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Construction and validation 
of a colon cancer prognostic 
model based on tumor mutation 
burden‑related genes
Daoyang Zou  & Tianwen Xu *

Currently, immunotherapy has entered the clinical diagnosis and treatment guidelines for colon 
cancer, but existing immunotherapy markers cannot predict the effectiveness of immunotherapy 
well. This study utilized the TCGA‑COAD queue to perform differential gene analysis on high and 
low‑mutation burden samples, and screen differentially expressed genes (DEGs). To explore new 
molecular markers or predictive models of immunotherapy by using DEGs for NMF classification and 
prognostic model construction. Through systematic bioinformatics analysis, the TCGA‑COAD cohort 
was successfully divided into high mutation burden subtypes and low mutation burden subtypes 
by NMF typing using DEGs. The proportion of MSI‑H between high mutation burden subtypes was 
significantly higher than that of low mutation burden subtypes, but there was no significant difference 
in immunotherapy efficacy between the two subtypes. Drug sensitivity analysis showed significant 
differences in drug sensitivity between the two subtypes. Subsequently, we constructed a prognostic 
model using DEGs, which can effectively predict patient survival and immunotherapy outcomes. 
The prognosis and immunotherapy outcomes of the low‑risk group were significantly better than 
those of the high‑risk group. The external dataset validation of the constructed prognostic model 
using the GSE39582 dataset from the GEO database yielded consistent results. At the same time, 
we also analyzed the TMB and MSI situation between the high and low‑risk groups, and the results 
showed that there was no significant difference in TMB between the high and low‑risk groups, but 
the proportion of MSI‑H in the high‑risk group was significantly higher than that in the low‑risk 
group. Finally, we conclude that TMB is not a suitable molecular marker for predicting the efficacy of 
immunotherapy in colon cancer. The newly constructed prognostic model can effectively differentiate 
the prognosis of colon cancer patients and predict their immunotherapy efficacy.

Globally, colorectal cancer (CRC) is the third leading malignant tumor with the second highest incidence rate 
and  mortality1. According to the prediction data of the World Cancer Research Fund, it is estimated that in 
2020, new cases will be 1,931,590, and death cases will be 935,173 (https:// www. wcrf. org/ cancer- trends/ color 
ectal- cancer- stati stics/), which will seriously threaten human health. Colon adenocarcinoma (COAD) is the 
most common histological subtype of CRC 1. Although the American Joint Commission on Cancer (AJCC) 
staging can be used to evaluate the prognosis of COAD patients, overall survival (OS) and disease-free survival 
(DFS) are not always associated with tumor  staging2. Currently, microsatellite instability (MSI), BRAF, and 
RAS mutation states have been further applied in clinical practice to further differentiate the prognosis of CRC 
 patients3–6. Although these molecular markers can generally better predict prognosis and drug response, clini-
cal heterogeneity always exists, so it is particularly important to find reliable molecular markers or prognostic 
models for guiding clinical practice.

Currently, many clinical studies have shown the feasibility of immune checkpoint inhibitors in the treatment 
of colorectal cancer. Based on the results of the Keynote-177 study, pembrolizumab has been approved for the 
treatment of MSI-H(MicroSatellite Instability-High)/dMMR(MisMatch Repair-deficient) in colorectal cancer 
 patients7. The CheckMate-142 study also demonstrates the feasibility of combining nivolumab with Ipilimumab 
in the treatment of MSI-H/dMMR colorectal  cancer8, and has entered clinical diagnosis and treatment guide-
lines. In the immunotherapy of colorectal cancer, existing studies often use MSI-H/dMMR as a biomarker to 
predict treatment  efficacy9–11, but overall only predict the efficacy of some patients. In the Keynote-177 study, 
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the overall effective rate of immunotherapy was 43%12, and in the CheckMate-142 study, the overall effective 
rate was 65%13. Therefore, there is an urgent need for more accurate molecular biomarkers in clinical practice 
to predict the clinical efficacy of immunotherapy.

Studies have shown that approximately 80% of sporadic dMMR colorectal cancer cases are caused by methyla-
tion of the MLH1 gene promoter, while over 70% of genetic cases are related to germline mutations in the MLH1 
and MSH2  genes7. Methylation and mutation of dMMR-related genes result in cells being unable to recognize 
and repair spontaneous mutations, leading to a significant increase in tumor mutation burden (TMB) and 
altered microsatellite sequences, these tumors exhibit high microsatellite  instability14–16. Meanwhile, research 
has shown that DNA mismatch repair defects tumors are sensitive to immune checkpoint inhibitors because 
the high mutation burden of dMMR tumors leads to a large number of mutated new antigens on major histo-
compatibility complex(MHC) molecules, making these cancer cells highly recognized by T  cells10. Studies have 
shown the feasibility of using TMB to predict immune therapy  response17,18. Based on previous research, we 
speculate that tumor mutation burden may be a potential biological marker for predicting the clinical efficacy 
of immunotherapy in colorectal cancer.

Therefore, this study intends to use the TCGA-COAD queue to group the samples according to mutation 
burden (low (1–5 mutations/Mb), medium (6–19 mutations/Mb), high (≥ 20 mutations/Mb))19, Differential 
gene analysis will be conducted between the low and high mutation burden groups to obtain mutation burden 
related DEGs. Non-negative matrix Factorization (NMF) will be performed on colon adenocarcinoma samples 
based on the obtained DEGs, Evaluate the immune microenvironment and immune cell infiltration among 
different mutation burden subgroups, and then evaluate the differences in immunotherapy efficacy and drug 
sensitivity among different mutation burden subgroups to explore the feasibility of predicting immunotherapy 
with tumor mutation burden in colon adenocarcinoma. At the same time, a prognostic model was constructed 
using DEGs, and survival analysis, immune microenvironment analysis, immunotherapy effect prediction, and 
drug sensitivity analysis were performed on the constructed model. Finally, the obtained prognostic model was 
validated using the GEO dataset.

Method
The workflow of the whole study is presented in Fig. 1.

Data processing and preprocessing
From The Cancer Genome Atlas (TCGA) database (https:// portal. gdc. cancer. gov/) We downloaded transcrip-
tome data (TSV format), clinical information data (XML format), and single nucleotide variation (SNV) data 
(MAF format) from colon adenocarcinoma (COAD) samples (including 476 tumor tissues and 41 normal tis-
sue samples), and processed the data using Perl script to obtain the required gene expression matrix, clinical 

Figure 1.  The workflow of the study.

https://portal.gdc.cancer.gov/
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information file, and mutation data file. From the Gene Expression Omnibus (GEO) website (http:// www. ncbi. 
nlm. nih. gov/ geo/) Download the raw microarray data of the colon cancer dataset (GSE39582), use Perl script 
to organize and convert the raw data into a gene matrix, and obtain the necessary clinical information based on 
the raw data as an independent validation set for subsequent prognostic models.

