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Enhancing automic and optimal 
control systems through graphical 
structures
Sumati Kumari Panda 1,5*, Ilyas Khan 2,5*, Vijayakumar Velusamy 3,5 & Shafiullah Niazai 4,5*

The concept of graphical structures of extended suprametric space is introduced in this study and 
applied to supra-graphical contractive mapping. A recursive algorithm in connection with graphical 
notions can be employed in adaptive systems to construct a desired output function iteratively after 
specific conditions are first defined to ensure the existence of the solution by use of supra-graphical 
contractive mapping. After analyzing the historical context and relevant outcomes, we discuss the 
usage of graphical structures and supra-graphical contractive mappings in the conceptual frameworks 
of adaptive control and optimal control systems.

A graph is defined as a mathematical framework that connects a collection of points to express a specific function. 
A pair-wise connection among the objects is established using it. The edges that link the vertices (also known as 
nodes) of the graph are called vertices. Theoretically referred to as G = G (V , E) . Since graphs are essentially 
a method of encoding data, each characteristic of a graph corresponds to an actual component or notion in the 
information being represented. In order to fully appreciate graphs’ articulation and universality as an embedding 
method, it is important to be familiar with how they can be utilized for illustrating complexities.

Figure 1 depicts the vertices and edges. A phenomenon according to the investigation has attributes, which 
are measurable characteristics. Attributes can be utilized to elaborate on both edges and vertices in the graph 
environment. We may have attributes for every individual (vertex) that quantify their current age, recognition, 
and online activity, to continue with our online community’s instance. In a manner comparable to this, we could 
establish an attribute (edge) for every connection that measures the degree of familiarity between the two indi-
viduals or the nature of the connection (e.g., family-related, professional, etc.). Each of the vertices and edges 
may in fact have a variety of qualities to take into account, therefore they are denoted by numerical vectors of 
attributes with the vAi  and eAi,j , correspondingly. Below stated Fig. 2 is a sample graph represents connections in 
the online community.

The method of maintaining or changing any value in an automated process or other piece of scientific machin-
ery in accordance with predetermined circumstances without having the direct involvement of a human being 
is known as automatic control. Automatic controllers are devices that are assembled specifically for this use. The 
research and development of techniques for formulating regulations for managing systems that are able to be 
implemented by automated technologies. These techniques have traditionally been used primarily for technical 
procedures (see1–5). As a result, an airplane in motion is a system whose control principles guarantee that it stays 
on the necessary trajectories. The automated pilot, which consists of transducers (measuring instruments) and 
actuators, is used to implement the rules and regulations.

The concept of optimal control is concerned with addressing the issue of determining the control principle 
for an instance of a system that meets a specific optimality condition. A cost function the fact that depends on 
stipulate and control parameters is a component of a control issue. A collection of mathematical models char-
acterizing the movements of the parameters under control in a way that minimizes the cost function is referred 
to as an optimal control. Numerous optimum control problems have been studied using it extensively in the 
literature (see6–8). In both the natural and applied sciences, the contractive mapping concept is one of the most 
effective methods for examining and/or solving existence results. The idea, which is additionally referred to as 

OPEN

1Department of Mathematics, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India. 2Department 
of Mathematics, College of Science Al‑Zulfi, Majmaah University, 11952 Al‑Majmaah, Saudi Arabia. 3Department 
of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu  632 014, 
India. 4Department of Mathematics, Education Faculty, Laghman University, Mehtarlam City, Laghman  2701, 
Afghanistan. 5These authors contributed equally: Sumati Kumari Panda, Ilyas Khan, Vijayakumar Velusamy and 
Shafiullah Niazai. *email: mumy143143143@gmail.com; sumatikumari.p@gmrit.edu.in; i.said@mu.edu.sa; 
shafiullahniazai@lu.edu.af

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-53244-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3139  | https://doi.org/10.1038/s41598-024-53244-4

www.nature.com/scientificreports/

the fixed point problem, suggests that a recursive strategy provided by repeating representations under the map-
ping of any initial point in the metric space would always have a single fixed point that is able to be identified 
as the limit. The contractive mapping hypothesis is one that has been widely refined at every step of the course 
of history in many theoretical disciplines (see9–14), and currently holds significance for complex scientific fields, 
computation algorithms, and numerical models.

The objective of this paper is to study the automatic flight path generation of a control function and optimum 
control in the context of graphical notions and nonlinear graphical supra-contractive mappings.

Primary details on graphical notions
Here, we provide a summary of a few fundamental concepts and practical findings that can be used as methods 
for further investigation. In addition, let M be a set that is not empty, and take △ be the diagonal generated by 
M ×M . Assume that the directed graph G has zero parallel edges. The vertices of V (G ) has to correspond 
through M , and E(G ) ⊑ M ×M is required to contain all loops. This makes (V (G ), E(G )) is used to identify 
G . The graph G −1 is referred to as a graph generated by switching to the reverse direction of its edges from G.

In other words:

It is less restrictive when considering G̃  and the collection of edges is symmetrical. With such a method, we 
produce the following:

If a,b are vertices of G , and subsequently a path in G is a sequence ani=0 of (n+ 1) vertices in such a way that 
a0 = a, an = b and the pair (ai−1, ai) should be in E(G ) where i = 1, 2, 3, . . . n. In order for a graph G to be con-
sidered to be connected-a minimum of one path must connect each pair of its vertices. If there exists a minimum 
of one directed path connecting each vertex to each subsequent one in a directed graph-it has been hypothesized 

E(G −1) = {(a,b) ∈ M ×M : (b, a) ∈ E(G )}.

E(G̃ ) = E(G ) ⊔ E(G −1).

Figure 1.   A plot that depicts the vertices and edges.

Figure 2.   A sample graph represents connections in the online community.
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to be strongly connected. If the corresponding undirected graph of a directed graph G is connected nevertheless G 
fails to be strongly connected, the directed graph is said to be weakly connected. The set of all vertices and edges 
of A are subsets of G ; where A is a subgraph of graph G . If a vertex is present in A , it has a corresponding vertex 
in G , and any edge that connects two vertices in A will also connect the corresponding vertices in G . However, 
not all of the edges and not all of the vertices of G are required to exist in A.

