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Fast simulation for multi‑photon, 
atomic‑ensemble quantum model 
of linear optical systems addressing 
the curse of dimensionality
Junpei Oba 1*, Seiji Kajita 1* & Akihito Soeda 2*

Photons are elementary particles of light in quantum mechanics, whose dynamics can be difficult to 
gain detailed insights, especially in complex systems. Simulation is a promising tool to resolve this 
issue, but it must address the curse of dimensionality, namely, that the number of bases increases 
exponentially in the number of photons. Here we mitigate this dimensionality scaling by focusing 
on optical systems composed of linear optical objects, modeled as an ensemble of two-level atoms. 
We decompose the time evolutionary operator on multiple photons into a group of time evolution 
operators acting on a single photon. Since the dimension of a single-photon time evolution operator 
is exponentially smaller than that of a multi-photon one in the number of photons, the decomposition 
enables the multi-photon simulations to be performed at a much lower computational cost. We apply 
this method to basic single- and multi-photon phenomena, such as Hong–Ou–Mandel interference and 
violation of the Bell-CHSH inequality, and confirm that the calculated properties are quantitatively 
comparable to the experimental results. Furthermore, our method visualizes the spatial propagation 
of photons hence provides insights that aid experiment designs for quantum-enabled technologies.

Quantum electrodynamics (QED) is a subset of quantum field theory1 that describes the interaction between mat-
ter and the electromagnetic field. This theory treats light as particles called photons. Arguably, QED is the most 
relevant theory considering the length, time, and energy scale required to observe the fundamental forces. If the 
matter appears in the form of atoms and molecules, then the combined matter-light system becomes a quantum 
optical system2. The dynamics of quantum optical systems, which we call quantum optical dynamics (QOD), 
is also governed by the basic equations of QED. One of the most critical difficulties in solving the equations of 
QOD is the curse of dimensionality, which comes from the dimension (the size of a basis) of the Hilbert space 
corresponding to a quantum optical system. A basis can be characterized by “modes”, which roughly corresponds 
to the different ways in which particles (both matter and photons) can be excited, independently. The number of 
possible modes is infinite. Even if the number of modes is restricted, the size of the basis increases exponentially 
in the number of particles present in QOD. A common simplification is to limit the number of modes and/or 
the total number of particles of each mode to just a few. This approximation returns reasonable results if most 
contributing degrees of freedom can be confidently identified from previous experiments. Should that fail, we 
have no other means but to numerically solve high-dimensional equations to accurately analyze QOD.

Known QOD simulation techniques3–7 fall into two categories: cavity QED8 and wave packet dynamics9. In 
a typical cavity QED simulation, the photonic modes are restricted to a single standing wave mode in the cavity, 
and the matter-light interaction modeled by the Jaynes–Cummings Hamiltonian10,11. This suffices to explain 
several physical phenomena such as vacuum Rabi oscillation. On the other hand, the wave-packet-dynamics 
approach treats photons as a localized wave packet. Previous works treat Gaussian-shaped photons propagating 
through one-dimensional waveguides and interacting with two-level atoms9,12–15. However, the restriction to the 
one-dimensional waveguide hinders their application to spatially two or three-dimensional systems. Havukainen 
et al.16 conducted numerical simulations of wave packet dynamics where a single photon propagates through an 
ensemble of two-level atoms laid out in a two-dimensional space. The simulation divides the space into smaller 
grids and retains all the spatial modes up to the resolution determined by the size of the grids. The two-level 
atoms are located at the grid points (see the top left panel of Fig. 1a). The dimension of the Hilbert space handled 
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by this simulation exceeds that of the others by several orders of magnitude. The high dimensionality allows 
this simulation to reproduce a variety of QOD such as reflection and interference of a single photon by mirrors, 
beamsplitters, and double slits.

All these previous methods address the curse of dimensionality by either limiting the spatial modes and/or the 
total number of particles. For example, Havukainen et al.16 considered a large number of possible spatial modes, 
but they treated the dynamics of one photon. The multi-photon system gives rise to characteristic quantum 
phenomena that involve quantum entanglement. These phenomena are not only important for basic science, 
but also are the underpinnings of quantum-enabled applications in cryptography, sensing, and imaging17–20. 
Polarization is a degree of freedom of photons that is used in many quantum applications due to the availabil-
ity of means to manipulate this degree of freedom at quantum precision. It is desirable that QOD simulations 
incorporate polarization.