Obtaining DEGs related to mutation burden
Based on the mutation burden data of the TCGA-COAD queue, the queue samples were divided into a high 
mutation burden group, medium mutation burden group, and low mutation burden group. Differential gene 
analysis was performed on the high and low mutation burden groups to obtain differentially expressed genes 
DEGs related to mutation burden.

Identification of subtypes of colon adenocarcinoma using Non‑Negative Matrix Factorization 
(NMF) based on DEGs
Single-factor Cox analysis was performed using mutation burden-related DEGs to obtain feature genes. Molecu-
lar typing of TCGA-COAD was performed using the "NMF"  package20 in R language combined with feature 
genes. The k value of the typing number is set between 2 and 10. Referring to the parting parameter graph, 
determine the optimal K value as 2.

Analysis of tumor microenvironment, immune cell infiltration, MSI, and mutation burden for 
two subtypes
Use ESTIMATE  algorithm21 to score the tumor microenvironment and analyze the differences in microenviron-
ment among different subtypes of tumors. Use the "MCPcounter" package in R language to perform immune cell 
analysis on two subtypes. Subsequently, the difference in mutation burden and MSI between different subtypes 
was analyzed (MSI data from https:// tcia. at/ home).

Survival analysis, drug sensitivity analysis, and immunotherapy sensitivity analysis of two 
subtypes
Evaluate whether there are differences in overall survival (OS) between different subtypes using the R language 
"survivor" and "survival" packages. From the GDSC website (https:// www. cance rrxge ne. org/) Obtain the data-
base files (GDSC2 Expr. rds and GDSC2 Res. rds)22, and use the "oncoPredict" software  package23 to evaluate 
the drugs sensitivity of different subtypes. Finally, use TIDE scoring (http:// tide. dfci. harva rd. edu/) to predict 
the effectiveness of immunotherapy in different subtypes.

Constructing a prognostic model using DEGs
Firstly, univariate Cox and survival analysis were performed on DEGs to obtain prognostic-related genes, with 
a correlation threshold set at p < 0.05. Then, the TCGA cohort was randomly divided into two groups: the train-
ing group and the testing group. Lasso-Cox regression analysis was used to select prognostic-related genes and 
construct a risk prediction model. Use the GEO database colon cancer dataset (GSE39582) as the validation 
queue for external dataset validation of the constructed model.

The risk score is calculated using the following formula: Riskscore =
∑

n

k=1[Exp(Gene) ∗ coef (Gene)] , while 
Exp (Gene) is the prognostic-related expression level and coef (Gene) is the relevant regression coefficient. Use 
R software packages such as "limma", "survival", "care", "glmnet", "surveyor", "timeROC", etc. to construct a 
DEGs prognosis model, and create Receiver Operating Characteristic Curve (ROC) for each group based on 
the obtained model. Analyze the OS of the TCGA group, training group, and testing group. Finally, perform 
independent prognostic analysis, the establishment of the nomogram, and clinical grouping model validation 
on the TCGA group.

Functional enrichment analysis of high and low‑risk groups
The ClusterProfiler software  package24 is used for high and low-risk gene ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment  analysis25–27. GSEA  algorithm28 is an abundance method for 
calculating the measurement proportion of specific paths or features in different clusters, using the gene set (c5.
go.symbols.gmt) (downloaded from the MSigDB database: https:// www. gsea- msigdb. org/ gsea/ index. jsp) perform 
GSEA analysis, with p < 0.05 and FDR < 0.05.

Analysis of immune microenvironment and immune infiltration in high and low‑risk groups
Based on the constructed prognostic model, the TCGA-COAD queue was divided into high-risk and low-risk 
groups. Use ESTIMATE  algorithm21 to evaluate the tumor microenvironmental characteristics of high and low-
risk groups. Use the CIBERSORT  algorithm29 to analyze the infiltration of 22 types of immune cells in both high 
and low-risk groups. Use R language software packages such as "GSVA" and "GSEABase" to analyze the immune 
function of high and low-risk groups. Use the "MCPcounter" package in R language to analyze the correlation 
between risk score and immune cell infiltration. Finally, analyze the correlation between risk scores and immune 
checkpoint inhibitor-related genes.

High and low‑risk groups mutation burden analysis and MSI analysis
Use the "Maftools" package in R language to evaluate the mutation characteristics of high and low-risk groups 
and analyze the relationship between tumor mutation burden and clinical prognosis. Subsequently, MSI analysis 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://tcia.at/home
https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/
https://www.gsea-msigdb.org/gsea/index.jsp
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was conducted on two groups of patients with high and low risk, to observe whether there were differences in 
microsatellite instability between the two groups.

Analysis of drug sensitivity and immunotherapy sensitivity in high and low‑risk groups
Obtain database files (GDSC2nExpr. rds and GDSC2Res. rds)22, from the GDSC website and use the "onco-
Predict" software  package23 to evaluate the drug sensitivity of high and low risk groups. TIDE (http:// tide. dfci. 
harva rd. edu/) Upload TCGA-COAD gene expression data on the website to obtain TIDE scores to evaluate the 
response of high and low-risk groups to immunotherapy. Obtain immunotherapy scoring files for the TCGA-
COAD queue on the TCIA website (https:// tcia. at/ home) to evaluate the response of high and low-risk groups 
to different immunotherapies.

Verifying the accuracy of the prognostic model using the colon cancer dataset (GSE39582)
According to the obtained prognostic model formula, the samples in the GSE39582 queue were divided into 
two groups: high and low risk. The OS analysis was performed on the high and low-risk groups, and the ROC 
curve was drawn to evaluate the accuracy of the model prediction. The TIDE score of the GSE39582 queue was 
obtained by uploading expression data on the TIDE website, and the immune treatment effects of the high and 
low-risk groups were analyzed.

Statistical method
Statistical analysis was conducted using R language, software version 4.3.1, with P < 0.05 as the difference with 
statistical significance. At the same time, we defined (P < 0.05 as *; P < 0.01 as **; P < 0.001 as ***). Select the 
criteria of | log2 fold change (FC) |≥ 1 and p-value < 0.05 to identify DEGs. When analyzing drug sensitivity, 
select a P-value < 0.05.