In order to generalize the metric space by utilizing graphical notions, Shukla et al.,15 initially put forward the 
idea of graphical metric space:

Definition 1  Suppose that M be a set that is nonempty and is endowed with the graph G . Let Gm : M ×M → R 
be a function gratifying the below mentioned assertions: 

(G1)	� (∀ a,b ∈ M) Gm(a,b) ≥ 0;
(G2)	� (∀ a,b ∈ M) Gm(a,b) = 0 iff a = b;
(G3)	� (∀ a,b ∈ M) Gm(a,b) = Gm(b, a);
(G4)	� (aPb)G ,c ∈ (aPb)G implies Gm(a,b) ≤ Gm(a,c)+ Gm(c,b); 

wherea,b,c are any three elements ofM.

 The pair (M,Gm) is referred to as a graphical metric space, whereas the mapping Gm is referred to as a graphical 
metric over M.

Adopting various “triangular inequalities” with a provided set yields distinct graphical metric spaces: 

(T1).	� F o r  s o m e  s ≥ 1 and for all a,b,c ∈ M such that  (aPb)G ,c ∈ (aPb)G which implies 
Gm(a,b) ≤ s[Gm(a,c)+ Gm(c,b)];.

(T2).	� T h e r e  e x i s t s  a  θ ∈ R
+ and for all a,b,c ∈ M such that (aPb)G ,c ∈ (aPb)G which implies 

Gm(a,b) ≤ Gm(a,c)+ Gm(c,b)+ θGm(a,c)Gm(c,b);
(T3).	� There exists a function ϑ : M ×M → [1,+∞) and for all a,b,c ∈ M such that (aPb)G ,c ∈ (aPb)G 

which implies Gm(a,b) ≤ Gm(a,c)+ Gm(c,b)+ ϑ(a,b)Gm(a,c)Gm(c,b).

G is called, 

(i)	� Graphical b-metric16 if we take (T1) instead of (G4) in Definition 1.
(ii)	� Graphical suprametric if we take (T2) instead of (G4) in Definition 1.
(iii)	� An extended graphical suprametric if we take (T3) instead of (G4) in Definition 1.

 The pair (M,G ) is said to be a graphical b-metric/graphical suprametric/extended graphical suprametric space 
if G is a b-metric/graphical suprametric/extended graphical suprametric on M.

As a unification of graphical metric space15, suprametric space17 and an extended suprametric space18, we 
first introduce the topics of graphical suprametric space and an extended graphical suprametric space as above.

Considering a relation P stated that over M, (aPb)G and [a]ℓ
G

 are able to be characterized as follows: 

1.	 (aPb)G ⇔ there exist a path in the direction from a to b in G and c ∈ (aPb)G if c is having a path in the 
direction from a to b in G;

2.	 [a]ℓ
G

= {b ∈ M : there exists a directed path from a to b of length ℓ } , for more info, refer16.

Moreover, a sequence {an} ∈ M is called G-termwise connected whenever (anPan+1)G where n should be in N.

Remark 2  An extended suprametric space (M,G ) is an extended graphical suprametric space having graph G , 
whenever V (G ) = M and E(G ) = M ×M.

It is worth noticing that we introduced an extended graphical suprametric space as a generalization of an 
extended suprametric space18.

E x a m p l e  3   Ta k e  M = {0, 1, 2, 3}  .  D e f i n e  t h e  f u n c t i o n  Gm : M ×M → R
+  a s 

Gm(1, 1) = Gm(2, 2) = Gm(3, 3) = Gm(0, 0) = 0 and Gm(a,b) = Gm(b, a) for all a,b ∈ M,

Gm 0 1 2 3

0 0 0.125 0.111 0.1

1 0.125 0 0.090 0.083

2 0.111 0.090 0 0.142

3 0.001 0.083 0.142 0
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Define ϑ : M ×M → [1,∞) by ϑ(a,b) = ea+b . Analyze the graph G with M = V (G ) as the collection 
of vertices and the edge set provided below:

then (M,G ) is an extended graphical suprametric space with ϑ(a,b) = ea+b , confining the graph G as explained 
in below Fig. 3.

Remark 4  It is important to mention that graphical suprametric space can be an extended graphical suprametric 
space by taking ϑ(a,b) = θ (where θ ≥ 1 ) a constant function (where the mapping ϑ should map to a value 
greater than or equal to 1). But the converse may not be true. The following example supports our argument.

Example 5  Take M = {0, 12 , 1} and µ be a graph metric on M defined as µ(a,b) = |a− b| for all a,b ∈ M . Define 
Gm : M ×M → R

+ as Gm
η(a,b) = µ(a,b)(µ(a,b)+ η) for any real number η. Define ϑ : M ×M → [1,∞) 

by ϑ(a,b) = ea+b . Let M be endowed with a graph G with M = V (G ) as the collection of vertices and the 
edge set provided below:

then (M,G ) is an extended suprametric space with ϑ(a,b) = ea+b and η = 1 , confining the graph G as 
explained in Fig. 4. But it is not an graphical suprametric space with θ = 1

3

as Gm(0, 1) > Gm(0,
1
2 )+ Gm(

1
2 , 1)+

1
3Gm(0,

1
2 )Gm(

1
2 , 1).

Using renowned literature19–22 and the work done in this article, we develop subsequent Fig. 5 to better 
understand the graphical framework of suprametric and/or extended-suprametric spaces. Moreover, in below 
Fig. 5, inclusion is represented by an arrow. But however, reverse inclusion is not true.

We define open and closed balls as follows in order to investigate the topological structure of an extended 
graphical suprametric space.

Definition 6  Consider a extended graphical suprametric space (M,Gm) . Take a ∈ M and ε > 0 . Then Gm-open 
ball having center a0 and radius ε is

Similarly, Gm-closed ball having center a0 and radius ε is

E(G ) = △ ⊔ {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)},

E(G ) = △ ⊔ {(0,
1

2
), (0, 1), (

1

2
, 1)},

BGm(a, ε) = {b ∈ M/(aPb)G , Gm(a,b) < ε}.