In this paper, we introduce a numerical method to analyze multi-photon, spatially multi-dimensional QOD. 
Our method includes the polarization degree of freedom, based on the Hamiltonian in the quantum optical 
systems proposed by Havukainen et al.16. We construct the time evolution operator of the multi-photon system 
by composing a group of time evolution operators, each of which acting on a particular photon. This treatment 
exponentially reduces the dimension of the time evolution operator that needs to be computed, with respect to 
the number of photons (see “Methods” section for the details). The numerical stability of simulations is improved 
by implementing a symplectic integration of the QED equations based on the Suzuki–Trotter decomposition. All 
combined, we succeed to simulate basic one- and two-photon phenomena, namely, the Mach–Zehnder (MZ) 
interference, Hong–Ou–Mandel (HOM) interference and violation of Bell-CHSH inequality. We use this simula-
tion method to visualize the photon propagation dynamics of these phenomena and to understand the physical 
origins of the computed results. We also simulate a photon directed toward a scattering object (scatterer) and 
present the detailed interplay between the detection pattern and the single-photon interference caused by the 
scatterer. The simulation results are presented in section “Results”, followed by discussions in Section “Discus-
sion”. The details of the present methods and parameters used in the numerical simulations are summarized in 
the “Methods” section.

Results
Mach–Zehnder interference
The MZ interference is used for a variety of applications in optics, including optical switches21, modulators22, 
sensors23, and quantum computing24. A typical MZ interferometer uses a set of representative linear optical 
objects, namely, two beamsplitters (BS1, BS2), two mirrors (M1, M2) and one phase shifter (PS) deployed as 
shown in Fig. 1a. The BS1 splits an incident beam of light into two beams, one which runs through M1 followed 
by PS and the other beam through M2. The two beams are then combined by BS2 to produce an interference 
pattern.

Figure 1.   (a) Snapshots of the simulation of the MZ interference when imposed the phase shift ϕ = π . The 
contour shows the photon number density. The gray lines and filled rectangles correspond to the beamsplitters 
(BS1, BS2) and mirrors (M1, M2), respectively. The unfilled rectangle corresponds to the phase shifter (PS), 
which adds the phase-shift exp(iϕ) to the photon. (b) Plot of the probability Pright(ϕ) obtained by the Suzuki–
Trotter (blue) and the Runge–Kutta (orange) method. dt is the time step used in each method. The black dotted 
curve shows the standard theoretical prediction. The horizontal gray dotted line is drawn at Pright = 1 as a guide 
for the eye.
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We simulate the MZ interference of a single photon. The optical objects are each implemented by an ensem-
ble of two-level atoms, indicated by a gray filled rectangle in Fig. 1a. The parameters of the two-level atoms 
are tuned so as to serve as the desired linear optical object (see Table 1 for specific parameters). At t = 0 , a 
single photon is generated just left of BS1 directed toward BS1. The probability Pright that the photon is ejected 
from the right side of BS2 is determined by the phase shift ϕ imposed by PS. A simplified theory predicts that 
Pright(ϕ) = cos2(ϕ/2) , assuming that a photon propagates in at most two modes at all times with no photons 
absorbed by the two-level atoms.

Figure 1a shows snapshots of the time evolution in the case of ϕ = π . Because the photon is ejected only in 
the upward direction, the result confirms the solution Pright(π) = 0 . Figure 1b shows a comparison of Pright(ϕ) 
simulated by the Suzuki–Trotter decomposition and the Runge–Kutta method used in the present and previous 
works, respectively (see “Methods” section for the details). The result of using the Suzuki–Trotter decomposition 
is in a good agreement with the theoretical prediction, despite the fact that more than two modes are involved in 
the process and photons are absorbed by the two-level atoms at the intermediate time steps. On the other hand, 
the result of the Runge–Kutta method shows that the probabilities significantly deviate from the theoretical pre-
diction, and some of the values exceed one. Furthermore, even using a shorter time step than that employed in 
the Suzuki–Trotter method, a numerical instability appears in QOD as shown in the inset of Fig. 1b. We conclude 
that the present method offers more reliable simulation than previously possible.

Photon detection in the presence of scatterer
Given a practical use of a quantum sensing and imaging17,18, obstacles in a space may scatter photons and affect 
the detection accuracy. Such a system cannot be described by an idealized theory, where the photonic modes are 
limited to one or just a few. Here, we demonstrate scattering of a single photon by an obstacle (scatterer), as shown 
in Fig. 2a, exploiting the simulation capacity of our method for high-dimensional QOD. The scatterer, which is 
composed of 4× 4 two-level atoms, is located at the center of the simulation space and is shifted by �x and �y 
in the x and y direction, respectively. A detector is placed at the far right edge of the space, indicated by the gray 
rectangle. The probability P of the propagated photon being detected is given by the photon number density 
within the detector region. The error rate is calculated by 1- P. We computed the error rate for various values of 
the widths of the detector region. In general, we expect that the scatterer should have less effect on the photon 
as the scatterer moves further away from the optical path. We shall see that this general intuition does not hold.

