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A novel preliminary metabolomic 
panel for IHD diagnostics 
and pathogenesis
S. S. Markin 1*, E. A. Ponomarenko 1, Yu. A. Romashova 1, T. O. Pleshakova 1, 
S. V. Ivanov 1, F. N. Bedretdinov 1, S. L. Konstantinov 2, A. A. Nizov 3, A. G. Koledinskii 4, 
A. I. Girivenko 3, K. M. Shestakova 6, P. A. Markin 6, N. E. Moskaleva 7, M. V. Kozhevnikova 5, 
Zh. Yu. Chefranova 2 & S. A. Appolonova 6,8

Cardiovascular disease (CVD) represents one of the main causes of mortality worldwide and nearly a 
half of it is related to ischemic heart disease (IHD). The article represents a comprehensive study on 
the diagnostics of IHD through the targeted metabolomic profiling and machine learning techniques. 
A total of 112 subjects were enrolled in the study, consisting of 76 IHD patients and 36 non-CVD 
subjects. Metabolomic profiling was conducted, involving the quantitative analysis of 87 endogenous 
metabolites in plasma. A novel regression method of age-adjustment correction of metabolomics 
data was developed. We identified 36 significantly changed metabolites which included increased 
cystathionine and dimethylglycine and the decreased ADMA and arginine. Tryptophan catabolism 
pathways showed significant alterations with increased levels of serotonin, intermediates of the 
kynurenine pathway and decreased intermediates of indole pathway. Amino acid profiles indicated 
elevated branched-chain amino acids and increased amino acid ratios. Short-chain acylcarnitines were 
reduced, while long-chain acylcarnitines were elevated. Based on these metabolites data, machine 
learning algorithms: logistic regression, support vector machine, decision trees, random forest, and 
gradient boosting, were used for IHD diagnostic models. Random forest demonstrated the highest 
accuracy with an AUC of 0.98. The metabolites Norepinephrine; Xanthurenic acid; Anthranilic acid; 
Serotonin; C6-DC; C14-OH; C16; C16-OH; GSG; Phenylalanine and Methionine were found to be 
significant and may serve as a novel preliminary panel for IHD diagnostics. Further studies are needed 
to confirm these findings.

Cardiovascular disease (CVD) represents one of the leading causes of mortality  worldwide1. Nearly half of the 
global cases of CVD are related to ischemic heart disease (IHD)2. IHD is a complex disorder, presumably resulting 
from metabolic dysfunction affected by different environmental and genetic  impacts3. However, in many cases, 
IHD may be asymptomatic and occasionally remaining invisible until the onset of acute or irreversible stages of 
the  disease4–7. To date, there are a number of clinically significant metabolic risk factors for the development of 
IHD including hypertension, type 2 diabetes mellitus and dyslipidemia. However, these factors do not always 
have a high degree of specificity and may not indicate the presence of pathology in a timely manner. Therefore, 
it is necessary to create more accurate and reliable approaches to predict the IHD and identify its hidden forms. 
It may be performed through modern in-depth diagnostic methods and comprehensive assessment of patient’s 
condition, particularly in the light of personalized medicine.

Metabolomic profiling represents a powerful tool for comprehensive analysis of small molecules in the con-
sidered biological fluids that may provide new biochemical insights into the IHD progression and characterize 
novel differences in the signaling  pathways8. Unlike other OMICs technologies, metabolomic profile reflects the 
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physiological state of the body at the current moment, therefore underlining the phenotypic changes in the  body9. 
However, due to the nonlinearity of metabolomic data, as well as high interindividual variability, analysis of the 
results of metabolomic profiling requires the use of progressive bioinformatics methods of analysis.

In recent years, artificial intelligence approaches, in particular machine learning (ML) methods, have attracted 
special attention in  metabolomics10–12. ML methods are mathematical functions applied in the optimization 
process using input and output data. In other words, the ML model makes a prediction based on associations 
between the values of its constituent features. The use of supervised ML classification methods makes it possible 
to build predictive models based on the training data set, which allows further stratifying patients with respect 
to the considered diseases. For today, there is a number of works focused on the development of ML-based diag-
nostic models. These models may be used in future for reliable patient stratification and timely diagnosis of IHD.