BGm(a, ε) = {b ∈ M/(aPb)G , Gm(a,b) ≤ ε}.

Figure 3.   Plot for extended graphical suprametric space.

Figure 4.   Plot for extended suprametric space.
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As △ ⊑ E(G ), which implies that a ∈ BGm(a, ε) and so BGm(a, ε)  = ∅ for all a ∈ M and ε > 0 . Moreover, the 
set B = {BGm(a, ε)/a ∈ M, ε > 0} builds a neighbourhood system.

Definition 7  Let (M,Gm) be an extended graphical suprametric space. A ⊑ M is said to be open if for all a ∈ A 
there is a ε > 0 so that BGm(a, ε) ⊂ A . Generally A ⊑ M is known as closed whenever its complement is open.

Proposition 8  Suppose (M,Gm) be an extended graphical suprametric space. Take a ∈ M and ε > 0 with 
ϑ(a,b) = κ ∈ [0,∞) , for all a,b ∈ M . If b ∈ BGm(a, ε) then there exist ℘ > 0 such that BGm(b,℘) ⊑ BGm(a, ε).

Proof. Let b ∈ BGm(a, ε) and if b = a then we choose ℘ = ε.
Suppose that ℘  = ε , then we get Gm(a,b)  = 0 . We choose ℘ = ε−Gm(a,b)

1+κGm(a,b)
> 0 and let c ∈ BGm(b,℘) . 

Therefore, in accordance with the stated hypothesis, we have (aPb)G and (bPc)G and so (aPc)G . Consequently, 
the triangle inequality (T3) demonstrates that

Hence Gm(c, a) < ε . Which yields BGm(b,℘) ⊑ BGm(a, ε) . This illustrates that each open ball in M is an open 
set.

Proposition 9  Let (M,Gm) be an extended graphical suprametric space. Let τ be the family of all open subsets of 
M . Then τ is a topology on M.

Definition 10  Let (M,Gm) be an extended graphical suprametric space. 

1.	 A sequence {an} converges to some a in M . If for all positive ε , there is some positive Nε such that 
Gm(an, a) < ε for each n ≥ Nε . It can be written as, limn→∞ an = a.

2.	 The sequence {an} in an extended graphical suprametric space (M,Gm) is said to be a Cauchy sequence if 
Gm(an, am) → 0 as n,m → ∞.

3.	 A extended graphical suprametric space (M,Gm) is said to be complete if every Cauchy sequence is 
convergent in M with respect to graph G.

Example 11  Let an = 1
2n for n ∈ N be a sequence in an extended graphical suprametric space (M,Gm).

Let ε = 0.1 and a = 0 then Gm(an, 0) = | 1
2n − 0| = 1

2n < ε.

i.e., 2n > 1
ε
⇒ n >

log( 1
ε
)

log(2) ⇒ n > 3.32.
Thus for ε = 0.1 > 0 there exists 4 = m ∈ N such that Gm(an, a) < ε for all n ≥ 4 . Thus, the sequence an = 1

2n 
converges to “0” in an extended graphical suprametric space (M,Gm).

Graphical supra‑contractive mappings
As a generalization of the idea of graphical contraction in distance spaces, we introduce a subsequent definition 
at the outset of this section.

Definition 12  Let (M,Gm) be an extended graphical suprametric space. Take U : M → M is a mapping on 
M . Moreover, let G ⋆ be a subgraph of G so that △ is a subset of E(G ⋆) . U is a supra-graphical contraction on 
extended graphical suprametric space M , if and only if the following conditions are met: 

Gm(c, a) ≤ Gm(c,b)+ Gm(b, a)+ ϑ(c, a)Gm(c,b)Gm(b, a)

< ℘ + Gm(b, a)+ κ℘Gm(b, a)

= ℘(1+ κGm(b, a))+ Gm(b, a)

=
ε − Gm(b, a)

1+ κGm(b, a)
(1+ κGm(b, a))+ Gm(b, a)

= ε.

Figure 5.   Plot for graphical framework of suprametric and/or extended-suprametric.
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C1	� . U having edges of G ⋆ , the same for each (a,b) ∈ E(G ⋆) , which implies (U a,U b) ∈ E(G ⋆);
C2	� . there exists γ ∈ [0, 1) and ϑ(a,b) ∈ [1,∞) for all a,b ∈ M with (a,b) ∈ E(G ⋆) such that 

It is worth noting that G ⋆ can be regarded is a weighted graph as it refers to every edge by the distance among 
their corresponding vertices. The U-Picard iterative sequence {an} is defined as an = U an−1 for all n ∈ N with 
initial value a0 ∈ M . For the sake of further investigation, suppose that △ ⊑ E(G ⋆) and that G ⋆ is a subgraph 
of G . We’ll also make use of the subsequent result.

G
⋆ is called to be gratify the property (P⋆) , if a G ⋆-termwise connected U-Picard sequence {an} converges 

in M which yields c ∈ M of {an} and n0 ∈ N such that (an,c) ∈ E(G ⋆) or (c, an) ∈ E(G ⋆) for all n > n0.

Theorem 13  Assume that (M,Gm) be a complete extended graphical suprametric space and U : M → M be a 
supra-graphical contraction on M . Consider that the subsequent assertions are true: 

G1.	� There exists a0 ∈ M such that U a0 ∈ [a0]ℓG ⋆ , where ℓ should be in N.
G2.	� The graph G ⋆ gratifies the property (P⋆) , and a⋆ ∈ M in such a way that the U-Picard sequence {an} with 

a0 ∈ M is G ⋆-termwise connected. Furthermore, it is converges to a⋆ and U a
⋆.

G3.	� The quadruple (M,Gm,G
⋆,U ) satisfies the property (P) , i.e., if G ⋆-termwise connected U-Picard 

sequence {an} having limits a⋆,b⋆ , in which a⋆ ∈ M and b⋆ ∈ U (M) , which implies a⋆ = b
⋆.