Figure 2b shows the dependence of the error rates on the widths of the detector window. We change �x but 
fix �y = 0.0 . As a general trend, the error rates monotonously decrease as the width increases. This is because 
the wider the width of the detector region, the more likely it is to find the photon inside the detector region. 
Yet, we observe a plateau profile of the error rate in �x = 11.0 around the width indicated by the vertical gray 
solid line. The number densities at the final states are visualized for �x = −7.4 and 11.0 in the lower panels of 
Fig. 2b. When �x = 11.0 , the number density has a particular structure, that is caused by an interference of a 
scattered photon coming from the upper and lower side of the scatterer. This fringe structure gradually disap-
pears by diffusion of the photon number density as the distance to the scatterer increases after passing it, as in 
the case of �x = −7.4 . The plateau profile appears when an edge of the detector region is in the sparse region 
of the interference fringes. In a sense, the detector “fails” to capture more photons despite increasing its size.

Figure 2c compares the profiles of the error rates by changing �y values and fixing �x = 7.4 . As in Fig. 2b, 
the error rates generally decrease as the width increases. When �y increases, the error rates decrease because the 
scatterer moves further away from the optical path. We observe that the order of the error rate curves changes 
as the detector region width changes (cf. the black arrow). The result shows that there is a range of the widths 
where the error rate increases when the scatterer moves away from the center of the optical path (also see the 
inset of Fig. 2c). To understand this behavior, we visualize the final states of �y = 0.0, 0.6 , and 1.2 as shown in the 
lower panels of Fig. 2c. In the case of �y = 0 , the interference fringes almost completely land within the detector 
region. On the other hand, a shift �y destroys the fringe structure. Due to the cancellation of the interference, a 
part of the wave-packet distributes outside the detector region (indicated by the white arrows in the lower panels 
of Fig. 2c), resulting in the higher error rate than the �y = 0 case.

Hong–Ou–Mandel interference
The Hong–Ou–Mandel (HOM) interference is a quintessential quantum effect of two indistinguishable 
photons25,26, which cannot be analyzed by simulations based on classical electrodynamics or QOD simulation 
limited to a single-photon states. Figure 3a shows a minimal model for the HOM interference, where two pho-
tons characterized by ξ and η indices are simultaneously injected to the ports of a beamsplitter. The beamsplitter 
divides a injected photon in half into transmitted and reflected parts. In QED, the injected state is expressed by

where â† is the creation operator of a photon. The operator of the beamsplitter VBS performs as,

Therefore, the outgoing state from the beamsplitter becomes
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This result indicates that the two photons are always ejected together from either right ( ξ ) or upper ( η ) outlet 
port. In other words, the probability that each photon is emitted in a separate port disappears by quantum 
interference of the two photons.

(2)VBS ⊗ VBS|1ξ , 1η� =
i

√
2
(|2ξ , 0η� + |0ξ , 2η�).

(b) (c)

Δx = -7.4 Δx = 11.0
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W
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Δy = 0.0 Δy = 0.6 Δy = 1.2

Figure 2.   (a) The time evolution of the photon number density with the scattering obstacle located at the 
center of space. Two typical widths of the detector region are illustrated by the dashed and solid lines. The width 
between the two dashed lines is narrower and that between the two solid lines is wider. (b) The upper panel 
shows the error rate as a function of the width of the detector window. The results are obtained by changing �x 
but fixing �y = 0 . The gray dotted line shows the result without a scatterer. The vertical lines correspond to the 
typical widths of the detector region. The lower panels show the final state of �x = −7.4 and 11.0. (c) The same 
as (b) but the plots denote the different values of �y . We set �x = 7.4 . The inset shows detailed plots around the 
region indicated by the black arrow. The lower panels show the final states for �y = 0.0, 0.6 , and 1.2.
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This HOM interference is simulated by the model shown in Fig. 3a. The calculated quantum state is denoted 
by |�(�x, t)� , where �x is a shift in the x direction of the initial position of the ξ photon. First, we visualize the 
spatial distribution of the probability of finding two photons at a given location at different times of the evolu-
tion. This bunching probability can be calculated by ρ(�x, t, r) = |�1r|�1r|�(�x, t)�|2 , where |1r�|1r� is a state in 
which two photons are in the same position. Figure 3b shows the dynamics of ρ(0, t, r) . Before the two photons 
reach at the beamsplitter ( t < 17 ), there is almost no value of the bunching probability because they are far from 
each other. After the photons pass through the beamsplitter, we observe that the bunching appears and then 
the distribution is separated into two portions that travel in the right and upper direction. Then, we perform 
this numerical experiment for different values of �x . We remove the beamsplitter in Fig. 3a and calculate the 
two-photons system. This free propagating state is denoted by |�0(t)� in which the two photons are observed 
separately in the different outlets, which we call the coincidence probability. The coincidence probability can 
be measured by