Result
Differential gene expression between high mutation burden and low mutation burden COAD
Based on the mutation status of the TCGA-COAD queue, we divided the queue samples into low mutation 
burden group (1–5 mutations/Mb), medium mutation burden group (6–19 mutations/Mb), and high mutation 
burden group (≥ 20 mutations/Mb) according to  reference19. Differential gene analysis was conducted between 
the high mutation burden group and the low mutation burden group, with conditions | log2 fold change (FC) 
|≥ 1 and p-value < 0.05, resulting in 627 differentially expressed genes DEGs (Fig. 2A,B).

Identification of subtypes using non‑negative matrix factorization (NMF) based on DEGs
To further identify the characteristic tumor mutation burden-related genes, we used the obtained DEGs to 
perform NMF typing on the TCGA-COAD queue. Based on Fig. 2C, we determined that the best choice for 
clustering grouping the queue was when k = 2. From the classification chart (Fig. 2D), it can be seen that the 
graph inside the classification is red with a high correlation, while the graph outside the classification is blue with 
a low correlation. Finally, six genes were identified as the most relevant genes for mutation burden (MAPK12, 
TNNT1, HOXC6, ENO2, FOXD1, DAPK1). From the gene heatmap (Fig. 2E), it can be seen that these six genes 
are significantly overexpressed in the C2 group.

Significant difference in mutation burden and MSI status between the two subtypes
To evaluate whether the identified subtypes can effectively distinguish the tumor mutation burden status, we 
analyzed the tumor mutation burden between two subtypes, and the results showed (Fig. 3A) that there was 
an incredible difference in mutation burden between the two subtypes, with the C1 group having significantly 
lower mutation burden than the C2 group. It is suggested that using the aforementioned six genes can effectively 
distinguish the mutation burden status of tumors. Previous studies have shown a significant correlation between 
TMB and MSI status, and previous studies have shown that TMB can predict the response of MSI-H metastatic 
colorectal cancer to immune checkpoint  inhibitors30. Therefore, we further analyzed the MSI status between the 
two subtypes, and the results showed (Fig. 3B) that the proportion of MSI-H in the C2 group was significantly 
higher than that in the C1 group (30% vs. 8%), indicating a significant correlation between high mutation burden 
and MSI-H, which is consistent with previous  studies14–16. Further analysis of the immune microenvironment of 
the two subtypes (Fig. 3C) showed that the immune score of the C2 group was significantly higher than that of the 
C1 group. The final analysis of immune cell infiltration showed that the infiltration of cytotoxic lymphocytes in 
the C2 group was significantly higher than that in the C1 group (Fig. 3D), which is similar to previous  studies31.

Analysis of drug sensitivity, overall survival, and immunotherapy sensitivity of two subtypes
To evaluate whether there is a difference in survival between the two subtypes, we plotted the OS curves of the 
two groups of patients (Fig. 3E), and the results showed that the C1 group had a better prognosis than the C2 
group, but the P-value was 0.053, indicating that patients with low mutation burden had a better prognosis in 
colon adenocarcinoma. Similar results have been obtained in studies of head and neck  tumors32. Previous studies 
have shown that the prognosis of colon cancer patients is related to mutation burden. Among tumor patients 
with Microsatellite stable(MSS) and high TMB (> 8 mutations/Mb), the median OS is longer than that of tumor 
patients with MSS and low TMB (33.8 months vs. 28.1 months; P = 0.02)33. However, although the mutation 
burden in the C2 group is higher than that in the C1 group, the prognosis in the C2 group is poorer than that 
in the C1 group. We performed survival analysis only on MSS patients based on NMF subtype results, and 
the overall survival of the two subtypes was similar (Fig. 12A). The reason may be that the proportion of MSS 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://tcia.at/home
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patients in the C2 group is significantly lower than that in the C1 group, resulting in a poorer prognosis in the C2 
group compared to the C1 group. With the emergence of high-throughput technologies, the application of gene 
expression profiling in predicting drug sensitivity has become increasingly widespread. Studies have combined 
gene expression profiles to reveal the role of traditional Chinese medicine ingredients in the development of 
human  cancer34,35. We used the "oncoPredict" R package to analyze the drug sensitivity between two subtypes 
and found significant differences in drug sensitivity between them. Among the predicted 197 drugs, 113 drugs 
exhibit differences in sensitivity (Table 1). A detailed analysis result of drug sensitivity can be found in the sup-
plementary file. These different drugs include anticancer chemotherapy drugs and targeted therapy drugs, and 
the overall drug sensitivity of the C2 group was significantly better than that of the C1 group. Among the 113 
drugs with differences, 107 drugs in the C2 group had better sensitivity than that of the C1 group, which was the 
opposite, The sensitivity of only 6 drugs was better in the C1 group than in the C2 group. The KEYNOTE-158 
study suggests that TMB may be a new biomarker for predicting the effectiveness of  immunotherapy36. We used 
the TIDE score to predict the effectiveness of immunotherapy between two subtypes, and the results showed 
(Fig. 3F) that there was no significant difference in the TIDE score between the two subtypes. It is speculated 
that the TMB in colon cancer cannot be used as a biomarker for predicting immunotherapy.

Constructing and validating a prognostic model based on DEGs
Using DEGs, the most relevant prognostic genes were screened through univariate and Cox regression. The 
TCGA cohort was randomly divided into two groups (clinical characteristics of the two groups of patients are 
shown in Table 2), one group being the training group and the other group being the testing group. The training 
group was used to construct a prognostic model, and the testing group was used to verify the accuracy of the 
model. Lasso regression analysis was used to construct a prognostic model for DEGs. Use cross-validation to 
achieve optimal results (λ) Value to further identify genes related to prognosis (Fig. 4A,B). Finally, a prognos-
tic model was determined for 7 DEGs, including TNNT1, HOXC6, CAPS, GUCA2A, PABPC1L, CCL24, and 
SFRP2. And obtain the model formula: The risk score is calculated using the following formula: TNNT1 (Exp)* 
(0.183779401950069) + HOXC6 (Exp) * (0.201142479025189) + CAPS (Exp) * (0.498479272258504) + GUCA2A 
(Exp) * (−  0.10640063476006) + PABPC1L  (Exp) * (0.389482649796005) + CCL24  (Exp) * 
(− 0.214745574612184) + SFRP2 (Exp) * (0.0892478268418448).