 As a result, U has a fixed point.
Proof. Starting from a0 ∈ M such that U a0 ∈ [a0]ℓG ⋆ and utilizing the sequence {an} with initial value a0 , 

then there is a path {bi}ℓi=0 in such a way that a0 = b0 , U a0 = bℓ and (bi−1,bi) ∈ E(G ⋆) where i = 1, 2, 3 . . . ℓ.
As U holds edges in G ⋆ , from the assertion of C1 , we know that (U bi−1,U bi) ∈ E(G ⋆) for i = 1, 2, 3 . . . ℓ . 

Thus {U bi}ℓi=0 is having a length ℓ from U b0 = U a0 = a1 to U b1 = U
2
a0 = a2 , which gives a2 ∈ [a1]ℓG ⋆ . 

By repeating this process we get {U n
bi}ℓi=0 is a path from Unb0 = U

n
a0 = an to U n

bℓ = U
n
U a0 = an+1 

of length ℓ , which yields an+1 ∈ [an]ℓG ⋆ , where n should be in N.
As a result, {an} becomes G ⋆-termwise connected sequence. As (U n

bi−1,U
n
bi) ∈ E(G ⋆) and by utilizing 

the supra-graphical contraction, we get,

By continuing in the same process, we get,

By the use of triangle inequality (T3) , which yields that,

By repeating similar process, we get,

Considering the insight that G ⋆-termwise connected sequence, we obtain:

(1)Gm(U a,U b) ≤ γGm(a,b).

(2)Gm(U
n
bi−1,U

n
bi) ≤ γGm(U

n−1
bi−1,U

n−1
bi).

Gm(U
n
bi−1,U

n
bi) ≤ γ n

Gm(bi−1,bi).

Gm(an, an+1) = Gm(U
n
a0,U

n+1
a0)

= Gm(U
n
b0,U

n
bℓ)

≤ Gm(U
n
b0,U

n
b1)+ Gm(U

n
b1,U

n
bℓ)

+ ϑ(U n
b0,U

n
bℓ)Gm(U

n
b0,U

n
b1)Gm(U

n
b1,U

n
bℓ)

≤ Gm(U
n
b0,U

n
b1)+ Gm(U

n
b1,U

n
b2)+ Gm(U

n
b2,U

n
bℓ)

+ ϑ(U n
b1,U

n
bℓ)Gm(U

n
b1,U

n
b2)Gm(U

n
b2,U

n
bℓ)

+ ϑ(U n
b0,U

n
bℓ)Gm(U

n
b0,U

n
b1)Gm(U

n
b1,U

n
bℓ).

Gm(an, an+1) ≤ Gm(U
n
b0,U

n
b1)+ Gm(U

n
b1,U

n
b2)+ · · · + Gm(U

n
bℓ−1,U

n
bℓ)

+ ϑ(U n
b0,U

n
bℓ)Gm(U

n
b0,U

n
b1)Gm(U

n
b1,U

n
bℓ)

+ ϑ(U n
b1,U

n
bℓ)Gm(U

n
b1,U

n
b2)Gm(U

n
b2,U

n
bℓ)

+ · · · + ϑ(U n
bℓ−2,U

n
bℓ)Gm(U

n
bℓ−2,U

n
bℓ−1)Gm(U

n
bℓ−1,U

n
bℓ)

≤
ℓ∑

i=1

Gm(U
n
bi−1,U

n
bi)+

ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(U

n
bi−1,U

n
bi)Gm(U

n
bi ,U

n
bℓ)

≤
ℓ∑

i=1

γ n
Gm(bi−1,bi)+

ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)γ

n
Gm(bi−1,bi)Gm(bi ,bℓ)

= γ n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]
.
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where,

Combining the above two inequalities, we get,

Continuing the same process, we get,

Gm(an, am) ≤ Gm(an, an+1)+ Gm(an+1, am)

+ ϑ(an, am)Gm(an, an+1)+ Gm(an+1, am)

≤ γ n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

+
[
1+ ϑ(an, am)γ

n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

× Gm(an+1, am), for all n,m ∈ N, andm > n,

Gm(an+1, am) ≤ Gm(an+1, an+2)+ Gm(an+2, am)

+ ϑ(an+1, am)Gm(an+1, an+2)+ Gm(an+2, am)

≤ γ n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

+
[
1+ ϑ(an+1, am)γ

n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

× Gm(an+2, am).

Gm(an, am) ≤ γ n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

+ γ n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

×
[
1+ ϑ(an, am)γ

n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

+
[
1+ ϑ(an, am)γ

n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

×
[
1+ ϑ(an+1, am)γ

n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

× Gm(an+2, am)
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Since γ ∈ [0, 1) , one can easily prove that the series 
∑∞

i=0 Si converges as per ratio test, where

Hence, we deduce that Gm(an, am) → 0 as n,m → ∞ , which yields that the sequence {an} is Cauchy. Since M is 
complete, subsequently suggests that the sequence {an} converges in M and from Definition 12, i.e., G ⋆ gratifies 
the property-(P⋆) , there is a⋆ ∈ M and n0 ∈ N such that (an, a⋆) ∈ E(G ⋆) or (a⋆, an) ∈ E(G ⋆) for all n > n0 and 
limn→∞ Gm(an, a

⋆) = 0, which shows that {an} converges to a⋆.
By using the assertion C2 and inequality 2 when (an, a⋆) ∈ E(G ⋆) then we have,

That is, limn→∞ Gm(an+1,U a
⋆) = 0, this gives {an} converges to both a⋆ and U a

⋆ . Thus the U-Picard sequence 
{an} having initial value a0 and it is converges to a⋆ and U a

⋆ . As a⋆ ∈ M and U a
⋆ ∈ U (M) , this gives U a

⋆ = a
⋆ 

as per property (P) . This shows that a⋆ is a fixed point U.
A collection that includes all fixed-points associated with the mapping U can be represented as Fix(U ) , 

therefore we employ the form of the notation MU specified as:

