fit the relationships 
with high accuracy, in a word, under-fitting. Machine learning methods with higher computational complexities, 
including support vector machine (SVM), tree-based boosting models, and multi-layer perceptron (MLP), are 
able to grasp the non-linear relationship, which is closer to real-world situations.

In the pre-selection stage, we compare several potential models, which are OLS, OLR, SVM, adaptive boosting 
(AdaBoost), gradient boosting model (GBM), extreme gradient boosting (XGBoost), random forest, and multi-
layer perceptron (MLP). To select the highest performance model, we test all models, except MLP, with the 
defaulted parameters based on tenfold cross-validation. It must be noted that we built an MLP with a similar 
computational complexity as XGBoost, because XGBoost has the largest computational complexity. We use the 
widely used equation toughly estimate the computational complexity of XGBoost. Then, based on the estimation 
number, an MLP’s hyperparameters, including the number of hidden layers, the number of nodes in the hidden 
layers, and the number of training epochs, are selected. Of course, more detailed fine-tuning, feature engineering, 
and hyperparameter adjustment might improve the performance of the MLP. Limited by the current computing 
power, we are unable to do more tests. However, to some degree, the current MLP still could be a reference to be 
compared with other basic models. The MLP has 22 layers, wherein one input layer, 20 fully connected layers, 
and one output layer. The input layer has 49 input nodes. Each fully connected layer has 100 nodes. The output 
layer has one output node. In total, this MLP has 207,101 parameters to train. The activation function of the 
fully connected layers and the output layer is “ReLU”. The MLP’s adaptor is “Adam”, the batch size is 32, and we 
train the MLP 20 epochs. The tenfold cross-validation average accuracies of OLS, OLR, SVM, AdaBoost, GBM, 
random forest, XGBoost, and MLP are 42.55%, 13.43%, 33.40%, 22.62%, 46.01% 47.34%, 47.19.%, and 44.67%, 
respectively, as shown in Table 1. Since our task is regression, we are also interested in root mean square error 
(RMSE), mean square error (MSE), and mean absolute error (MAE). Among eight potential models, OLR is 
for classification tasks, so RMSE, MSE, and MAE are not suitable for this method. It should be explained that 
RMSE and MSE are sensitive to outliers. RMSE is the same as the target variable, while MSE is more impactful. 
MAE is another robust measure of error when there are extreme values in the analysis. The RMSEs of OLS, SVM, 
AdaBoost, GBM, random forest, XGBoost, and MLP are 4.77, 5.14, 5.54, 4.63, 4.57, 4.58, and 4.65, respectively. 
The MSEs are 22.80, 26.44, 30.71, 21.43, 20.90, 20.96, and 21.61, respectively, and the MAEs are 3.65, 3.81, 4.52, 
3.51, 3.42, 3.47, and 3.55, respectively. In terms of four indices for regression, namely  R2, RMSE, MSE, and MAE, 
the random forest’s performance is the best.

In terms of the survey data, the random forest is a suitable model. The basic element, decision tree, of the 
random forest method has no assumption about data distribution, different from OLS and OLR. In fact, some 
features used in our analysis are mainly binary variables such as gender, job, and educational background, while 
others are discrete, such as age and RI. A decision tree is based on numerous binary judgments, so it is extremely 
suitable for analyzing our data.

Random forest
The random forest method builds a barrage of decision trees in parallel and allows them to vote for the  results48. 
The voting strategy for regression takes the average value of all individual predictions as the random forest 
prediction. Bagging and bootstrapping are performed to guarantee the accuracy and reliability of random  forest49. 
Bootstrapping is the sampling technique used by random forest. First, we set the number of trees in our random 
forest as Ntree . We extract Ntree samples with replacement from the original data, and the sample sizes are 2/3 of 
the data of the total sample. Every decision tree utilizes the bootstrapped dataset. However, at most, a predefined 
number of random features ( Nfeatures ) are used in a single decision tree rather than all the features. After training, 
the random forest model can predict the output variable by aggregating the votes from each tree. Using the 
bootstrapped dataset and the aggregate of votes, this process is terminologically called “bagging”. Additionally, 
approximately 1/3 of the total sample is left out from the training process, which is called the out-of-bag (OOB) 
dataset. The OOB dataset is applied to test the accuracy of the random forest model through the OOB score, 
which is the proportion of OOB observations correctly predicted by the trained random forest. The reliable 
trained models have a relatively high OOB score.