According to the risk formula, we divided patients into two groups: high and low risk. From the survival 
curve, it can be seen that in the training group, TCGA group, and testing group, the OS of the high-risk group 
is significantly lower than that of the low-risk group, with a P value < 0.05, and the difference is statistically 

Figure 2.  (A) Heat map of differentially expressed genes between high mutation burden and low mutation 
burden colon cancer (top 50 genes). (B) Volcano map of differentially expressed genes between high mutation 
burden and low mutation burden colon cancer. (C) The NMF classification parameter diagram shows that the 
slope of the curve is the highest when k = 2 to k = 3, so k = 2 is the best choice for clustering and grouping the 
queue. (D) The classification chart shows that the red color inside the classification has high correlation, while 
the blue color outside the classification has low correlation. (E) From the heat map, it can be seen that MAPK12, 
TNNT1, HOXC6, ENO2, FOXD1, and DAPK1 are significantly overexpressed in C2.
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significant (Fig. 4C–E). At the same time, R language software was used to draw risk heatmaps, risk score dis-
tribution maps, and survival status distribution maps for three groups of patients (Fig. 4F–H). Subsequently, we 
plotted ROC curves in the training group (Fig. 5A), TCGA group (Fig. 5B), and testing group (Fig. 5C), with 
AUC of 0.707, 0.714, and 0.776 (training group), 0.715, 0.711, and 0.752 (TCGA group), 0.718, 0.663, and 0.740 
(testing group) for 1, 3, and 5 years, respectively. The comprehensive analysis of the survival curve and ROC 
curve indicates the reliability of this prognostic model in predicting the prognosis of colon adenocarcinoma 
patients. Finally, clinical subgroup model validation showed that the prognostic model was a good predictor of 
patient survival in different clinical trait groups: tumor stage (Fig. 5D) and sex (Fig. 5E). To further enhance the 
predictive ability of the model’s prognosis, we established a nomogram (Fig. 6A) in conjunction with clinical 
characteristics. The calibration curve showed that the predicted results of the nomogram were consistent with 
actual observations at 1, 3, and 5 years of OS, with a C-index of 0.765 (95% CI: 0.696 − 0.834) (Fig. 6B). The 
combined ROC curve (Fig. 6C) shows that the AUC value of the predicted risk score obtained by the model is 
comparable to that of tumor staging, indicating that the model’s predictive ability for prognosis is comparable 
to that of traditional tumor staging. At the same time, the accuracy of the constructed nomogram prediction is 
further improved, and its predictive ability is significantly better than that of tumor staging.

Functional enrichment analysis of high and low‑risk groups
According to the prognostic model, the TCGA-COAD queue was divided into two groups: high and low risk. 
GO analysis of the two groups (Fig. 7A) showed that the differences in molecular function mainly focused on 
the DNA binding transcription activator activity pathway, while KEGG analysis (Fig. 7B) showed that there 
were differences in the Signaling pathways regulating pluripotency of stem cells between the high and low-risk 
groups. GSEA analysis showed that in the high-risk group (Fig. 7C), enrichment was mainly found in pathways 
such as external encapsulating structure organization, collagen-containing extracellular matrix, endoplasmic 
reticulum lumen, external encapsulating structure, and extracellular matrix structural constituent, while in the 
low-risk group (Fig. 7D), enrichment was mainly found in pathways such as nucleosome assembly, DNA packag-
ing complexes, nucleosome, protein DNA complex and structural constituent of chromatin.

The high and low‑risk groups have different immune microenvironments and immune infiltra‑
tion characteristics
Research has shown that immune cells in the tumor microenvironment play a crucial role in the occurrence 
and development of  tumors37. The composition of the tumor microenvironment is closely related to the clinical 

Figure 3.  (A) There is an incredible difference in the mutation burden between C1 and C2 (p = 1.4e-09). (B) 
The proportion of MSI-H in the C2 group was significantly higher than that in the C1 group (30% vs.8%). (C) 
The immune score of the C2 group was significantly higher than that of the C1 group. (D) The infiltration of 
cytotoxic lymphocytes in group C2 was significantly higher than that in group C1. (E) The overall survival (OS) 
of the C1 group was better than that of the C2 group, but P = 0.053. (F) There was no significant difference in 
TIDE scores between the C1 group and the C2 group, indicating that the immunotherapy effects were equivalent 
between the two groups.
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C1 C2

AZD2014 Better

AZD4547 Better

AZD5153 Better

AZD5363 Better

AZD5438 Better

5-Fluorouracil Better

Alisertib Better

AMG-319 Better

AZ960 Better

AZD1332 Better

BDP-00009066 Better

BMS-345541 Better

BMS-536924 Better

BMS-754807 Better

Buparlisib Better

AZD5582 Better

AZD6738 Better

AZD7762 Better

AZD8055 Better

AZD8186 Better

CDK9_5576 Better

Cisplatin Better

Crizotinib Better

Cytarabine Better

Dabrafenib Better

Dactinomycin Better

Dactolisib Better

Dinaciclib Better

Camptothecin Better

CDK9_5038 Better

ERK_2440 Better

ERK_6604 Better

Fludarabine Better

Foretinib Better

Docetaxel Better

Eg5_9814 Better

Elephantin Better

Entinostat Better

Entospletinib Better

Epirubicin Better

IAP_5620 Better

I-BRD9 Better

IGF1R_3801 Better

IRAK4_4710 Better

Irinotecan Better

JAK_8517 Better

Gemcitabine Better

GNE-317 Better

GSK269962A Better

GSK2606414 Better

LJI308 Better

Luminespib Better

MIM1 Better

Mirin Better

JAK1_8709 Better

JQ1 Better

KU-55933 Better

LCL161 Better

Continued
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Table 1.  Drug sensitivity of C1 group and C2 group.