Example 14  Take M = {0} ⊔ { 12 ,
1
4 ,

1
8 , · · · } . G

⋆ = G is a graph specified with V (G ) = M and 
E(G ) = {(a,b) ∈ M ×M/a ≤ b} . Define a mapping Gm : M ×M → [0,∞) by

Clearly Gm is an extended graphical suprametric space on M where ϑ : M ×M → [1,∞) specified with 
ϑ(a,b) = ea+b for all a,b ∈ M . Let U : M → M be a mapping given by U (a) = a

2 , for all a ∈ M . Let a0 = 1
2 

Gm(an, am) ≤ γ n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

+ γ n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

×
[
1+ ϑ(an, am)γ

n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

+ γ n+2

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

×
[
1+ ϑ(an, am)γ

n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

×
[
1+ ϑ(an+1, am)γ

n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

+ · · · + γm−1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

×
[
1+ ϑ(an, am)γ

n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

×
[
1+ ϑ(an+1, am)γ

n+1

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

× · · · ×
[
1+ ϑ(am−2, am)γ

m−2

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]

≤ γ n

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]

×
m−n−1∑

i=0

γ i
i−1∏

j=0

[
1+ ϑ(an+j , am)γ

n+j

[ ℓ∑

i=1

Gm(bi−1,bi)

+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]
.

Si = γ i
i−1∏

j=0

[
1+ ϑ(an+j , am)γ

n+j

[ ℓ∑

i=1

Gm(bi−1,bi)+
ℓ−1∑

i=1

ϑ(U n
bi−1,U

n
bℓ)Gm(bi−1,bi)Gm(bi ,bℓ)

]]
.

Gm(an+1,U a
⋆) = Gm(U an,U a

⋆)

≤ γGm(an, a
⋆) for all n > n0.

MU = {a ∈ M : (a,U a) ∈ E(G ⋆)}.

Gm(a,b) =
{
0, if a = b

|a− b|, if a �= b.
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such that U
(
1
2

)
=

[
1
2

]ℓ
G ⋆ and the supra-graphical contraction for γ = 1

2 , consequently U is a supra-graphical 
contraction for γ = 1

2 on U . It is quite clear that “0” is the unique fixed-point and all of the requirements of 
Theorem 13 are satisfied.

Above Fig. 6 is a weighted graph for n = 4 which demonstrates the above Example 14
The corresponding value of the variance between the left and right sides of Example 14 of Theorem 13 is as 

shown in Fig. 7.
Now we prove that supra-graphical contraction is continuous through an example.

Example 15  Let (M,Gm) be an extended graphical suprametric space as defined in Example 14. Let U : M → M 
is a supra-graphical contraction. Then U is continuous.

Let {an} = 1
2n be a sequence in M for all n ∈ N . We have limn→∞ Gm

(
1
2n , 0

)
= limn→∞ Gm

∣∣ 1
2n − 0

∣∣ → 0.
Now consider, limn→∞ Gm

(
U

(
1
2n

)
,U (0)

)
= limn→∞ Gm

∣∣ 1
2n+1 − 0

∣∣ → 0 . Thus, as “0” is a limit of the 
sequence { 1

2n } , we have U (0) is a limit of the sequence {U
(

1
2n

)
}.

Corollary 16  Assume that (M,Gm) be a complete graphical suprametric space and U : M → M be a supra-
graphical contraction on M . Consider that the subsequent assertions are true: 

G1.	� There exists a0 ∈ M such that U a0 ∈ [a0]ℓG ⋆ , where ℓ should be in N.
G2.	� The graph G ⋆ gratifies the property (P⋆) , and a⋆ ∈ M in such a way that the U-Picard sequence {an} with 

a0 ∈ M is G ⋆-termwise connected. Furthermore, it is converges to a⋆ and U a
⋆.

G3.	� The quadruple (M,Gm,G
⋆,U ) satisfies the property (P) , i.e., if G ⋆-termwise connected U-Picard 

sequence {an} having limits a⋆,b⋆ , in which a⋆ ∈ M and b⋆ ∈ U (M) , which implies a⋆ = b
⋆.

 As a result, U has a fixed point.

Figure 6.   A weighted graph for n = 4.

Figure 7.   Plot for the corresponding value of the variance between the left and right sides of Example 14 of 
Theorem 13.
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Applying graphical structures in automic control systems
Take an airplane that carefully follows a piece of terrain as a prime instance. To keep things simple, we should 
simply consider a couple of variables, namely the horizontal distance and height of flight, to ensure that the 
airplane flies according to its pitch zone. Both a radar altimeter and a radar will be there as well monitoring the 
landscape up ahead. There will be certain limitations on aircraft acceleration, which are merely restrictions on the 
radius of the flight path’s curvature at specific speeds. The most permissible slope of the flight to the horizontal 
might also have an upper bound. It is hypothetically feasible to create the necessary flight route for the airplane 
using this information in conjunction with a specified target clearance for the ground. It will be presumed that 
the work was successfully accomplished and that the necessary flight path S (a) is known to be a function of 
horizontal distance, a . Then, take into account the issue of automatically producing the flight path. Figure 8 
demonstrates the system’s block diagram. If the box labeled “ C ” is taken to be a unit of storage and delay, it is 
important to take note of it.

The configuration of the flight controls, which includes the signal for the elevator control, is commonly 
known as the control function S (a) . The function ϕ(a) depicts the flight path as the consequence of the control 
ψ(a) . Therefore, the position of the angle in relation to the horizontal throughout the flight path can potentially 
be represented by ϕ(a) . As indicated in the figure, the precise airplane location φ(a) has been included to ψ(a) 
and given right back for verification to determine the necessary route S (a) . The signal κ(a) is then generated 
and held in the box denoted by C unless it gets released and turns into the newly created control function ψ(a).