Thus, the aim of the study was to identify the key metabolites and metabolic pathways of IHD and to create 
on its basis the pilot ML-model for IHD diagnostics and pathogenesis.

Materials and methods
Study design
Inclusion and exclusion criteria of the study are presented in the Table 1.

In total 137 patients with IHD were screened, of whom 84 patients with IHD were initially enrolled in the 
study. 53 patients had exclusion criteria, the most common of them were angina pectoris functional class I 
(n = 12), II (n = 25) or IV (n = 11), Type 1 DM (n = 5).

62 non-CVD subjects were screened, of whom 43 subjects were enrolled in the study, other 19 subjects had 
IHD.

5 patients from IHD group and 4 subjects from non-CVD group were excluded from the study due to diet 
violation (energy drinks consumption), 3 patients from IHD group and 3 subjects from non-CVD group were 
excluded due to alcohol consumption.

Patients diagnosed with IHD had angina pectoris functional class III according to Canadian Cardiovascular 
Society classification and a combined dyslipidemia characterized by elevated triglycerides and decreased HDL 
 cholesterol13. IHD patients used organic nitrates, β-blockers, calcium channel blockers, ACE inhibitors, ARBs 
and statins.

The non-CVD group consisted of adults without any clinical or laboratory signs of cardio-vascular pathology 
and the risk factors of IHD.

Information on demographics, medical history, biochemical analysis and patient’s treatment was provided 
from the hospital database.

Ethical considerations
All conducted experiments were approved by the Ethics Committee of Belgorod Regional Clinical Hospital of St. 
Joseph, Belgorod, Russia (protocol #10 from 16 of November, 2015) in conformity with the ethical principles for 
medical research involving humans stated in the Declaration of Helsinki. Written informed consent was signed 
by all the participants before the beginning of the study.

Anthropometric evaluation
The anthropometric evaluation included measurements of weight, height and body mass index (BMI).

Biochemical analysis
Whole blood samples were collected into ethylenediaminetetraacetic acid (EDTA) tubes, immediately centrifuged 
(2000 rpm, 4 °C) during 20 min to receive plasma and stored at − 80 °C. Following biochemical evaluation of 
the samples included measurements of total cholesterol, triglycerides, high density lipoproteins (HDL), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, glucose, fibrinogen, international nor-
malised ratio (INR), activated partial thromboplastin time (APTT). Extra plasma aliquots were utilized for the 
metabolic analysis in the Laboratory of pharmacokinetics and metabolome analysis.

Chemicals and reagents
Standard solutions for metabolomic profiling, methanol, formic acid, bovine serum albumin (BSA) were received 
from Sigma-Aldrich (USA). Acetonitrile was purchased from Chromasolv® (Sigma-Aldrich Chemie GmbH, 

Table 1.  Inclusion and exclusion criteria.

Inclusion criteria
Men and women aged 18 years and older
Angina pectoris functional class III according to Canadian Cardiovascular Society classification
Availability of signed and dated informed consent of the patient to participate in the study

Exclusion criteria

Angina pectoris functional class I, II or IV
Type 1 Diabetes mellitus
Acetaminophen, all vitamins, minerals, amino acids, dietary supplements, including sports drinks and energy drinks, 
creatinine, alpha-ketoglutarate, malic acid, citric acid, maleic acid, orotic acid consumption during 4 days before 
blood sampling. Sweeteners (aspartame, among others), monosodium glutamate and alcohol intake 24 h before blood 
sampling
Any other diseases or conditions that, in the opinion of the investigator, may distort the results of the study and limit 
the patient’s participation in the study
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Buchs, Switzerland). Ultrapure water was received through the Millipore Milli-Q purification system (Millipore 
Corporation, Billerica, MA). Isotopically-labeled standard solutions for metabolic profiling Amino Acids and 
Acylcarnitines were received from MassChrom Non Derivatized 57000 Kit (Chromsystems, Germany), whereas 
isotope-labeled standard solutions for tryptophan catabolites profiling were from Toronto Research Chemicals 
(USA).