C1 C2

Leflunomide Better

KRAS (G12C) inhibitor-12 Better

Olaparib Better

OTX015 Better

PAK_5339 Better

Palbociclib Better

Mitoxantrone Better

MK-8776 Better

Niraparib Better

NU7441 Better

Nutlin-3a (−) Better

Obatoclax mesylate Better

PLX-4720 Better

PRIMA-1MET Better

PRT062607 Better

Pyridostatin Better

Ribociclib Better

PCI-34051 Better

PD0325901 Better

Pevonedistat Better

Pictilisib Better

Podophyllotoxin bromide Better

Savolitinib Better

SCH772984 Better

Sorafenib Better

Staurosporine Better

Talazoparib Better

RO-3306 Better

Ruxolitinib Better

RVX-208 Better

Sabutoclax Better

Telomerase inhibitor IX Better

Ulixertinib Better

ULK1_4989 Better

Uprosertib Better

VE821 Better

VE-822 Better

Vinblastine Better

Vincristine Better

Teniposide Better

Topotecan Better

Trametinib Better

Wnt-C59 Better

WZ4003 Better

XAV939 Better

YK-4-279 Better

Vinorelbine Better

VX-11e Better

Wee1 inhibitor Better

Lapatinib Better

Sapitinib Better

TAF1_5496 Better

WEHI-539 Better

Acetalax Better

Dihydrorotenone Better
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efficacy of immune checkpoint inhibitors (ICIs)38. We used ESTIMATE  algorithm21 to score the tumor micro-
environment in the TCGA-COAD queue and analyze the differences in immune microenvironment between 
the high and low-risk groups. The results showed significant differences in stromal cell scores and comprehen-
sive scores between the high and low-risk groups (Fig. 8A). Use the CIBERSORT  algorithm29 to analyze the 
infiltration of 22 types of immune cells in both high and low-risk groups. The results showed (Fig. 8B) that the 
infiltration of plasma cells and memory resting CD4+ T cells was significantly higher in the low-risk group than 

Table 2.  Clinical characteristics of the training group and testing group.

Clinical trait Type Total Test Train P value

Age  <=65 184 (40.98%) 51 (38.06%) 133 (42.22%)
0.4741

Age  > 65 265 (59.02%) 83 (61.94%) 182 (57.78%)

Gender Female 214 (47.66%) 59 (44.03%) 155 (49.21%)
0.3672

Gender Male 235 (52.34%) 75 (55.97%) 160 (50.79%)

Stage Stage I 75 (16.7%) 22 (16.42%) 53 (16.83%)

0.1822

Stage Stage II 177 (39.42%) 48 (35.82%) 129 (40.95%)

Stage Stage III 124 (27.62%) 47 (35.07%) 77 (24.44%)

Stage Stage IV 62 (13.81%) 16 (11.94%) 46 (14.6%)

Stage Unknownn 11 (2.45%) 1 (0.75%) 10 (3.17%)

T T1 11 (2.45%) 3 (2.24%) 8 (2.54%)

0.7823
T T2 76 (16.93%) 20 (14.93%) 56 (17.78%)

T T3 306 (68.15%) 96 (71.64%) 210 (66.67%)

T T4 56 (12.47%) 15 (11.19%) 41 (13.02%)

M M0 331 (73.72%) 105 (78.36%) 226 (71.75%)

0.4377M M1 62 (13.81%) 16 (11.94%) 46 (14.6%)

M Unknown 56 (12.47%) 13 (9.7%) 43 (13.65%)

N N0 267 (59.47%) 75 (55.97%) 192 (60.95%)

0.3735N N1 102 (22.72%) 30 (22.39%) 72 (22.86%)

N N2 80 (17.82%) 29 (21.64%) 51 (16.19%)

Figure 4.  (A) The tuning parameter(λ) in the LASSO model. (B) LASSO coefficient distribution of DEGs. (C) 
Survival curve of the training group (P < 0.001). (D) Survival curve of the TCGA group (P < 0.001). (E) Survival 
curve of the test group (P = 0.012). (F–H) Training group, TCGA group, testing group risk heat map, risk score 
distribution map, and survival status distribution map.
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Figure 5.  (A) The ROC curves of the training group (AUC values of 0.707, 0.714, and 0.776 for 1, 3, and 5 
years, respectively). (B) The ROC curves of the TCGA group (1 year, 3 year, and 5 year AUC values were 0.715, 
0.711, and 0.752, respectively). (C) The ROC curves of the test group (AUC values of 0.718, 0.663, and 0.740 
for 1 year, 3 years, and 5 years, respectively). Clinical subgroup validation model predictive ability: (D) (disease 
stage), (E) (gender).

Figure 6.  (A) A nomogram of a clinical prediction model based on prognostic model risk score combined with 
clinical features. (B) Calibration curve of nomogram. (C) Comparison of predictive power of nomograms, risk 
scores, and clinical characteristics.
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in the high-risk group, while the infiltration of M0 macrophages was significantly higher in the high-risk group 
than in the low-risk group. Further immune function analysis of the high and low-risk groups (Fig. 8C) showed 
that the low-risk group was significantly active in NK cell and Th2 cell functions, while the high-risk group was 
significantly active in macrophage and type II interferon response functions. The correlation analysis between 
risk score and immune cell infiltration using the "MCPcounter" package in R language (Fig. 8D) showed that the 
risk score obtained from the prognostic model was significantly correlated with T cells, CD8+ T cells, cytotoxic 
lymphocytes, monocytes, myeloid dendritic cells, and fibroblasts. Finally, a correlation analysis was conducted 
between risk score and ICI-related genes (Fig. 8E), and the risk score was significantly correlated with genes 
PDCD1, CD274, CTLA4, FAP, and LOXL2 indicating a close relationship between the risk score obtained by this 
prognostic model and immunotherapy.

The high and low‑risk groups have different MSI status, but the TMB status is the same
Based on the prognostic model, we conducted a mutation burden analysis on the high and low-risk groups of 
the TCGA-COAD queue. From the waterfall plot (Fig. 9A,B), we found that the top 15 highly mutated genes in 
the high and low-risk groups were APC, TP53, TTN, KRAS, PIK3CA, SYNE1, MUC16, FAT4, ZFHX4, RYR2, 
OBSCN, DNAH5, CSMD3, LRP1B, PCLO, but the mutation proportion of each highly mutated gene was not the 
same between the two groups, Further analysis of the mutation burden between the high and low-risk groups 
showed no significant difference in mutation burden between the two groups (Fig. 9C). Survival analysis showed 
that the prognosis of patients with low mutation burden was significantly better than that of patients with high 
mutation burden (Fig. 9D), with p = 0.019, and the difference was statistically significant. Subsequently, we 
conducted a joint survival analysis using risk scores and mutation burden, and the results showed (Fig. 9E) that 
overall, the prognosis of patients in the low-risk group was better than that in the high-risk group, which once 
again suggests the accuracy of the prognosis model. Finally, we conducted MSI analysis on the high and low-risk 
groups, and the results showed that the proportion of MSI-H in the high-risk group was significantly higher than 
that in the low-risk group (Fig. 9F,G).