In random forest, most parts are built randomly, while only three critical parameters must be decided by the 
users, specifically, the minimum number of remaining observations in end leaves ( Nremain ), Ntree and Nfeatures . 
First, the minimum number of observations in the end leaves decides where the split stops because our random 
forest follows the greedy approach. If Nremain is too small, the decision tree might be too deep and too many 
end leaves would be generated, which could cause the model to be large and even unavailable to the computer 
memory. Moreover, the random forest accuracy will increase to some extent when more trees are included. 
However, the cost of infinitely increasing Ntree is a dramatic increment of calculation power and calculating 
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time. Additionally, when Ntree exceeds a particular value, the marginal effect of increasing the number is mini-
mal. Accordingly, considering the size of our dataset and computing ability, the number of trees is set to 1,000. 
Moreover, the number of features used in the decision trees, Nfeatures , is another vital factor. A large Nfeatures might 
reduce the model’s ability to grasp the relationship, while a small Nfeatures might cause underfitting. Previous 
studies have indicated that roughly one third of the total number is  recommended48–50. Thanks to our relatively 
sufficient computing ability of a high-performance computer, we test the most possible Nfeatures values based 
on tenfold cross-validation. According to the test, the goodness of fit peaks when the Nfeatures value is 11 (the 
hyperparameter process is summarized in Supplementary Materials Table S5). We also test several possible 
Nremain values, including 2, 5, 10, 15, 20, 25, 30, 35, and 40, based on tenfold cross-validation. Although the results 
show that with the same Nfeatures and Ntree , a smaller Nremain causes a higher cross-validation score, the improve-
ment is limited. For example, the increase in Nremain in the cross-validation score from 2 to 10 is not more than 
1%. However, the disadvantage of the smaller Nremain is obvious. When we build the connection between the 
Shapley value and the values of features locally, the limited local datasets might make the connection coefficient 
nonsignificant. Due to the trade-off, we set Nremain as 30. In plain language, each decision tree randomly picks 
11 features from the dataset, and each end leaf includes at least 30 observations.

In this study, we employ the geographical coordinates of each respondent in the fitting process. In other 
words, our random forest model is apt to assign geographically close respondents to the same branch. This way 
is more effective than employing country variable. The division of the model is the basis of geographically local 
dataset. The latter stages, namely random forest model explanation and the connections between observed 
and explanation values, are based on the locally geographical environments. In this way, we do not need to use 
administrative regions to reduce mental health variations among countries and regions. This method should 
be more valid and reasonable. Changes in mental health are geographically continuous rather than abrupt. To 
clarify the difference between continuous variation used in our research and abrupt change employing country 
variables, we provide a simple example here. Assume that there are two respondents who are completely the 
same living close to the national boundary, such that respondent A and B belong to two different countries, i.e., 
countries A and B, respectively. Although there could not be large difference between the living environments 
of respondents A and B, the model predictions for those two respondents might be dramatically different. In 
contrast, our method divides the large dataset into numerous local datasets based on geographical information. 
Every respondent could be included in several local datasets. Geographically, the variation in local datasets is 
continuous. We investigate the local connections within each local dataset. Therefore, these local connections 
are also geographically continuous and spatially varied, and it is not necessary to employ the country variable.

Variable importance
Random forest could estimate the importance of each feature on the output variable. The basic idea of importance 
estimation in random forest is to calculate the reduction in accuracy before and after excluding a specific  feature48. 
The reduction in the accuracy of a particular feature would be higher when it is more important to successfully 
predict the output variable compared with other features. This reduction is similar to the partial  R2 in the 
OLS algorithm. There is no need to select the features in the random forest algorithm since issues, such as 
multicollinearity, do not influence the accuracy of the random forest algorithm. However, multicollinearity is 
a fatal problem in OLS.