(3)p(�x) = |��0(T)|�(�x,T)�|2,

x x
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Figure 3.   (a) Schematic of a setup for HOM interference. The beamsplitter is located at the center of the space 
tilted at 45 degrees. The initial position of the ξ photon in the x direction is shifted by �x . (b) Time evolution 
of the probability distribution of the two photons being found at the same position, i.e., bunching probability 
distribution. (c) Simulation result and analytical solution in Eq. (4) of the HOM interference. The vertical axis 
indicates the coincidence probability, namely, the probability of detecting a photon simultaneously in the two 
separate output directions (up and right). The inset panels show the bunching probability distribution within the 
white rectangle in (b).
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where time T = 45 is chosen to assure that the wave-packets have separated enough after passing through the 
beamsplitter. Figure 3c shows the profile of p(�x) . Around �x = 0 , the coincidence probability is almost zero 
which corresponds to the theoretical result in Eq. (2). Increasing �x , we observe a dip in the coincidence prob-
ability. This HOM dip was observed in experiments as an evidence of the quantum nature of light25,26. The shape 
of the dip is characterized by an overlap of the two photons. In fact, a theory of the HOM interference offers an 
analytical solution25.

where σ is the Gaussian width of the photon. This analytical solution, which is plotted in Fig. 3c, shows a good 
agreement with the numerical one.

Violation of Bell‑CHSH inequality
In addition to the multi-photon states, the photon polarization degree of freedom is included in the present 
method. The polarization is commonly chosen in quantum experiments, including the photonic experiments 
confirming the violation of Bell-CHSH inequality27,28. The CHSH inequality provides a limit on a particular type 
of correlations of two separated systems, should their behavior be determined by classical mechanics. Quantum 
mechanics, however, violates the inequality under specific conditions. This violation was successfully confirmed 
by photonic experiments29–31 and various physical systems including atoms32 and superconducting qubits33.

Here, we model the experiment performed by Aspect et al.34, as shown in Fig. 4a,b. We deploy optical objects 
that rotate the polarization of the photon passing through them. One of the polarization rotators shifts by θa or 
θa′ , while the other by θb or θb′ . Two photons are directed to the two rotators individually, and then the horizontal 
and vertical components are spatially separated by the polarization beamsplitters. Given the rotation angles, we 
observe a correlation of the polarizations of the two photons as defined by

where E(θa , θb) = PHH (θa , θb)+ PVV (θa , θb)− PHV (θa , θb)− PVH (θa , θb) .  The probability Ppp′(θa , θb) 
( p, p′ ∈ {H ,V} ) is the probability that a photon is detected in the p-polarization outlet in the left and, simul-
taneously, another photon detected in the p′-polarization outlet, when the rotation angles are set at θa and θb . 
According to the Bell-CHSH inequality, S(θ) must range −2 ≤ S(θ) ≤ 2 if the local realism is correct. However, 
if we prepare two photons that are in a maximally entangled state, quantum mechanics asserts that

where θab = |θa − θb| and δ is the Kronecker delta35. Equation 6 leads to E(θa , θb) = cos 2θab . When setting the 
angles at θab = θa′b = θa′b′ = θ (see also the inset of Fig. 4c), and hence θab′ = 3θ , Eq. (5) becomes

in the case of the maximally entangled state. Equation 7 breaks the inequality −2 ≤ S(θ) ≤ 2 as shown by the 
blue solid line of Fig. 4c.

Figure 4a shows the dynamics of the number density of two photons prepared in a maximally entangled state. 
Each photon propagates to the left and right direction, as indicated by the white arrows. The angles of the two 
polar izat ion rotators  are  set  at  θa = 0 and θb = π/2 .  The init ia l  state  is  g iven by 
|�(t = 0)� = (|H�|H� + |V�|V�)/

√
2 , where |H�|H� ( |V�|V� ) denotes the two photons polarized in the hori-

zontal (vertical) direction. Figure 4b shows the case of a product state |�(t = 0)� = |H�|H� . The photons of the 
product change their polarization angle by passing through the polarization rotator, while not for those of the 
maximally entangled state. This invariance can be explained by computing the state of one of the photons when 
the initial state of the two photons is |�� = |H�|H�+c|V�|V�√

1+c2
 , where 0 ≤ c ≤ 1 . The density matrix corresponding 

to the two photons is

A partial trace of the density matrix on the right photon yields the reduced density matrix

If c = 1 which corresponds to the maximally entangled state, ρ̂′(1) = Î/2 where Î is the identity operator. Con-
sidering a polarization rotation Û  that operates Ûρ′(c)Û† , it is obvious that the polarization rotator does not 
change the partial state of this photon. On the other hand, we have ρ̂′(0) = |H��H| , thus the state of the photon 
of the product state is changed by the operation of Û  . These results are visualized in Fig. 4a,b.