Figure 7.  According to the prognosis model, the TCGA-COAD queue was divided into two groups: high and 
low risk. (A) GO analysis bubble chart. (B) KEGG analysis bubble chart. (C) High-risk group GSEA analysis 
results. (D) Low-risk group GSEA analysis results.
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The response to drugs and immunotherapy is significantly different between the high and 
low‑risk groups
Using the "oncoPredict" software  package23 to evaluate the sensitivity of high and low-risk groups to drugs, the 
results showed that among the 197 evaluated anti-tumor drugs, there were differences in the sensitivity of 62 
drugs between the high and low-risk groups (Table 3). A detailed analysis result of drug sensitivity can be found 
in the supplementary file. Careful analysis of drugs with sensitivity differences revealed that in the low-risk group, 
the sensitivity of the commonly used chemotherapy drug oxaliplatin for colon cancer was higher than that of 
the high-risk group. Afterward, we get the TIDE score from the TIDE website (http:// tide. dfci. harva rd. edu/), 
and use the TIDE score to evaluate the response of the high and low-risk groups to immunotherapy. The results 
showed (Fig. 10A) that the TIDE score of the low-risk group was significantly lower than that of the high-risk 
group, indicating that the response of the low-risk group to immunotherapy was significantly better than that 
of the high-risk group. Finally, on the TCIA website (https:// tcia. at/ home) obtain the scoring file of the TCGA-
COAD queue and evaluate the response of high and low-risk groups to different immunotherapies. The results 
showed that the low-risk group had significantly better effects than the high-risk group in both individual and 
combined immunotherapy (Fig. 10B–E). The prognostic model constructed in this study can effectively predict 
the efficacy of immunotherapy in colon cancer. Finally, we comprehensively analyzed the correlation between 
risk score, TMB, MSI, and immune cells in the TCGA-COAD cohort (Fig. 10F), and the results showed that 
these four were positive regulatory relationships.

GSE39582 dataset validation of prognostic model accuracy
To evaluate the accuracy of the prognostic model, we used the GSE39582 dataset from the GEO database to vali-
date the accuracy of the model. The overall survival curve (Fig. 11A) showed that the prognosis of the low-risk 
group was significantly better than that of the high-risk group, with p = 0.009, and the difference was statistically 
significant. The ROC curve (Fig. 11B) showed that in the GSE39582 cohort, the 1-year, 3-year, and 5-year AUCs 
were 0.580, 0.576, and 0.581, respectively. Further use of the TIDE score to predict the immunotherapy efficacy 
of the high and low-risk groups in the GSE39582 cohort showed that the immunotherapy efficacy of the low-risk 

Figure 8.  According to the prognosis model, the TCGA-COAD queue was divided into two groups: high and 
low risk. (A) Significant difference in stromal cell score and comprehensive score between the high and low-
risk groups. (B) The CIBERSORT algorithm evaluates the infiltration of 22 types of immune cells in both high 
and low-risk groups, and there is a significant difference in the infiltration abundance of plasma cells, memory 
resting CD4+ T cells, and M0 macrophages. (C) The analysis of immune function between high and low-risk 
groups showed significant differences in NK cells, Th2 cells, macrophages, and type II interferon response 
function between the two groups. (D) The correlation analysis between risk score and immune cell infiltration 
showed that the risk score was significantly correlated with T cells, CD8+ T cells, cytotoxic lymphocytes, 
monocytes, myeloid dendritic cells, and fibroblasts. (E) The correlation analysis between risk score and immune 
checkpoint inhibitor related genes showed that the risk score was significantly correlated with genes PDCD1, 
CD274, and CTLA4. (P < 0.05 is *; P < 0.01 is **; P < 0.001 is ***).

http://tide.dfci.harvard.edu/
https://tcia.at/home


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2867  | https://doi.org/10.1038/s41598-024-53257-z

www.nature.com/scientificreports/

group was significantly better than that of the high-risk group (Fig. 11C), indicating the reliability of the risk 
model in predicting the efficacy of immunotherapy.

The newly constructed prognostic model surpasses the traditional biomarkers MSI and TMB
To further compare the differences between the prognostic model constructed in this study and the traditional 
colon cancer prognostic markers MSI and TMB, we grouped the TCGA-COAD cohort based on the TMB status 
and found no significant difference in TIDE scores between the two groups with high and low mutation burdens 
(Fig. 12B). We further grouped the TCGA-COAD cohort based on the MSI status and found that MSI-H patients 
had significantly lower TIDE scores compared to MSS (P < 0.05), indicating a statistically significant difference 
(Fig. 12C). However, the predictive efficiency was not as good as the prognostic model constructed in this study. 
There was no significant difference in survival between the MSI-H and MSS groups (Fig. 12D), suggesting that 
MSI alone cannot predict the prognosis of colon cancer patients. Taking into account the above analysis results, 
TMB can predict the prognosis of colon cancer patients (Fig. 9D), but cannot predict the efficacy of immuno-
therapy. On the other hand, MSI can predict the efficacy of immunotherapy for colon cancer, but cannot predict 
the clinical prognosis of patients. The prognostic model constructed in this study not only effectively differentiates 
patient prognosis but also predicts the efficacy of immunotherapy. Therefore, the newly constructed prognostic 
model is superior to the traditional biomarkers MSI and TMB.

Discussion
Since the first approval of ipilimumab for the treatment of metastatic melanoma in 2011, oncology treatment has 
entered the era of immunotherapy. Immune checkpoint inhibitors (ICIs) have demonstrated durable anti-tumor 
effects in the treatment of many types of cancers. For example, non-small cell lung  cancer39, urothelial  cancer40, 
triple-negative breast  cancer41, renal cell  cancer42, etc. Predictive biomarkers are needed for ICI treatment to 
screen potential beneficiaries. Currently, most ICI treatments use programmed cell death-Ligand 1(PD-L1) to 
predict treatment efficacy, but PD-L1 is not a perfect biomarker. Although there is a correlation between PD-L1 
expression and immunotherapy response rate in pan-cancer analysis, many PD-L1-expressing patients are resist-
ant to ICI, and some patients without PD-L1 expression benefit from  treatment43. PD-L1 expression is not an 
ideal biomarker for screening potential beneficiaries of ICI treatment. Therefore, it is urgent to explore new 
markers for predicting the efficacy of immunotherapy. Based on Keynote-17712 and CheckMate-14213 studies in 
colorectal cancer, MSI-H/dMMR is a reliable biomarker for predicting the effectiveness of immunotherapy in 
colorectal cancer. There are also studies indicating that high mutation burden tumors have high microsatellite 
 instability14–16, suggesting that TMB may be a candidate biomarker for predicting immunotherapy efficacy in 