Shapley additive explanations (SHAP)
Although the accuracy of random forest is high, it is challenging to understand and explain the  results41,51,52. 
Shapley additive explanations (SHAP) is an advanced approach that aims to explain the contributions of each 
feature locally based on theoretically optimal Shapley  values40. To explain the contributions of features, each 
feature of the observation is a “player” in a game, and the prediction value is the payout. Shapley values help us 
fairly distribute the payout among the  players40,53. The Shapley value of a feature value is estimated as follows:

where x represents a specific observation of interest, j represents a particular feature of interest, Sjx represents the 
Shapley value of the feature j of the observation x , J represents a permutation of the set of indices 

{

1, 2, . . . , p
}

 
corresponding to an ordering of p features included in our random forest model, π(J , j) represents the set of the 
indices of the features contained in J before the j-th variable, and gj|π(J ,j)(x) represents the estimated contribution 
value of feature j of the observation x with a specific permutation. gj|π(J ,j)(x) is calculated as follows:

where X represents a matrix of random values of features, f () represents our trained random forest model, 
E
(

f (X)|X1 = x1, . . . ,Xj−1 = xj−1,Xj = xj
)
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)

 is the expected value of the predic-
tions of X , when we set X1 = x1, . . . ,Xj−1 = xj−1 . X is used to complish the predictions based on the trained 
random forest model, f () . Importantly, generally, the random values are deemed to have no explanatory ability. 
However, the random feature values in X must belong to a range of feature values and have the same numerical 

(1)Sjx = E[
1

p!

∑

J

g j|π(J ,j)(x)]

(2)gj|π(J ,j)(x) = E
(

f (X)|X1 = x1, . . . ,Xj−1 = xj−1
,Xj = xj

)

− E
(

f (X)|X1 = x1, . . . ,Xj−1 = xj−1
)
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characteristics. Each row in X could be regarded as a real individual. Therefore, in real computations, the random 
dataset X is not randomly generated but instead randomly picked up from our dataset. In the SHAP estima-
tion, some features would be replaced by the aimed individual’s certain feature value. Of course, if features, 
even a feature, are different between two rows, we could regard them as two different individuals. When a part 
of X is replaced, it does not represent the real individuals from our survey anymore. In our analysis, we set 
the dataset size of X as 1000, approximately 1% of the total dataset, according to the python package makers’ 
 recommendation41. We must emphasize that all features’ contributions to mental health for each observation, x , 
are estimated. X is simply a random matrix; it does not represent the total  dataset41,53. A larger dataset size here 
would definitely increase the computation time. To estimate the Shapley values efficiently, we use 4048 random 
permutations of all features. Of course, more permutations lead the estimated values to the real values, but the 
computing time is not affordable.

The connection between features’ values and their SHAP values
The explanations of SHAP values are too local. One observation’s SHAP values illustrate only one individual’s 
particular situation and thus cannot be directly used on other observations. A SHAP value is the feature value’s 
contribution to each observation’s current mental health status. For example, in one observation’s living environ-
ment, urban land comprises 99.60% of the total, and its SHAP value is -0.009. This individual’s living environ-
ment is monotonous and full of urban land, which might negatively affect her or his mental health. For another 
observation, urban land comprises 73.98% of the total, and its SHAP value is 0.012. The impacts of a certain 
feature on an individual’s mental health might be associated with his or her the current status. We employ linear 
regression to probe the relationship between a feature value and its contribution to mental health. However, since 
this research is global, a huge spatial extent makes the globally unified relationship suspicious. Estimating the 
relationship locally is more rational. Based on the local regression, although the relationships are locally linear, 
they are globally nonlinear.