Figure 4c shows the simulated S(θ) . The results of the maximally entangled state (the blue plots) show a 
good agreement with the theoretical prediction (the blue solid line) of Eq. (7). The violations of the Bell-CHSH 
inequality appear around θ = π/8, 3π/8 . In addition, we calculate S(θ) by changing the parameter c of the initial 
state as in Eq. (8). The violations occur if c ≥ 0.25.

To obtain deeper insights into the difference between the maximally entangled and product states, we visual-
ize S(θ) in Fig 4c. Namely, we first define
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1

2

(
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(

−
�x2

2σ 2

))

,
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1

2
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Figure 4.   (a) Time evolution of two photons in the Bell-CHSH experiment, in the case of the maximally 
entangled state. The left and right panel show the photon number density of the horizontal and the vertical 
polarization component, respectively. The filled and unfilled rectangles represent the polarization beamsplitter 
(PBS) and the polarization rotator, respectively. The angles of the two polarization rotators are θa = 0 , θb = π/2 . 
(b) The same as (a) but the input photon is a product state. (c) The correlation value S(θ) in Eq. (5). The 
horizontal dashed gray lines indicate the limit of the local realism. The inset explains a configuration of the 
angles set in this simulation: θa = 0 and θab = θa′b = θa′b′ = θ . The upper panels show the correlation densities 
S(θ , r) of the maximally entangled and product states at θ = 0,π/8,π/4.
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and E(θa , θb, r) = PHH (θa , θb, r)+ PVV (θa , θb, r)− PHV (θa , θb, r)− PVH (θa , θb, r) . The basis |1r,p� is a state in 
which a photon with the polarization p is at the position r. Accordingly, a correlation density is defined by

Note that we can retrieve S(θ) by S(θ) =
∑

r
S(θ , r) . The distribution of S(θ , r) for the maximally entangled state 

is found to be invariant with respect to θ except for its magnitude. This result is relevant to Fig. 4a in which the 
number density apparently does not change by the polarization rotators due to the fact that the reduced density 
matrix becomes the identity operator. Therefore, the correlations between the sets of θa and θb tend to be magni-
fied, resulting in clear violations of the inequality at particular angles. On the other hand, since the product state 
is changed by the polarization rotator as shown in Fig. 4b, terms composed of the correlations tend to cancel each 
other. This fact prevents S(θ) to exceed the limit of the local realism. In short, the present method reproduces the 
theory and experimental results, and its visualization facilitates understanding of the mechanism.

Discussion
The curse of dimensionality does not exist if the system is modeled and solved by classical electrodynamics. Many 
aspects of optics can be analyzed by classical methods of electromagnetic fields, such as method of moments36, 
finite-difference time-domain methods37–39, finite-difference frequency-domain methods40, and finite element 
method41. These techniques are based on the Maxwell equations that approximate light-matter interactions as a 
dissipation of the electromagnetic field or as spatially and spectrally nonuniform permittivity and/or permeability 
(so-called macroscopic treatment). However, the classical framework cannot capture multi-photon phenomena 
(see the recent review42), such as quantum interference and quantum entanglement, which are demonstrated in 
this study. By modeling a three-level atomic system, our numerical scheme can simulate nonlinear optical effects 
such as spontaneous parametric down conversion. However, the curse of dimensionality would reappear because 
a direct product form of the time evolution operator is no longer applicable. We will tackle this in a future work.

While any QOD simulation has to contend with some omission of details when used to understand experi-
ments, visualization of quantum dynamics of complex systems, as treated in this paper, is a unique advantage of 
numerical simulation, not present in experiments. A quantum state changes itself in principle when observed. 
It is, therefore, significantly resource intensive to experimentally trace the time-evolution process of photons 
propagating through complex optical setups. The presented high-dimensional QOD would be useful to reveal 
the intermediate process in detail. For instance, the visualizations of Section “Photon detection in the presence 
of scatterer" helped us to clarify the cause of the behavior of the error rate. This flexible and accurate simulation 
of the high-dimensional QOD should also aid in creating a viable minimal model that guides designing experi-
ments and applications that exploit quantum states of light.

Methods
We explain the present method in a two-dimensional space that spans over 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly . The space 
is discretized by numbers of grids ( Mx , My ), and its boundaries are periodic. We set � = c = 1 in the following 
formulations for a notational simplicity.

Single‑photon system
We begin with a theoretical framework of the single-photon simulation as introduced by16 (also see the Supple-
mental Information for the details). The system consists of NA two-level atoms (we write “atom” in the following 
for the simplicity) and one photon that has a wave-number vector k . The total Hamiltonian is

where

and â is an annihilation operator. The frequencies ωk and ωj indicate eigenenergies of the corresponding photon 
mode and atom, respectively. The Hamiltonian ĥI represents a dipole–dipole interaction between the photon 
and atoms,

where L =
√

LxLy  . The parameter Dj sets the strength of the dipole–dipole interaction, and the vector rj the 
position of the jth atom. This interaction makes the constituent atoms play a role of linear optical objects such 
as mirror, beamsplitter, and scatterer by controlling the parameters ωj and Dj.
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1

2
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)

|�(t)�|2,

(9)S(θ , r) = E(θa , θb, r)+ E(θa′ , θb, r)+ E(θa′ , θb′ , r)− E(θa , θb′ , r).