To distinguish between sequentially created functions ψ(a) , the latter is going to be assigned a suffix i.
The system will function in such a way that starting with an arbitrary control function ψ0(a) , the necessary 

control function ψ(a) will eventually be developed immediately at this point:

Since

then

The right-hand side of the expression must be a supra-graphical contractive mapping in order to allow the 
recursive procedure outlined in Eq. (4) to reach convergence. The solution is then

That is, S (a) = HAψ(a) = φ(a) , from Eq. (3).
In the context of simple terms, the control function is set up to achieve the intended outcome, namely that 

the real position φ(a) meets the appropriate trajectory S (a).
Consider M = C([0,T],R) , set of all functions which are real-valued and continuous on [0,T] and 

D = {ψ(a) ∈ M/a ∈ [0,T]}.
Establish the graph G and G ⋆ by G = G

⋆, V (G ) = M and

Evidently, the pair (M,Gm) is an extended graphical suprametric space and Gm : M ×M → R specified 
with Gm

ω(K,L ) = ξ(K,L )[ξ(K,L )+ ω] ; where ξ(K,L ) is a graphical metric and ω is a positive real 
number, for all K,L ∈ M . Obviously (M,Gm) is complete extended graphical suprametric space. Note that 
ξ(K,L ) = |K −L |.

Allow the plane to fly with an identical speed W . Assuming a flight angle φ(a) , the height ϕ(a) over the 
datum corresponds to follows:

ψi+1(a) = κi(a) = −S (a)+ ψi(a)+ φi(a).

(3)φi(a) = Hϕi (a) = HAψi(a),

(4)ψi−1(a) = κi(a) = −S (a)+ (HA+ I)ψi(a).

ψ(a) = −S (a)+ (HA+ I)ψ(a),

E(G ) = {(K,L ) ∈ M ×M/K,L ∈ D , K(a) ≤ L (a), for all a ∈ [0,T]}.

Figure 8.   Plot for an automic flight-path generator block.
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The following formula can be used to model the airplane dynamics after appropriate streamlined features,

Each prefix i within the recursive scheme is valid in this instance.
Assume that ρ and σ are the equation’s roots.

and put

For a given speed, a is a function of � and hence ϕ,ψ are functions either of a or of �.
Then, from Eq. (6),

Thus, A and H in Eq. (4) are specified.
Let the function HA+ I : M → M by (HA+ I)(ψi(a)) = HAψi(a)+ Iψi(a) , where I  is the identity 

function from M to M.
Now to prove that the control function is in such a way that the real position φ(a) identical to the S (a) , we 

need to prove that the right side of Eq. (4) is supra-graphical contraction. Consider,

where γ =
∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)−ψi−1(a)
+ 1

∣∣∣∣.

Supra-contraction is satisfies if γ =
∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)−ψi−1(a)
+ 1

∣∣∣∣ < 1 for all i, a . In other words,

(5)φ(a) = φ(a0)+W

a∫

a0

tanϕda = Hϕ(a).

(6)d3ϕ

d�3
+ α2

d2ϕ

d�2
+ α1

dϕ

d�
= β2

d2ψ

d�2
+ β1

dψ

d�
− β0ψ .

p2 + α2p+ α1 = 0,

�{a(�)} ≡ β2
d2ψ

d�2
+ β1

dψ

d�
− β0ψ .

(7)
ϕ{a(�)} = ϕ(a0)+

�∫

�0

eσ�1

�1∫

�0

e−σ�2eρ�2

�2∫

�0

e−ρ�3�{a(�3)}d�3d�2d�1

≡ Aψa.

Gm[(HA+ I)ψi(a), (HA+ I)ψi−1(a)]
= ξ [(HA+ I)ψi(a), (HA+ I)ψi−1(a)]

[
ξ [(HA+ I)ψi(a), (HA+ I)ψi−1(a)] + ω

]

= |(HA+ I)ψi(a)− (HA+ I)ψi−1(a)|
[
|(HA+ I)ψi(a)− (HA+ I)ψi−1(a)| + ω

]

= |HAψi(a)+ ψi(a)−HAψi−1(a)− ψi−1(a)|
[
|HAψi(a)+ ψi(a)−HAψi−1(a)− ψi−1(a)| + ω

]

≤
[[

HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

]
|ψi(a)− ψi−1(a)|

]

×
[[

HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

]
|ψi(a)− ψi−1(a)| + ω

]

≤
∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣
2

|ψi(a)− ψi−1(a)|2

+ ω

∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣|ψi(a)− ψi−1(a)|

≤
∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣|ψi(a)− ψi−1(a)|

×
[∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)

∣∣∣∣|ψi(a)− ψi−1(a)| + ω

]

<

∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣|ψi(a)− ψi−1(a)|[|ψi(a)− ψi−1(a)| + ω]

= γ |ψi(a)− ψi−1(a)|[|ψi(a)− ψi−1(a)| + ω]
= γ ξ(ψi(a),ψi−1(a))[ξ(ψi(a),ψi−1(a))+ ω]
= γGm(ψi(a),ψi−1(a)),

(8)−2 <
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
< 0, for all i, a.
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However, from Eq. (5),

Since, by taking

where m is a positive number.
Then,

From inequality 9 and physical considerations, when ψ(a) increases, ϕ(a) decreases and vice versa. We get

Thus supra-graphical contraction satisfies for

It follows that right side of Eq. (4) satisfies supra-graphical contraction.
Hence the solution is,

Therefore, throughout this range, the necessary ψ(a) algorithm may be developed automatically.
To gain a clearer understanding of m in inequality 10, it will be noted that

The upper limit of 
(
dφ
da

)2
 is set by the limitations on aircraft acceleration, while dϕd� and dψd�  are related through 

Eq. (6), consisting of the aircraft dynamics. As a result, m is associated with identical parameters, and inequal-
ity 11 determines a− a0 for a reasonable value of m.

It has already been demonstrated that provided equality 4 is a supra-graphical contractive mapping, a suitable 
control function is able to be developed automatically. Once this aspect has been accomplished across the range 
a− a0 provided by inequality 11, starting from a point a0 , a different starting point a1 is able to be identified, 
and the procedure continued up to the expected ψ(a) is recognized throughout the complete range. The value 
of γ in inequality 2 determines how quickly the recursive procedure in equality 4 converges. The convergence 
occurs more quickly regardless of the value of γ . This may be observed in inequality 2 and equality 8 that, γ seems 
correlated with m in turn. In fact, γ is the value of

in the expression,

Hence,

HAψi(a)−HAψi−1(a) = W

a∫

a0

(tanϕi − tanϕi−1)da.