Building a series of local datasets is the critical aspect. In the model training process, the location informa-
tion is also included, which is the longitude and latitude of the observation. Some decision trees pick up these 
features. These trees divide the global extent into several zones. The observation location belongs to zones divided 
by different trees. Thus, we obtain a bag of boundaries. The maximums of the boundaries in each direction are 
regarded as the dividing lines. Every observation is surrounded by a rectangle of dividing lines, and others within 
one observation’s zones are considered neighbors. The neighboring zones differ by location. Every respondent 
has her or his neighbor zone; thus, we obtain 89,273 neighbor zones, which are geographically local. The local 
relationship is estimated based on one observation and others located in its neighboring zone; thus, the relation-
ship coefficients also spatially vary. The estimation process is as follows:

where αjx and βjx are the slope and the intercept of the local relationship between feature j ’s value and its SHAP 
value based on x ’s neighbor zone, Xj

x is a vector of the feature j ’s values in x ’s neighbor zone, and Sjx is a vector 
of the SHAP values corresponding to Xj

x . According to the local relationship coefficient, we could interpret the 
marginal contribution of an increase in a certain feature to mental health. To improve the geographical continu-
ity of the relationship and emphasize the difference between each point in the same neighboring zone, we add 
geographical weights to the coefficient estimation process. We calculate the local geographical weight vector as 
geographically weighted regression  methods23,54 as follows:

where Wx is the geographical weight vector of the elements in x ’s neighbor zone, dx is a vector of distances 
between x and the elements in x ’s neighbor zone, and hx is the farthest distance of the distance vector dx . Accord-
ing to this equation, the weights of the elements with the furthest distance in x ’s neighbor zone are always zero, 
while the aim observation x always has the largest weight, 1, in the regression. With the geographical weight 
vector, the local coefficient is estimated as follows:

where Coef jx is the estimated local coefficient, including αjx and βjx . Because we have 89,273 geographically local 
datasets, we eventually obtain 89,273 sets of local coefficients, which spatially vary.

Monetary values of land cover
To make the impacts of land cover change on mental health understandable and comparable, we estimate the 
monetary values of land cover. This method is friendly to the public because it is free of considerable background 
knowledge. We take the marginal substitution rate (MSR) of land cover and income as the monetary values, and 
it is estimated as follows:

(3)Sjx = αjxX
j
x + βjx

(4)Wx =
[

1− (dx/hx)
2
]2

(5)Coef jx = (X
j
x
T
WxX

j
x)

−1

X
j
x
T
WxSjx
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where MSRjx is the MSR of feature j in observation x ’s location, and αINCx is the local relationship coefficient 
between the income value and its SHAP value based on the observations in x ’s neighbor zone. In this equation, 
we require either the coefficients αjx and αINCx to be significant (p value < 0.1), or the MSR to be set to zero.

where MVjx is the monetary value of feature j in observation x ’s location, and GDPPCx is the GDP per capita of 
respondent x ’s country in the surveyed year. Based on these equations, the monetary values can be explained by 
how much income changes equal a 1% increase in a specific land cover.

Analysis roadmap
Figure 2 demonstrates our analysis roadmap from raw data to monetary values. First, we use the raw data to train 
a high-accuracy random forest. The random forest model is nonparametric, which means that the contribution 
of each variable is not straightforward. In this way, we take the second step to estimate the contribution of each 
variable value to mental health by using SHAP values. Importantly, SHAP values depict the contribution of cur-
rent values of variables to mental health individually. A positive SHAP value indicates that the current variable 
values positively contribute to mental health, and vice versa. In other words, in the current study, we regard SHAP 
values as highlighting people’s attitude toward their current status. However, we do not know how variations 
in the current values affect SHAP values. Hence, we should use some method to connect the SHAP values with 
real values. Since this study covers the whole world, a statistic global analysis might lead to a biased relationship. 
Therefore, in the third step, we employ geographically weighted regression and local datasets to investigate the 
local coefficients individually. In fact, for each respondent, the coefficients of relationships between values of the 
variables of interest and their contribution to mental health can be spatially varied. For an individual respondent, 
a positive coefficient for a variable indicates that as the variable increases, its contribution to mental health also 
increases. Simply, the local coefficients of geographical connection represent the people’s attitude toward varia-
tions in variables of interest, and they are not directly related to the current values. In the fourth step, we use the 
local coefficients of each respondent to calculate monetary values. These monetary values can also differ among 
the respondents. They are not directly affected by the current variable values. These monetary values help make 
people’s attitudes toward the variation in variables easily understandable.