ĥ =ĥ0 + ĥI ,

(10)ĥ0 =
∑

k

ωk â
†
k
âk +

NA
∑

j=1

2ωj â
†
j âj ,

(11)ĥI =
∑

j,k

(g(j, k)â†j âk + g∗(j, k)â†
k
âj)

(12)g(j, k) =−
i

√
2L

√
ωjDje

ik·rj ,
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A quantum state of this system is restricted so that the total number of excitations is one, namely,

where c(t, k) and cj(t) are the complex amplitudes satisfying 
∑

k
|c(t, k)|2 +

∑

j |cj(t)|
2 = 1 . The atoms are 

deployed at the grid lattice points to form necessary optical objects. The indices 1k and 1j in the kets denote 
one photon of k mode and one excitation of a j-th atom, respectively. Namely, operations of âk to the bases are

and those of âj are the same manner. In addition,

due to the restriction of the total number of excitations to one.
The Schrödinger equation and the solution of the time evolution are written by

Polarization degrees of freedom
The method is extended simply by adding a polarization index p that specifies the horizontal and vertical polari-
zation by H and V, respectively. The state of the single-photon system is expressed by

The Hamiltonians ĥ0 and ĥI in Eqs. (10) and (11) can be extended by just replacing âk → âk,p, âj → âj,p . Note 
that these Hamiltonians do not influence the polarization degrees of freedom. The interaction Hamiltonian ĥI 
becomes

where Dj,p denotes the strength of the dipole interaction between the j-th atom and the photon mode p. Tuning 
Dj,p creates optical objects that change the polarization. For example, a polarization beamsplitter reflects only 
the vertical polarization but transmits the horizontal one. It can be created by setting ωj and Dj,V at appropriate 
values for a role of mirrors, but Dj,H = 0 . A polarization rotator can be constructed by a rotated half wave plate 
which introduces π phase shift on the polarization directed toward the slow axis of the wave plate. This can be 
achieved by using the basis of the fast and slow axes of the wave plate {F, S} , as

The basis transformation of the single-photon system is

Then, � is set as � = θrot/2+ θpol depending on a rotation angle θrot given by the polarization rotator, where 
θpol denotes an angle of the linear polarization of the input photon against a direction of the horizontal polariza-
tion. ωj and Dj,S are set at appropriate values to add π phase shift on the slow axis component, while Dj,F = 0.

This scheme for the polarization is examined by a single-photon simulation. The time evolution is solved by 
the Suzuki–Trotter decomposition which will be explained in the Section “Time evolution by Suzuki–Trotter 
decomposition”. Figure 5a shows the system where the initial polarization of a photon is H, and the photon is 
directed toward a polarization rotator. In this case, the polarization is rotated by an angle θrot = π/4 . Then, only 
the V component is reflected to the upward by the polarization beamsplitter, while the H component passes 
through the object. We observe the probabilities of the V components as a function of θrot , as shown in Fig. 5b. 
The calculated probabilities are well-fitted by the behavior of an ideal polarization rotator sin2 θrot . These results 

|φ(t)� =
∑

k

c(t, k)|1k� +

NA
∑

j=1

cj(t)|1j�,
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k,pâj,p)

(17)gp(j, k) =−
i

√
2L

√
ωjDj,pe

ik·rj ,

|1k,F� = cos�|1k,H � + sin�|1k,V �, |1k,S� = − sin�|1k,H � + cos�|1k,V �,

|1j,F� = cos�|1j,H � + sin�|1j,V �, |1j,S� = − sin�|1j,H � + cos�|1j,V �.

(18)
∑

k,p′∈{F,S}

|1k,p′ ��1k,p′ |φ(t)� +
∑

j,p′∈{F,S}

|1j,p′ ��1j,p′ |φ(t)�.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3208  | https://doi.org/10.1038/s41598-024-53246-2

www.nature.com/scientificreports/

confirm that the quantum state including the polarization and the relevant optical objects used in Section “Viola-
tion of Bell-CH SH inequality” work as intended.