Figure 9.  According to the prognosis model, the TCGA-COAD queue was divided into two groups: high 
and low risk. (A) Waterfall plot for high-risk groups. (B) Waterfall plot for low-risk groups. (C) There was no 
statistically significant difference in mutation burden between the high and low-risk groups. (D) The OS of the 
low mutation burden group was better than that of the high mutation burden group (p = 0.019). (E) Risk score 
and mutation burden combined survival analysis OS curve. (F,G) The proportion of MSI-H in the high-risk 
group was significantly higher than that in the low-risk group (25% vs12%).
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Low-risk group High-risk group

AZD3759 Better

AZD5438 Better

AZD5991 Better

AZD6482 Better

Bortezomib Better

Cyclophosphamide Better

Afatinib Better

Afuresertib Better

AGI-5198 Better

AT13148 Better

EPZ5676 Better

Erlotinib Better

GDC0810 Better

Gefitinib Better

GSK343 Better

GSK591 Better

GSK2578215A Better

Dabrafenib Better

Dihydrorotenone Better

Entinostat Better

Ibrutinib Better

KU-55933 Better

MIRA-1 Better

OF-1 Better

Osimertinib Better

Oxaliplatin Better

Picolinici-acid Better

Ribociclib Better

Sapitinib Better

IAP_5620 Better

TAF1_5496 Better

Temozolomide Better

Trametinib Better

Venetoclax Better

Savolitinib Better

SB216763 Better

Sinularin Better

ERK_2440 Better

GSK2606414 Better

IGF1R_3801 Better

Alpelisib Better

AZ960 Better

AZD1332 Better

AZD8186 Better

BMS-754807 Better

Dasatinib Better

Entospletinib Better

PLX-4720 Better

PRIMA-1MET Better

RVX-208 Better

JQ1 Better

Linsitinib Better

Luminespib Better

OSI-027 Better

PAK_5339 Better

Pictilisib Better

Continued
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colon adenocarcinoma patients. Therefore, this study screened DEGs related to mutation burden and performed 
NMF typing on the TCGA-COAD queue. Based on the expression levels of MAPK12, TNNT1, HOXC6, ENO2, 
FOXD1, and DAPK1, the TCGA-COAD queue was successfully divided into two subtypes. There was a signifi-
cant difference in the mutation burden and the ratio of MSI-H between the two subtypes, and the proportion of 
MSI-H was significantly higher in the high mutation burden subtype than in the low mutation burden subtype, 
this indicates that high mutation burden means high microsatellite instability, which is consistent with previous 
 studies14–16. Previous studies have shown that patients with MSI-H in colon cancer may not be sensitive to the 
chemotherapy drug 5-FU6,44. In this study, although the proportion of MSI-H in the high mutation burden sub-
type was significantly higher than that in the low mutation burden subtype, the sensitivity of the high mutation 
burden subtype to 5-FU was significantly higher than that of the low mutation burden subtype. This indicates 
that although there is a close relationship between mutation burden and MSI status, there is still a significant 
difference between the two biomarkers. Previous studies have shown that tumors with high mutation levels 
will have higher levels of tumor neoantigens and exhibit higher immunogenicity, resulting in a better response 
to  immunotherapy45. Studies have shown that patients with high tumor mutation burden respond better to 
 immunotherapy17,18. However, there are also studies indicating that a high mutation burden does not predict 
immunotherapy response  well46,47. This study conducted immunotherapy analysis on the two subtypes of high 
and low mutation burden and found that there was no significant difference in immunotherapy between the high 
mutation burden subtype and the low mutation burden subtype. Therefore, this study suggests that TMB is not 
a suitable biomarker for predicting the effectiveness of immunotherapy in colon adenocarcinoma.

Low-risk group High-risk group

Sepantronium bromide Better

Taselisib Better

WIKI4 Better

WZ4003 Better

XAV939 Better

Telomerase inhibitor IX Better

Table 3.  Drug sensitivity of low-risk group and high-risk group.

Figure 10.  According to the prognosis model, the TCGA-COAD queue was divided into two groups: high 
and low risk. (A) The TIDE score of the low-risk group was significantly lower than that of the high-risk group, 
indicating that the immunotherapy effect of the low-risk group was significantly better than that of the high-risk 
group (P < 0.001 is ***). (B–E) The low-risk group showed significantly better results than the high-risk group 
in both individual and combined immunotherapy. (F) A comprehensive analysis of the correlation between risk 
scores, TMB, MSI, and immune cells showed that these four factors were basically positively regulated.
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To further explore molecular markers or prognostic models for predicting immunotherapy, we successfully 
constructed a prognostic model using mutation burden-related DEGs. This prognostic model can effectively 
predict the prognosis of colon adenocarcinoma patients. The AUC values at 1 year, 3 years, and 5 years in the 
training group were 0.707, 0.714, and 0.776, respectively. However, similar AUC values were found in the test 
group and TCGA group, indicating that the prognostic model has good stability. Further external validation 
using the GEO database large sample colon cancer dataset (GSE39582) showed that the model can still predict 
patient prognosis well, indicating its reliability. In the past, many studies have utilized genes to construct prog-
nostic models for colon cancer. For example, a study has constructed a prognostic model for colon cancer based 
on metabolism-related lncRNA, with AUC values of 0.768 and 0.735 at 3 and 5 years,  respectively48, which are 
comparable to this study. However, the model obtained from this study has not been validated by external data-
sets. There are also studies using Pyroptosis-related genes to construct a prognosis model for colon cancer, and 
the results show that the AUC values at 1 year, 3 years, and 5 years are 0.659, 0.630, and 0.627,  respectively49, 
which were significantly worse than the prognostic model constructed in this study. At the same time, to fur-
ther improve the predictive ability of the prognostic model, we combined clinical characteristics to construct 
a nomogram. The comprehensive AUC value of the constructed nomogram was 0.781, while the AUC value of 
the risk model was 0.710.