(6)MSRjx =
αjx

αINCx

(7)MVjx = MSRjx × GDPPCx

Figure 2.  Analysis roadmap.
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Results
In this study, the trained random forest model employs 1000 trees. At most, 11 features are randomly chosen in 
the bootstrapped datasets to train each tree. Every end leaf must have at least 30 observations. The accuracy of 
the random forest model is 67.59%, whereas the accuracy of the OLS model is only 42.66%. Moreover, the values 
of the RMSE, MSE, and MAE of the random forest model are 3.59, 12.87, and 2.71, respectively, while the values 
of the RMSE, MSE, and MAE of the OLS model are 4.77, 22.77, and 3.65, respectively. In terms of accuracy, the 
random forest model in this study significantly exceeds the linear regression. The OOB score of our model is 
47.99%. Additionally, the average tenfold cross-validation score of the random forest model is 40.81%, while the 
score of the OLS model is 38.19%.Our model is selected based on the trade-off between accuracy and explana-
tion. Figure 3 demonstrates the relationship between predicted and measured mental health scores. The slope 
of the fit line between the predicted and measured mental health scores is lower than 1. Random forest rarely 
exactly predicts extreme values, e.g., the 0 and 36 values at the extreme ends of the score range for the GHQ-12. 
Put another way, random forest’s prediction is closer to the mean value of the output variable. As shown in Fig. 1, 
extreme values are rare; thus, the status of the random forest model is acceptable.

Figure 4 demonstrates the importance of each feature. Emotions, including sadness, pleasure and smile, and 
self-reported health, affect mental health the most. For example, if we do not employ the feature “sadness” in the 
model, the accuracy will decrease by 22.41%. The income and land cover in respondents’ living environments 
significantly influence their mental health. The accuracy decreases by 3.13% by not including the income feature 
in the model. Moreover, the importance values of cropland, forest, grassland, shrubland, wetland, water, urban 
land, and bare land, are equal to 1.97%, 1.94%, 2.23%, 1.70%, 1.50%, 1.77%, 1.92%, and 1.51% reductions in 
accuracy, respectively.

Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13 illustrates nine maps of spatially average SHAP values of income and land 
cover features. To make the SHAP values spatial distribution readable, we use a spatially average value because 
the geographical scatter plots are hard to read (Supplementary Materials Fig. S4). We mean all the values in each 
cell with a 2.5-arc-degree side length. The observation numbers in each cell are different. Figure 5 displays the 
spatially average SHAP value of income. In most areas, current income features negatively contribute to mental 
health. A lower RI value is the main reason for negative contributions. Previous studies have indicated that 

Figure 3.  The density plots between the measured and predicted mental health score (the red dashed line is the 
1:1 line. The blue line is the regression line.)
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increased income improves human self-evaluation and emotional well-being, although some have noted there 
is a threshold for further  improvement55,56. For most people, mental health can benefit from increased income. 
Based on Fig. 5 and the current status of RI (Supplementary Materials Fig. S4.a), it can be inferred that income 
positively affects mental health. However, the SHAP value of the land cover feature represents the attitudes toward 
current feature values. Figures 6, 7, 8, 9, 10, 11, 12 and 13 demonstrate the SHAP values of the land cover features. 
Thus, an observation’s low mental health score due to land cover in their living environment might vary. A living 
environment with too much or too little a certain land type might negatively impact an individual’s mental health 
status. For example, in terms of urban land features, too high of an urban land percentage means a monotone 
scene of one’s living environment, but too low of a value indicates a totally rural area without convenient urban 
services. In other words, based on the SHAP values (Figs. 6, 7, 8, 9, 10, 11, 12, 13), we can judge only whether 
the current land cover status (Supplementary Materials Fig. S4) positively impacts mental health; however, we 
never know that the negative status is due to insufficiency or overplus.

Figure 4.  Feature importance.