(9)
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
=

W

a∫
a0

(tanϕi − tanϕi−1)da

ψi(a)− ψi−1(a)

≥ −Wm(a, a0).

(10)
d

dψ
(tanϕ) ≥ −m,

tanϕi − tanϕi−1 =
ψi∫

ψi−1

d

dψ
(tanϕ)dψ

≥ −m(ψi ,ψi−1).

−2 <
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
< 0.

(11)a− a0 <
2

Wm
.

S (a) = HAψ(a) = φ(a).

(12)

d(tanϕ)

dψ
= sec2ϕ

dϕ

dψ

= (1+ tan2ϕ)
dϕ

d�

d�

dψ

=
[
1+

(dφ
da

)2][ dϕ/d�
dψ/d�

]
.

∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣,

∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣|ψi(a)− ψi−1(a)|.
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and the closer HAψi(a)−HAψi−1(a)

ψi(a)−ψi−1(a)
 is to -1, the smaller is γ . In that case, Wm(a− a0) in inequality 11 ideally, 

be +1 or near to it.
Figure 8 is a automic flight-path generator block diagram. Both of the parameters range a− a0 and the rate 

of convergence can be adjusted for one another. It should be emphasized that the need for a graphical supra-
contractive mapping determined hereunder depends on the existence of the terrain function, S (a) . As a result, 
the necessary control function is able to be generated for many types of terrain using the identical framework 
and hardware. Due to the “ tanϕ ” in Eq. (5), the framework that is taken into consideration in relation to the 
terrain adhering to is non-linear. As previously established, this is not something that restricts the usefulness 
of graphical supra-contractive mapping. It is not stated that the aforementioned approach is the only one that 
may be used to resolve the difficulty or that the terrain-following problem has been fully resolved. The graphical 
supra-contractive mapping, nevertheless, has already been demonstrated to be useful to the automatic process 
of creating control functions in both nonlinear and linear systems.

Whenever the hardware responds quickly enough across the appropriate range, a method similar to that in 
Figure 8 could be utilized in an aircraft. It might additionally be employed in structure, modeling, and training 
studies. The terrain function, S (a) , unambiguously impacts the control function, ψ(a) , so whenever the latter 
shifts, the former is automatically updated. The control system can be called adaptive in this sense.

Applying graphical structures in control system optimization
Take into account the following equations for the linear, time-varying system with state vector a(�) of dimension 
n, output vector �(�) of dimension r and, control vector z(�) of dimension m:

P (�) is a matrix which constitutes n× n order, Q (�) is a matrix which constitutes n×m order, �(�) is a matrix 
which constitutes r × n order, and T (�) is a matrix which constitutes r ×m order since all the matrices have 
compatible properties. Controlling the system to produce an outcome that is reasonably near to the intended 
result �d(�) is the goal. The method of estimation for error e(�) is as outlined below:

Control of energy must be restrained in order to lower the cost functional F while pursuing the goal, which 
included

First consider the potential of impulsive functions in γ (�) for the purpose of foreseeing the need for restricting 
the terminal state and take

where, B (�) be piecewise continuous function. X (�) ’s components either correspond to impulse functions 
θijψ(�− T) or zeros. When Eq. (17) is used in place of Eq. (16), the cost function yields,

The variables corresponding to θij make up the data elements of the constant matrix X in this instance. Subse-
quently, it is important to note that the Eq. (16) consequently incorporates the final outcome of control system 
together with the minimal energy issue-Balakrishna et al.,23 looked into this. The primary component of Eq. (18) 
implicitly takes into consideration the weighting of a terminal state as necessary. The integral Eq. (18), which 
uses the function z(�) , must now be constrained to a function space that guarantees the control energy’s exist-
ence. With regard to the sake of argument, it is taken into account that z(�) is an element of the m-dimensional 
Hilbert space Hm that is characterized by the product space {L2(�0,T)}m of square-integrable functions in the 
range [�0,T] that includes the norm of a parameter z(�) with the representation of ||z(�)|| can be determined by 
the inner product as follows:

γ ≤
∣∣∣∣
HAψi(a)−HAψi−1(a)

ψi(a)− ψi−1(a)
+ 1

∣∣∣∣,

(13)ȧ(�) = P (�)a(�)+ Q (�)z(�)

(14)�(�) = R (�)a(�)+T (�)z(�).

(15)e(�) = �d(�)− �(�).

(16)F =
T∫

�0

[e′(�){γ (�)e(�)} + z
′(�){A (�)z(�)}]d�.

(17)γ (�) = B (�)+X (�),

(18)F = e′(T){X e(T)} +
T∫

�0

[e′(�){B (�)e(�)} + z
′(�){A (�)z(�)}]d�.

(19)||z(�)|| =
�
�z(�), z(�)� =

������





T�

�0

z′(�)z(�)d�




.
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The notion of “ �κ,Y� = �Y ,κ� ” refers to the inner product of two separate components κ and Y in Hm which 
can be described as follows:

We need to ensure that e(�) is square-integrable because we have limited our study to functions z(�) in Hm and 
primarily for the reason we need the whole integral under Eq. (18) to exist. In particular, we insist whether e(�) 
belongs to the closed range [�0,T] of square-integrable functions in the r-dimensional Hilbert space Hr . The 
procedures suggested under Eqs. (13) and (14) need to transform functions from z(�) in Hm through functions 
from e(�) in Hr with the aim to satisfy this criterion. To accomplish this, as per emphasized in24 and provides 
the general solution to Eq. (13).

where �(�, �0) be a classical transition matrix which gratifies

Thus, from Eqs. (14), (15) and (21), we obtain

Under preconceived notions, the primary component is automatically in Hr . We determine the second term’s 
norm to determine its position and the outcomes that follow:

where γi are the eigenvalues of S ′(�),S (�) . Therefore,

and provided that

where S z is in Hr . By replacing S (�) by R (�)�(�, �0) and assuming that a(�0) = ̺ < ∞ , as a result, we have 
that R (�)�(�, �0)a(�0) is in Hr.