Metabolomic profiling
Targeted metabolomic profiling of the samples was performed in accordance to the method presented  previously14 
and included quantitative analysis of 87 endogenous metabolites in the patient’s plasma. Briefly, sample prepara-
tion of amino acids, intermediates of Arginine and Methionine metabolism consisted of protein precipitation 
with following instrumental analysis on Waters TQ-S-micro triple quadrupole mass spectrometer (Waters Corp, 
Milford, CT, USA). Preparation of samples for acylcarnitine and tryptophan catabolite profiling consisted of 
liquid–liquid extraction followed by LC–MS/MS analysis. The applied methods were validated in accordance 
with the guidelines for bioanalytical method validation and included assessment of selectivity, linearity, precision 
and accuracy, recovery, matrix effect, and stability of the methods.

Statistical analysis
To exclude the influence of age on the results of the metabolomic profiling we performed its correction using the 
regression analysis modeling (Python)15. The algorithm of the adjustment was following:

• Select the group of non-CVD subjects and divide it into 5-year stratum.
• Calculate median values of each metabolite in each stratum.
• Based on the selected median values in separated stratums build linear regression model and calculate regres-

sion coefficients.
• According to the received regression results calculate delta in concentration changes associated with age.
• Extract the calculated delta from each absolute concentration.

All further statistical analyses for characterization of biochemical and metabolic profiling measurements 
were performed using the Python Stats package. Variable distribution was assessed using the Shapiro–Wilk test. 
According to the variable distribution, the analysis of variance was performed using parametric student t-test 
and ANOVA test or using non-parametric Mann–Whitney U test. The p-value less than 0.05 was considered 
as significant.

Development of the diagnostic model using machine learning algorithms
Further, to elucidate the best diagnostic model of IHD we applied and trained five machine learning algorithms, 
including: logistic regression (LR)16, support vector machine (SVM)17, decision trees (DT)18, random forest (RF)19 
and gradient boosting (GB)20. LR and SVM with linear kernel relate to the class of linear classifiers that serves 
for categorizing a set of data point into a discrete class according to the linear combination of its explanatory 
variables. At the same time, DT, RF and GB are related to the non-linear class of algorithms. In DT classification 
procedure starts at the tree’s root node, where it assesses the attribute specified by this node, then moving down 
the tree branch corresponding to the attribute’s value, as shown in the above figure. This procedure is repeated for 
each subset in a recursive partitioning manner. The RF and GB models are ensemble ML methods based on deci-
sion trees algorithms. In RF the predictions are performed by calculation the average of multiple trees’ output. As 
the number of trees increases, so does the precision of the  output21. Contrary, GB algorithm represents an addi-
tive model which determines the impact of a poor learner by means of the gradient descent optimization. Thus, 
in this case the impact of each tree is assessed through the decrease of the overall error of the strong  learner22.

Assessment of ML algorithms performance was performed using quality assessment metrics. For this purpose, 
we calculated parameters of confusion matrix, including true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN) for actual and predicted data, based on which we further evaluated following 
metrics: area under the curve (AUC), accuracy, f1-score and recall.

Results
The presented study was conducted in accordance with the flowchart presented in Fig. 1.

Baseline characteristics of the IHD patients and non-CVD subjects
Among the considered subjects, the IHD patients were older than subjects from the non-CVD group and were 
characterized by higher body weight and higher BMI values.

The lipid analysis showed that total cholesterol was in normal range, but high triglycerides and low HDL 
cholesterol were observed that are characteristics of combined dyslipidemia.

The measurements of ALT, AST and glucose were in normal range. The creatinine level was increased in 
IHD group vs the non-CVD nevertheless it was in normal range. The coagulogram showed the normal range of 
fibrinogen, INR and APTT in both groups.

More information concerning the characteristics of patients is represented in Table 2.

Univariate analysis of the concentration levels of the metabolites
Due to the relationship between the metabolomic profiling and age, as well as the large difference in the age char-
acteristics of the proposed groups of patients, we adjusted the results of the metabolomic profile using regression 
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models. Conversion factors are presented in the Table S1. Further, identification of the metabolites that signifi-
cantly altered among the considered groups of patients was performed using parametric and non-parametric 
comparison tests. Table 3 summarizes information on the significantly changed metabolites including class of 
the metabolite, direction of change and adjusted p-value, AUC score and Younden index.