Figure 5.  The spatially average SHAP values of income. (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2894  | https://doi.org/10.1038/s41598-024-53279-7

www.nature.com/scientificreports/

Figure 6.  The spatially average SHAP values of cropland (note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 7.  The spatially average SHAP values of forest (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 8.  The spatially average SHAP values of grassland (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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Figure 9.  The spatially average SHAP values of shrubland (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 10.  The spatially average SHAP values of water (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 11.  The spatially average SHAP values of wetland (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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Figure 12.  The spatially average SHAP values of urban land (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 13.  The spatially average SHAP values of bare land (Note: Cell size is 2.5° × 2.5°; Map’s Shapefile is 
downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 14.  The spatial scatter plot of the local coefficient between income and its SHAP value (Map’s Shapefile 
is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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The geographical connection between the current land feature value and its SHAP value is desired since the 
SHAP value cannot inform us that increasing or decreasing specific features would improve one’s mental health. 
Figure 14 demonstrates nine maps of spatially average local coefficient of income features and land cover features 
on mental health, based on Eqs. (3)-(5). If a local dataset’s coefficient is nonsignificant, the coefficient would 
be set to zero. According to Fig. 14, in most zones, a higher RI value is associated with a larger contribution to 
mental health, while in some metropolitan areas, such as Hong Kong, Beijing, and Washington D.C., a higher 
RI is negatively related to the SHAP value. The increase in income does not always contribute more to mental 
health. Previous studies have shown that the relationship between income and human well-being might not be 
 monotonical55,57; i.e., there is a turning point in the relationship. In fact, if increased income cannot fulfill more 
mental needs, then the effects of this increase are  limited58–60. Furthermore, higher income is usually accompanied 
by higher levels of responsibility and heavier workloads, which might even worsen the  situation61. Therefore, 
the connection between income and its contribution to mental health is negative in these metropolitan areas.

Figure 15 shows the local coefficients between cropland status and its SHAP value based on geographically 
weighted connections. Referring to the current status of cropland (Supplementary Materials Fig. S4.b), in places 
with too much cropland, an increase in cropland has negative impacts on one’s mental health, whereas in the 
regions with rare cropland, more cropland could contribute more to one’s mental health. The reason for people’s 
preferences is scarcity value. According to Figs. 16, 17, 18, 19, 20, and 21, the relationships between forest, grass-
land, shrubland, water, wetland, urban land, and bare land, and their contributions to mental health are similar 
to the link found between cropland and its SHAP values. Grassland is an exception, as illustrated by Fig. 22; the 
relationship between grassland and its contribution to mental health is negative in most places, and the degree 
of positive connection is relatively low, which is counterintuitive. These are two reasons for this problem. First, 
this research uses remote sensing data. In the remote sensing process, grassland is more easily misclassified, 
especially when close to cropland and  shrubland35. In particular, sporadic grass is more likely to be misclassi-
fied; thus, the low accuracy of grassland in urban areas might mislead the model’s results. Second, a large area 

Figure 15.  The spatial scatter plot of the local coefficient between cropland and its SHAP value (Map’s Shapefile 
is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 16.  The spatial scatter plot of the local coefficient between forest and its SHAP value.

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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Figure 17.  The spatial scatter plot of the local coefficient between shrubland and its SHAP value (Map’s 
Shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 18.  The spatial scatter plot of the local coefficient between water and its SHAP value (map’s Shapefile 
is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 19.  The spatial scatter plot of the local coefficient between wetland and its SHAP value (map’s Shapefile 
is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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Figure 20.  The spatial scatter plot of the local coefficient between urban land and its SHAP value (map’s 
shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 21.  The spatial scatter plot of the local coefficient between bare land and its SHAP value (map’s shapefile 
is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 22.  The spatial scatter plot of the local coefficient between grassland and its SHAP value (map’s Shapefile 
is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use Python 
3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/


17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2894  | https://doi.org/10.1038/s41598-024-53279-7

www.nature.com/scientificreports/

of grassland is often used for grazing rather than improving mental health in rural areas. Figure 23 illustrates 
the scatter plots between variables of interest and their SHAP values. Because the distributions shown in Fig. 23 
briefly demonstrate the global links, they cannot be directly used to explain the local relationships. For forest, 
grassland, shrubland, water, urban land, and bare land, when their values are lower, their SHAP values tend to 
be larger. In other words, when they are scarce, they can obtain the largest values.