Subsequently, to further explore the feasibility of constructing a prognostic model to predict the effectiveness 
of immunotherapy, we analyzed the immune microenvironment and immune infiltration characteristics of the 
high and low-risk groups and found significant differences in stromal cell scores and ESTIMATE comprehen-
sive scores between the high and low-risk groups. Research has shown that the tumor microenvironment is 
closely related to immune therapy  response50. It suggests that the high and low-risk groups may have different 
reactions to immunotherapy. At the same time, we analyzed the infiltration of immune cells in both high and 
low-risk groups, and the results showed that plasma cells and memory resting CD4+ T cells infiltration were 
significantly higher in the low-risk group than in the high-risk group, while M0 macrophage infiltration was 
significantly higher in the high-risk group than in the low-risk group. Studies have shown that CD4 T cells can 
significantly improve the effectiveness of  immunotherapy51, and studies have also shown that tumor-associated 
macrophages (TAMs) promote cancer progression by promoting tumor invasion and  immunosuppression52. 
Therefore, speculate the response of the low-risk group to immunotherapy may be better than that of the high-
risk group. According to the correlation analysis between the risk score obtained from the prognosis model and 
the genes related to ICIs, it was found that the risk score was significantly correlated with PDCD1, CD274, and 
CTLA4. It is well known that these three genes are closely related to Immune checkpoint inhibitor therapy, so 
there is a strong correlation between the prognosis model and immune therapy.

Finally, we used the TIDE score to predict the response of the high and low-risk groups to immunotherapy. 
The results showed that the TIDE score of the low-risk group was significantly lower than that of the high-risk 

Figure 11.  The GSE39582 dataset was used to verify the accuracy of the prognostic model. (A) The OS of 
the low-risk group was significantly better than that of the high-risk group (p = 0.009). (B) The ROC curve 
shows that the AUC values of the prognostic model in the GSE39582 dataset for 1 year, 3 years, and 5 years are 
0.580, 0.576, and 0.581, respectively. (C) In the GSE39582 dataset, the prognostic model can still predict the 
effectiveness of immunotherapy well (* * * means P < 0.001).
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group, indicating that the immunotherapy of the low-risk group was significantly better than that of the high-risk 
group. Subsequently, we downloaded the immunotherapy scoring file for the TCGA-COAD queue on the TCIA 
website and analyzed the responses of the high and low-risk groups between different immunotherapy regimens. 
The results showed that whether using Programmed Death receptor-1(PD1) inhibitors or CTLA4 inhibitors 
alone for immunotherapy, or PD1 inhibitors combined with CTLA4 inhibitors for treatment, the treatment 
effect of the low-risk group was significantly better than that of the high-risk group, Finally, we validated the 
reliability of the risk model in predicting immunotherapy in the GSE39582 cohort, and the results showed that 
the immunotherapy efficacy of the low-risk group was still significantly better than that of the high-risk group. 
To further explore the mechanism by which risk scores predict the effectiveness of immunotherapy. We analyzed 
the mutation burden and MSI status of the high and low-risk groups, and the results showed that there was no 
significant difference in mutation burden between the high and low-risk groups, but the proportion of MSI-H 
in the high-risk group was significantly higher than that in the low-risk group. Currently, many studies have 
used MSI-H as a potential beneficiary population for immunotherapy in colon cancer  patients12,13. Although the 
proportion of MSI-H in the high-risk group is significantly higher than that in the low-risk group, but the immu-
notherapy efficacy of the low-risk group is significantly better than that of the high-risk group. This indicates that 
the prognostic model constructed by our study is an independent biomarker for predicting the effectiveness of 
immunotherapy. At the same time, there was no significant difference in mutation burden between the high and 
low-risk groups, but the response to immunotherapy was significantly different, which once again proves that 
TMB is not a reasonable biomarker for predicting immunotherapy efficacy in colon cancer.

In summary, through systematic bioinformatics analysis, we have demonstrated that TMB is not a feasible 
biomarker for predicting immune therapy response in colon adenocarcinoma. At the same time, we success-
fully constructed a prognosis model containing 7 genes using mutation burden-related DEGs. This model can 

Figure 12.  (A) According to the results of NMF classification, survival analysis of only MSS patients shows 
that the overall survival between the two subtypes is similar. (B) There is no significant difference in TIDE 
scores between the two groups of patients with high and low mutation burden in the TCGA-COAD cohort. 
(C) The TIDE score of the MSI-H group was significantly lower than that of the MSS group, indicating that the 
immunotherapy effect of the MSI-H group was significantly better than that of the MSS group. (P < 0.05 is *). 
(D) There is no significant difference in survival between MSI-H and MSS patients in the TCGA-COAD cohort.
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effectively predict the prognosis of colon adenocarcinoma patients and predict the effectiveness of immuno-
therapy. Of course, our research also has limitations. Firstly, this study is a bioinformatics study based on a public 
database. Although the results were validated with large sample external datasets, the response of patients to 
immunotherapy was predicted by the TIDE score, which does not necessarily predict the response of patients to 
immunotherapy. Secondly, the prognostic model obtained in this study lacks real-world clinical research data. 
Finally, the underlying mechanism by which the prognostic models obtained from the study predict the effective-
ness of immunotherapy has not been fully elucidated, and further basic research is still needed.

In conclusion, this study obtained DEGs by analyzing the high mutation burden and low mutation burden 
samples in the TCGA-COAD queue. By using DEGs and NMF typing, the TCGA-COAD queue was success-
fully divided into a high mutation burden subtype and a low mutation burden subtype. Although there was a 
significant difference in the proportion of MSI-H between the two subtypes, but there was no difference in the 
efficacy of immunotherapy between the two subtypes. It indicated that TMB is not feasible to predict the response 
of colon cancer immunotherapy. Drug sensitivity analysis showed that the drug sensitivity of the high mutation 
burden subtype was significantly better than that of the low mutation burden subtype. To further explore the 
predictive biomarkers for the efficacy of immunotherapy, we successfully constructed a prognostic model using 
DEGs. The prognostic model can well distinguish the prognosis and immunotherapy effect of patients with high 
and low risk, and consistent results were obtained in the GSE39582 dataset validation. We also evaluated the TMB 
and MSI of the high and low-risk groups, and there was no significant difference in TMB between the high and 
low-risk groups. However, the proportion of MSI-H in the high-risk group was significantly higher than that in 
the low-risk group. This once again confirms that TMB cannot predict the immunotherapy effect of colon cancer. 
It also suggests that this risk model is an independent molecular marker for immunotherapy, which is signifi-
cantly superior to the traditional colon cancer biomarkers TMB and MSI. Further clinical validation is needed.

Data availability
The data that support the findings of this study are openly available in the TCGA database (https:// portal. gdc. 
cancer. gov/ repos itory) and GEO database (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE39 582).
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