Time evolution by Suzuki–Trotter decomposition
The previous study16 rewrites the Schrödinger equation in Eq. (13) in the interaction picture and numerically 
solves it by the fourth-order Runge–Kutta method. We have decided to formulate the Hamiltonian in such a way 
to apply the Suzuki–Trotter decomposition as it is known that the Suzuki–Trotter decomposition has numeri-
cally advantages in computing the time evolution of a Hamiltonian system43–49. The time evolution operator in 
Eq. (14) can be approximated by the Suzuki–Trotter decomposition, as

where δt is a time step of the simulation. Each Hamiltonian is diagonalized to compute the time evolution opera-
tor. The ĥ0 is already diagonal in the wave-number basis k . To diagonalize ĥI , it is numerically convenient to 
transform the interaction Hamitonian ĥI from the basis k into the position basis r

because by using a Fourier transformation the term in Eq. (11) becomes

where Wj,p = −iDj,p
√

Mωj/
√
2L . M = MxMy is the number of grids. The operation of âr,p is

As seen in Eq. (20), ĥI exchanges the photon and the excitation of the atom located at the same position. This 
compact representation thanks to the r basis is advantageous in the numerical diagonalization. In fact, multiply-
ing |φ� in Eq. (15) gives

(19)
e−iĥδt =e−i(ĥ0+ĥI )δt

∼e−iĥI δt/2e−iĥ0δt e−iĥI δt/2,

(20)ĥI =
∑

p,j

(Wj,pâ
†
j,pârj ,p +W∗

j,pâj,pâ
†
rj ,p

),

∑

k

gp(j, k)â
†
j,pâk,p =−

i
√
2L

√
ωjDj,pâ

†
j,p

∑

k

eik·rj âk,p

=Wj,pâ
†
j,pârj ,p,

âr,p|1r,p� = |0�, â†r,p|0� = |1r,p�.

(a) (b)

Polarization rotator PBS

Figure 5.   (a) The result of the simulation with the polarization rotator and the polarization beamsplitter (PBS). 
We set the rotation angle of the polarization rotator as θrot = π/4 . The polarization rotator consists of 2048 
atoms composed with 16 atomic layers, and its parameters are set as Dj,S = 0.56 and ωj = 1.2 . PBS consists of 
1185 atoms composed with 8 atomic layers, and its parameters are set as Dj,V = 0.56 and ωj = 5.0 . The cavity 
lengths are Lx = 20π and Ly = 10π , and the grids are cut by 512× 256 . The Gaussian width of the photon is 
σ = 2.0 . The initial position and wave number of the photon are r̄ = (2.0, Ly/2) and k̄ = (10.0, 0) . (b) Plot of 
the probability PV (θrot) which is the probability of the photon polarized in the vertical direction at the end of 
simulation. The solid line is a theoretical prediction assuming an idealized PBS.
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By using matrix representation, this is equivalent to

where V = 2−1/2

(

1 − i
1 i

)

 is a unitary matrix and we used the fact that W∗
j,p = −Wj,p . Therefore, the time evolu-

tion can be operated, as

We assessed a numerical performance of the Suzuki–Trotter decomposition by a simple single-photon simula-
tion without the polarization degree of freedom. As shown in Fig. 6a, the injected photon collides with the tilted 
mirror at about t = 10 and is reflected upwards. Then, due to the periodic boundary condition, the photon 
emerges from the lower region and is reflected by the mirror again at about t = 35 to go in the right direction. 
Figure 6b shows the trajectories of the probability �φ(t)|φ(t)� that ideally should remain 1 all the time. The 
result obtained by the previous scheme based on the Runge–Kutta method increases significantly above 1. On 
the other hand, the present scheme keeps the probability at 1, even with a larger time step. This is a benefit of 
the Suzuki–Trotter decomposition in Eq. (19) that uses only unitary operators. Figure 6c shows the total energy 
of the quantum state. By using the previous scheme, the total energy increases and violates the law of energy 
conservation. The energy trajectory by the present scheme shows small deviations from the initial energy at the 
times when the photon interacts with the mirror. Afterwards, however, the energy recovers to the initial energy, 
and the energy conservation tends to be maintained in the dynamics. Such a favourable feature is known as 
the result of a symplectic condition the Suzuki–Trotter decomposition has46,47. The above observations suggest 
that the time step δt = 0.1 is sufficiently small to justify the approximation of Eq. (19). Although an error of a 
time step in the second-order Suzuki–Trotter decomposition is an order of δt3 which is larger than that of the 
fourth-order Runge–Kutta method ( δt5 ), its property of the energy conservation hinders the accumulation of 
the error in the long-time dynamics50, making the method preferable. To keep the error of the Runge–Kutta 
method comparable to that of the Suzuki–Trotter method, a significantly smaller time step than that used in the 
Suzuki–Trotter method is required (see Fig. 6c). Such a small time step leads to the longer computational time 
for the Runge–Kutta method. The time evolution by the Suzuki–Trotter decomposition significantly improves 
stability of the calculation, which gives a reliable quantitative evaluation by the QOD simulation.