The above given results showed that:

• Cystathionine and dimethylglycine (DMG) were significantly increased in IHD patients. At the same time, 
NO/urea cycle intermediates (ADMA, arginine and citrulline), as well as methionine sulfoxide and norepi-
nephrine were significantly decreased.

• Intermediates of tryptophan catabolism including serotonin, anthranilic acid, kynurenic acid and xanthurenic 
acid were significantly increased, whereas tryptophan, indole-3-carboxaldehyde, indole-3-propionic acid and 
indole-3-butyric acid significantly decreased.

• Amino acids phenylalanine, branched-chain amino acids (BCAA) (isoleucine, leucine) and 3-aminoisobu-
tyric acid were significantly elevated in the IHD patients. At the same time, aspartic acid, asparagine, tyros-
ine, glycine, lysine, proline, histidine and threonine were significantly decreased. Moreover, Fisher ratio 
((Val + Ile + Leu)/(Phe + Tyr)) and GSG ratio (Glu/(Ser + Gly)) were significantly elevated in the IHD patients.

• Levels of short chain acylcarnitines, including C0, C3 and C5-DC were significantly decreased in IHD 
patients, whereas C6-DC and hydroxylated long-chain acylcarnitines (C14-OH, C16-1-OH and C16-OH) 
were significantly increased.

Graphical interpretation of results after min–max normalization are presented in Fig. 2A–D (A—Tryptophan 
metabolism intermediates; B—acylcarnitine profiling metabolites; C—cystathionine, betaine and arginine path-
way intermediates; D—amino acid profiling metabolites).

On the basis of association of significantly changed metabolites are known metabolic pathways a bubble plot 
was created (Fig. 3).

Figure 1.  Flowchart on the processing of the metabolic profiles of non-CVD patients and patients with IHD.
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Development of the ML models based on the results of the metabolomic profiling
First of all, for a general overview of the received data and outlier exclusion, we performed a principal compo-
nent analysis (PCA) (Supplementary Material Fig. S1). It has revealed that groups may be partly separated from 
each other.

Further, to identify the most appropriate prediction machine learning (ML) based model, we compared dif-
ferent supervised ML algorithms, including LR, SVM, DT, RF, and GB (Table 4). Each model was built based 
on the metabolic biomarker features using a cross-validated Python Gridsearch approach to identify of the best 
hyperparameters. The tuned hyperparameters of the ML models are presented in Supplementary Table S2. To 
determine the most precise diagnostic model of IHD there were applied common quality assessment metrics: 
sensitivity, specificity, AUC and confusion matrix together with the cross-validation method in splitting the 
working dataset. Figure 4 represents the AUC ROC of the developed ML models. The RF algorithm showed the 
best quality compared to the other used methods.

Discussion
Univariate changes of the metabolomic profiling in IHD patients in comparison with non-CVD 
subjects
To the best of our knowledge it is the first complex investigation of the metabolomic profile and ML model for 
IHD, which comprises the main pathways of its diagnostics and pathogenesis.

In accordance with the received results, methionine metabolism was significantly affected during the CVD 
progression, showing increased levels of cystathionine. Elevated cystathionine plasma levels are related to 
endothelial dysfunction characterized by reduced nitric oxide-mediated vasodilation of arteries, therefore causing 
atherosclerotic  lesions23. Besides this, cystathionine also affects glutathione production, which causes oxidative 
stress, thus inactivating nitric oxide production.

On the other hand, there was a significant decrease in the concentration of methionine sulfoxide—methio-
nine derivative. Similarly to cystathionine, increased levels of methionine sulfoxide possess oxidative stress in 
the  body24,25.

DMG and glycine were found to be significantly decreased in the IHD group. The glycine is known as a bio-
marker of cardiovascular  dysregulation26, and its decreased level in IHD patients was expected, but a significant 
decrease in DMG level was firstly found and was unexpected.