Figure 24, 25, 26, 27, 28, 29, 30 and 31 illustrates the spatially average monetary values of eight land types, 
according to Eq. (6). As shown in Fig. 24, the monetary values of cropland are higher in metropolitan areas such 
as New York, London, Paris, and Tokyo, among others. Forest and water monetary values (Figs. 25 and 28) are 
also higher in large cities. Grassland’s and urban land’s monetary values (Figs. 26 and 30) are positive when the 
contribution of an increase in income is negative. In most places, their monetary values are favorable due to 
the scarcity values of shrubland, wetland, and bare land (Figs. 27, 29, and 11). Importantly, shrubland, wetland, 
and bare land are very rare in most living environments (as shown in Figs. S4e,f,h). A slight increase in wetland, 
shrubland, or bare land is difficult. This is the reason for their extraordinary monetary value, which is consistent 
with previous  studies8.

Figure 23.  The scatter plot between variables of interest and their SHAPs (Red dashed lines are the ablines 
where y-axis value equals 0; and yellow lines are linear fitting lines between x-axis value and y-axis value).
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Figure 24.  The spatial scatter plot of the monetary value of cropland (Note: Zero has been removed; Map’s 
Shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 25.  The spatial scatter plot of the monetary value of forest (Note: Zero has been removed; Map’s 
Shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 26.  The spatial scatter plot of the monetary value of grassland (Note: Zero has been removed; Map’s 
Shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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Figure 27.  The spatial scatter plot of the monetary value of shrubland (Note: Zero has been removed; Map’s 
Shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 28.  The spatial scatter plot of the monetary value of water (Note: Zero has been removed; map’s 
shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 29.  The spatial scatter plot of the monetary value of wetland (Note: Zero has been removed; map’s 
shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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Discussion
Our main findings are that mental health and land cover relationships are geographically local and spatially 
varied. Increases in each land type positively impact mental health when the percentages of these land types 
are low. Accordingly, it could be implied that people who prefer to live in environments with high diversity and 
extremely monolithic landscapes might have poor mental health. Furthermore, this is the first study that uses 
SHAP and random forest to grasp the relationship between land cover and mental health. To make the results 
understandable, we employ geographically local technology to connect the current land cover status to its SHAP 
values. This study provides one more way in which to explain the machine learning model. Based on the links 
between the SHAP value and current status, the monetary values of land cover are estimated, although the num-
bers of significant monetary values of land cover are limited. Our results show that a slight increase in shrubland, 
wetland, and bare land in most regions could improve people’s mental health. Cropland, forest, and water are 
mainly desired in metropolitan areas and places with too little cropland, forest, and water. Moreover, the model’s 
accuracy is relatively high, indicating the reliability of the results. The accuracy, RMSE, MSE, and MAE values 
are 67.59%, 3.59, 12.87, and 2.71, respectively, exceeding those of most previous studies.

Previous studies have focused more on the impacts of green space on human well-being or mental health 
in  cities6,29,30,32,38. The coverage percentage of green space positively affects mental  health6,32,38. In our study, 
almost all natural land types are positively related to mental health when their percentages are low, as illustrated 
in Fig. 23. A relatively higher proportion of natural land can promote direct and indirect interactions between 
humans and  nature28,29,62–64. Nature-based recreation is a typical interaction, which could improve mental health 
through  restoration65,66. Furthermore, a relatively higher natural environment ratio could increase physical 
actions in  nature4,9. This is the key reason supporting the connections we find in this study. A one-unit increase 

Figure 30.  The spatial scatter plot of the monetary value of urban land (Note: Zero has been removed; map’s 
shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

Figure 31.  The spatial scatter plot of the monetary value of bare land (Note: Zero has been removed; map’s 
shapefile is downloaded from https:// hub. arcgis. com/ datas ets/ esri:: world- count ries- gener alized/ explo re; We use 
Python 3.9.16 to plot https:// www. python. org/ downl oads/ relea se/ python- 3916/).