Multi‑photon system
For notational simplicity, we omit the polarization index p, since the inclusion of p can be done by replacing 
r → r, p and j → j, p . When naively written, an N-photon state without the polarization is

�1j,p|ĥI |φ(t)� =Wj,pcp(t, rj)

�1rj ,p|ĥI |φ(t)� =W∗
j,pcj,p(t).

ĥI �φp(t) =
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0 W∗
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)
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)

V
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cj,p(t)
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0 eWj,pδt

)
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Figure 6.   (a) Schematics of a test system. The space lengths are Lx = Ly = 10π and the grids are 256× 256 . 
The boundary is periodic. The mirror consists of 1,584 atoms ( Dj = 0.5,ωj = 2.5 ), and the width of mirror 
is composed of 8 atomic layers. The mirror denoted by “M” is located at the center of space with tilted at 45 
degrees. The initial position and wave number of the injected photon are r̄ = (5.0, Ly/2) and k̄ = (5.0, 0) . The 
width is σ = 1.0 . Trajectories of (b) probability of the quantum state defined by �φ(t)|φ(t)� and (c) total energy 
�φ(t)|ĥ|φ(t)� . The present method using Suzuki–Trotter decomposition is compared with the method used in16, 
namely, the fourth-order Runge–Kutta in the interaction picture.
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A straightforward updating of the coefficients c(t, r1, r2, · · · rN ) would require to represent the time evolution 
operator as an O(MN ×MN ) matrix, as the dimension of the Hilbert space of the N-photon states in M grids is 
O(MN ) . This can be reduced if the time evolution operator can be diagonalized but still requires manipulation 
of O(MN ) elements.

To expedite the calculation, we exploit the fact that N-partite states such as |�(t)� can be expressed with a 
fewer number of terms with a suitable choice of local states51. In addition our simulation only use the atoms to 
mimic linear optical objects such as mirrors and beamsplitters. These optical objects only need to reproduce their 
appropriate output electromagnetic wave for a given incoming wave. The atoms can effectively induce interac-
tions between photons, but linear optical elements do not exhibit such photon-photon interaction. Based on this 
intuition, we simulate the time evolution of each photon separately neglecting the presence of the other photons 
in doing so. More precisely, we consider N atoms virtually located at the same position rj , which we call virtual 
atoms, and let the N atoms only interact with their respective partner photon to simulate N-photon states. This 
treatment limits interaction ĥI within each single-photon system. Our N-photon state becomes

where ξn is a sets of the properties of n-th photon. Deviation of this treatment from the true N-photon evolution 
occurs when two photons are present at the same location and an atom located at that point absorbs the photons. 
In our simulation, photon densities are kept sufficiently low to suppress this error. These tricks render a time 
evolution operator of the N-photon system to be a direct product form as

and the time evolution of the multi-photon system is written as,

Note that the dimension of each exp(−iĥt) that needs to be compute is M, whereas the naive approach treats the 
time evolution operator Û(t) of size MN . This reduction of the dimensionality dramatically improves speed of 
the time evolution and makes the multi-photon simulation feasible.

Initial states
All the initial states of the atoms at t = 0 are set in their ground states. For example, cj(0) = 0 in the case of the 
single-photon system, and a Gaussian-shaped photon is injected in the space as

where σ is a width of the Gaussian. The vectors k̄ and r̄ are parameters to decide the initial velocity and position, 
respectively. For the simulations with the polarization, the initial state is given by

where θ is an initial polarization angle and δ is the Kronecker delta.
As in Sections “Hong–Ou–Mandel interference” and “Violation of Bell-CH SH inequality”, the two Gaussian-

shaped photons are injected at t = 0 . The modes of the photons are characterized by ξ and η , where ξ and η 
indicate sets of the photon properties that are σ , k̄ and r̄ . For the HOM interference, we used an initial state as

where (ξ ↔ η) refers to the exchange of the indices in the previous term, which originates from the commuta-
tive relation of bosons. For the test of the Bell-CHSH inequality, the initial state entangles their polarization p.
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Computational details
Table 1 summarizes the parameters list that are used in the calculation shown in the main text. All the simula-
tions are performed by the time step δt = 0.1 and Gaussian width σ = 2.0 . Because we used the arbitrary unit 
by using � = c = 1 , here we evaluate the spatio temporal scale in the real units. To recover the units, at a typical 
optical wavelength of 500 nm, the system size of the Mach–Zehnder interferometer (see Fig. 1) is ∼ 0.025 mm 
and simulation time t = 46 is corresponding to 0.12 ps. Naively, for the lab scale simulation with a photon at 
an optical wavelength, we need to set a 105 times larger space size. To reduce the computational cost, Krylov 
subspace techniques52,53 and quantics tensor trains54 might be applied.

Data availibility
The data are available from the corresponding author upon a reasonable request.

Code availibility
The code is downloadable at https://​github.​com/​Toyot​aCRDL/​QOsim​ulator.
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