Short-chain acylcarnitines (C0, C3, C5-DC) were significantly decreased in IHD group vs non-CVD group. 
Plasma concentrations of these acylcarnitines are known to reflect the gut microbiota and amino acid metabolism. 
C3 and C5 acylcarnitines are known as direct products of BCAA  catabolism27, BCAA (leucine and isoleucine) 
were significantly increased in the IHD group. Hydroxylated long-chain acylcarnitines (C14-OH, C16-1-OH 
and C16-OH) were significantly increased in the IHD group. In general, long-chain acylcarnitines are known 
as markers of cardiovascular  disorders28–30. Dysregulation in long chain acylcarnitines is usually associated 

Table 2.  Baseline characteristics of the IHD patients and non-CVD subjects. General and biochemical 
characteristics of the participants including n (%) or median and interquartile range [Q1; Q3] in the 
considered groups and corresponding p-values, characterizing statistically significant differences between 
groups.

Variable Non-CVD group (n = 36) IHD group (n = 76) p-value

Gender, m/f (%) 29/7 (80/20) 65/11 (86/14)  < 0.04

Age (years) 34 [26–44] 64 [58–71]  < 0.0001

Height (m) 1.67 [1.62–1.72] 1.69 [1.64–1.75] 0.21

Weight (kg) 69.0 [59.0–81.0] 84.4 [70.0–89.0]  < 0.0001

BMI (kg/m2) 24.6 [20.7–27.4] 29.5 [25.6–31.63]  < 0.0001

Heart rate/min 62.15 ± 10.83 65.81 ± 9.24 0.51

Systolic BP (mm Hg) 119.5 ± 5.6 120.3 ± 6.9 0.82

Diastolic BP (mm Hg) 75.9 ± 6.2 74.7 ± 5.9 0.78

Total cholesterol (mmol/L) 5.27 [4.8–5.9] 5.55 [4.50–6.20] 0.48

HDL cholesterol (mmol/L) 1.51 [1.22–1.78] 1.08 [0.89–1.19]  < 0.001

LDL cholesterol (mmol/L) 3.3 [2.7–4.0] 3.3 [2.9–4.1] 0.61

VLDL cholesterol (mmol/L) 0.5 [0.3–0.7] 1.0 [0.9–1.2] 0.01

Triglycerides (mmol/L) 1.10 [0.76–1.28] 1.73 [0.96–2.18] < 0.01

ALT (u/L) 23.0 [20.0–24.0] 29.0 [20.0–34.5] 0.31

AST (u/L) 25.0 [23.0–27.0] 36.0 [20.0–36.0] 0.66

Creatinine (µmol/L) 89.1 [79.4–97.2] 100.5 [85.5–111.6] 0.01

Glucose (mmol/L) 4.88 [4.59–5.30] 5.65 [4.70–5.88]  < 0.01

Fibrinogen (g/L) 2.25 [2.0–2.30]] 3.28 [2.53–3.74]  < 0.05

INR 1.09 [1.05–1.14] 1.23 [1.11–1.28]  < 0.05

APTT (s) 27.2 [25.5–28.6] 31.5 [27.0–34.8] 0.19
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with mitochondrial fatty acid oxidation disorders. However, little is known about the function of hydroxylated 
acylcarnitines in the IHD pathogenesis.

Arginine is the primary precursor for nitric oxide (NO) production in the vascular endothelium. Therefore, 
decreased arginine levels and its primary metabolite—ADMA—in IHD patients may indicate the lack of NO 
production. Additionally, there were also found significantly decreased levels of citrulline—endogenous metabo-
lite, that is connected to arginine via the urea cycle being its end-product.

Intermediates of aspartate metabolism—aspartate and asparagine were significantly decreased in IHD 
patients. Asparagine is known as a glucogenic amino acid. Previously, asparagine was shown to be associated 
with high risks of cardiometabolic  disease31. Along the aspartate metabolic pathway, asparagine is converted 
to aspartate and further through transamination to glutamate. Glutamate, glycine (also significantly decreased 
in IHD group) and cysteine represent the basis for the formation of tripeptide glutathione, which was also 

Table 3.  Significant metabolites with the consequent direction of their concentration change between the 
non-CVD and IHD groups. Metabolites with p-value < 0.05 and AUC score > 0.65 were selected as meaningful.