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore
https://www.python.org/downloads/release/python-3916/
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in the wetland is associated with the largest potential increase in mental health, as shown in Figs. 14, 15, 16, 22, 
17, 18, 19, 20 and 21, compared with other land types. Wetland is the most preferred, as it provides the most 
ecosystem  service7,8, and it is scarce in the living environment. Bare land’s average SHAP values and monetary 
values are high. According to the figure in the data provider’s  article35, large areas of bare land are generally desert, 
although they might be used as sports play yards when located within a city. Shrubland’s situation is similar to 
that of wetland and bare land, and their scarcity positively impacts mental health. Forest and cropland effects 
vary. In metropolitan areas, increased cropland and forest percentages improve mental health. It is relatively 
difficult for people to enter large areas of forest to have various natural experiences; these areas are also associated 
with the possibility of  crime10,67. A high percentage of urban land is negatively associated with mental health. 
Living in cities naturally is  necessary68–70. However, the adverse effects of large amounts of non urban land types 
on mental health indicate that people living in rural areas are likely to have mental disorders and need more 
assistants. Therefore, in regard to land use, the percentage of urban land should be carefully treated and balanced.

The biggest contribution of this study is providing a new way in which to employ a machine learning method, 
namely, random forest, to analyze the data with geographic information. The random forest method is good 
at grasping nonparametric relationships, thereby, improving the model’s accuracy and making the explanation 
more reliable. Directly adding geographical locations to the analysis in the random forest model makes the 
analysis take geographical context into account because the model deems that the neighbor observations are 
similar. However, this does not work in traditional regression methods, such as OLS, spatial autoregressive 
regression, spatial lag X regression, and spatial error  regression71, as the coefficients of longitude and latitude 
are hard to explain. Importantly, we are not denying the importance of OLS. In contrast, our method serves 
as an improvement on the traditional model. Currently, the widely used approaches used to explain random 
forest results are partial dependence  plots72, accumulated local  effects73, and Shapley  values40,41. Among these 
three methods, the Shapley value approach has the most solid theoretical  foundation53. However, Shapley value 
explanations are entirely local. In other words, one observation’s explanation cannot be directly used on other 
observations. For this reason, building reasonable connections between Shapley values and feature values is 
critical in related studies. Links created by geographically weighted regression methods are spatially continuous. 
The relationship coefficients of each location do not suddenly change and are more similar if they are closer 
together, which is more consistent with the real world. This connection method makes the relationship between 
the feature values and their contribution more understandable.

There are several limitations and issues worthy of note. First, the land cover variables represent the percentages 
of eight land types present in the buffers within a 5-km radius surrounding the living locations of respondents. 
There is an assumption that the quality of land cover does not influence the effects of those land types on 
mental health. For example, there may be no difference between a well-designed urban park and grassland in 
a pasture. Furthermore, the impacts of the distance to a certain land type are ignored. Second, this study uses 
only global cross-sectional data; thus, it cannot detect differences within individuals when land cover changes. 
Thus, global research using panel data to probe the effects within individuals is still desired. Third, the number 
of respondents in each country is not the same or even proportional to the country’s population. Countries 
with more respondents have more substantial impacts on the results. Thus, the results might be prejudiced, 
although this database is one of the largest databases available in this field. Fourth, due to the limits of surveying 
fees, we cannot investigate the temporal variation in mental health, including seasonal and annual variation. In 
future studies, long-term panel data should be used to investigate the impacts of land cover within individuals. 
Moreover, the model’s cross-validation accuracy is not ideal, which might make the SHAP values inaccurate. 
Further improvement of the model is needed. Effective explanatory methods and tools should be developed to 
make the machine learning results understandable.

Conclusion
The relationships between land cover in living environments and mental health are more complex than linear 
assumptions. An unsuitable increase in a specific land type might not improve residents’ mental health. Among 
the eight land types, shrubland, wetland, and bare land have the highest effects on mental health due to their 
scarcity in living environments. The impacts of cropland, forest, and water are high, mainly in metropolitan areas. 
In contrast, the impacts of urban land and grassland are mainly negative. Our study illustrates the heterogeneity 
of the effects of eight land types on mental health to provide more information for governments and the public. 
Furthermore, this research offers one example of analyzing data with geographical information by random forest 
and explaining the results geographically.

Data availability
The fully reproducible codes are publicly available at https:// doi. org/ 10. 5281/ zenodo. 10450 766. Data are available 
from the corresponding author on reasonable request.
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