After replacing R (�)�(�, ς)Q (ς) with H(�, ς) , it is demonstrated that the following condition must be 
met in order to allow the integral operator to map a component of Hm into a component of Hr,

where {sij} are the components of H(�, ς) . Considering that scenario , we can rewrite Eq. (23) as

during which an operator mapping is L . Furthermore, the element z ∈ Hm to a specific a ∈ Hr where it is 
supplied by

where the integral of the operator H has been designated with

It is now expedient to let

In the current instance, the variation between the output that is wanted and the output generated by the initial 
conditions is represented by ℘(�) . The cost function Eq. (16) now states as follows:

(20)�κ,Y� =
T∫

�0

Y ′
κd� =

T∫

�0

κ
′Yd�.

(21)a(�) = �(�, �0)a(�0)+
�∫

�0

�(�, ς)Q (ς)z(ς)dς ,

(22)�(�, �0) = P (�)�(�, �0).

(23)e(�) = �d(�)−S (�)z(�)−R (�)




�(�, �0)a(�0)+

��

�0

�(�, ς)Q (ς)z(ς)dς




.

||S z||2 = �S z,S z� ≤ maxisup�∈[�,T]γi(�)�z, z�,

(24)||S z||2 ≤ maxisup�∈[�,T]γi(�)||z||2,

maxisup�∈[�,T]γi(�) < ∞,

������





m�

i=1

r�

j=1

T�

�0

T�

ς

s2ij(�, ς)d�dς





< ∞,

(25)e(�) = �d(�)−R (�)�(�, �0)a(�0)− Lz,

(26)L = H +S (�),

H(z) =
�∫

�0

R (�)�(�, ς)Q (ς)z(ς)dς .

(27)�d(�)−R (�)�(�, �0)a(�0) = ℘(�).
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Since the γ must be symmetric for the standard quadratic form, γ ′ = γ , and therefore γ corresponds to the 
adjoint of γ ′ , namely γ ⋆ , this has an outcome of

where, L⋆ is the adjoint of L . In other terms,

where

In order to find the optimum z , defined z⋆ , so that take z = z
⋆ + µ . Thus, (L⋆γL+A ) is self-adjoint. As a 

result, from Eq. (29) we get,

The last term in Eq. (31) is nonnegative for any µ since the operator (L⋆γL+A ) additionally happens to be 
positive definite. As a result, in order for F (z⋆) to be less than F (z) for any given µ , the following conditions 
must be met:

The optimizing equation, additionally referred to as Eq. (32), specifies the optimal control z⋆ . Considering a quad-
ratic cost function, A must be positive definite, thus it possesses a bounded inverse, A−1 . As a result, we have,

The task at hand is to solve the integral equation for z⋆.
In order to get above, let M be the set of all functions z(�) defined on the interval [�0,T] as explained in above 

scenario. Establish the graph G and G ⋆ by G = G
⋆, V (G ) = M and

Define Gm : M ×M → R by

with ϑ(a,b) = ea+b , where ϑ : M ×M → [1,∞) clearly (M,Gm) is an extended graphical suprametric space.
The optimization equation 33 is to be solved by application of the Theorem 13.
Let us define the operator U : M → M by

We will prove that there exist a unique solution for Eq. (33) by using the Theorem 13 if the following conditions 
satisfies: 

1.	

2.	 Construct the iteration scheme as below: 

(28)
F = �e, γ e� + �z,A z�

= �(℘ − Lz), γ (℘ − Lz)� + �z,A z�
= �℘, γ℘� − �A z, γ℘� − �℘, γA z� + �A z, γA z� + �z,A z�.

(29)F = �℘, γ℘� + �(L⋆γL+A )z, z� − 2�L⋆γ℘, z�,

(30)L⋆e(�) = S
′(�)e(�)+

T∫

�

H
′(ρ, �)e(ρ)dρ,

H
′(�, ς) = {R (�)�(�, ς)Q (ς)}′.

(31)F (z) = F (z⋆)+ 2�(L⋆γL+A )z⋆,µ� − 2�L⋆γ℘,µ� + �(L⋆γL+A )µ,µ�.

(32)(L⋆γL+A )z⋆ = L⋆γ℘.

(33)z
⋆ = A

−1L⋆γ℘ −A
−1L⋆γLz⋆.

E = {(a,b) ∈ M ×M/a(�) ≤ b(�)}.

Gm(a,b) =
{
0, if a = b

|a− b|2, if a �= b.

U z = A
−1L⋆γ℘ −A

−1L⋆γLz.

� =

������




ψm

T�

�0

T�

ς

r�

i=1

m�

j=1

s2ij(�, ς)d�dς





+
√
̟m

+

������




φm

T�

�0

T�

ς

r�

i=1

m�

j=1

t2ij(�, ς)d�dς





+

������




ψm

T�

�0

T�

�0

r�

i=1

m�

j=1

q2ij(�, ς)d�dς




.
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3.	 |A−1L⋆γL| ≤ �.

Consider,

which yields that

Thus, all of the requirements of Theorem 13 are met, and as a result, U has a unique fixed-point, leading to the 
unique solution that fulfills Eq. (33).

Conclusion
The notion of graphical structures in extended suprametric space is presented in this article, along with a 
contractive mapping result for such a space. In adaptive systems, a recursive algorithm for graphical notions has 
been utilized to construct a desired output function iteratively after defining particular requirements to ensure the 
existence of the solution through the use of supra-graphical contractive mapping. In light of this, existence proofs 
are very important in practice, particularly when dealing with nonlinear problems like adaptive and optimal 
control systems. For futuristic research, a similar method can be applied to autonomous vehicle driving control 
systems and an optimal control problem for different mathematical models in the context of graphical notions.
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