Metabolite p-value Direction AUC score Younden index

Acylcarnitine profiling

 Hydroxyhexadecanoylcarnitine  < 0.0001 Increased 0.84 1.69

 Hydroxyhexadecenoylcarnitine  < 0.05 Increased 0.64 1.68

 Hydroxytetradecanoylcarnitine  < 0.001 Increased 0.73 1.68

 Adipoylcarnitine  < 0.01 Increased 0.66 1.68

 Glutarylcarnitne  < 0.001 Decreased 0.70 1.71

 Propionylcarnitine  < 0.05 Decreased 0.63 1.78

 Carnitine  < 0.0001 Decreased 0.75 1.98

Tryptophan metabolism pathway

 Tryptophan  < 0.05 Decreased 0.63 1.86

 Serotonin  < 0.0001 Increased 0.75 1.93

 Indole-3-propionic acid  < 0.001 Decreased 0.72 1.84

 Indole-3-butyric acid  < 0.01 Decreased 0.68 1.69

 Indole-3-carboxaldehyde  < 0.05 Decreased 0.62 1.70

 Kynurenic acid  < 0.01 Increased 0.67 1.69

 Anthranilic acid  < 0.001 Increased 0.73 1.68

 Xanthurenic acid  < 0.05 Increased 0.62 1.69

NO/urea cycle

 Asymmetric dimethylarginine  < 0.01 Decreased 0.70 1.83

 Arginine  < 0.01 Decreased 0.68 1.91

 Citrulline  < 0.01 Decreased 0.67 1.92

Amino acid profiling

 Isoleucine  < 0.01 Increased 0.68 1.95

 Threonine  < 0.0001 Decreased 0.82 1.99

 Histidine  < 0.0001 Decreased 0.80 1.98

 Phenylalanine  < 0.0001 Increased 0.79 1.99

 Proline  < 0.0001 Decreased 0.74 1.98

 Lysine  < 0.001 Decreased 0.72 1.96

 Glycine  < 0.01 Decreased 0.68 1.88

 Leucine  < 0.05 Increased 0.65 1.95

 Aspartic acid  < 0.05 Decreased 0.62 1.69

 Asparagine  < 0.01 Decreased 0.67 1.83

 3-Aminoisobutyric acid  < 0.05 Increased 0.64 1.96

 Tyrosine  < 0.05 Decreased 0.62 1.82

Cystathionine cycle

 Cystathionine  < 0.05 Up 0.64 1.73

 Methionine sulfoxide  < 0.01 Decreased 0.68 1.80

 Norepinephrine  < 0.0001 Decreased 0.76 1.69

 Dimethylglycine  < 0.01 Increased 0.66 1.93

Significantly changed ratios

 Fischer ratio  < 0.05 Increased 0.65 1.92

 GSG ratio  < 0.05 Increased 0.63 1.92
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decreased. Glutathione is one of the major antioxidant in the body and its decreased level plays the main role in 
the atheroprogression in the smooth muscle and the endothelial  cells32.

Figure 2.  The box-plots of the significantly changed metabolites of: (A) tryptophan catabolism pathway; 
(B) acylcarnitine profiling; (C) cystathionine, betaine and arginine profiling; (D) amino acid profiling. The 
statistically significant metabolites were selected using parametric Student t-test (for normally distributed 
values) or equivalent non-parametric Mann–Whitney test (p < 0.05).
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Figure 3.  Bubble plot of the significantly changed metabolic pathways for IHD patients compared to the 
non-CVD subjects. Each bubble represents the identified significantly changed metabolite, whereas its color 
indicates the involvement in the corresponding metabolic pathway, and its size corresponds to the magnitude of 
its p-value (the size of the bubble positively correlates with the p-value magnitude). The position of each bubble 
characterizes the value of log2FC between its concentration in IHD patients and subjects without CVD.

Table 4.  The list of the applied ML-algorithms and corresponded quality metrics (confusion matrix, 
sensitivity, specificity, accuracy, AUC ROC).

ML algorithms
Confusion matrix (TP, FP, 
FN, TN) Sensitivity Specificity Accuracy AUC ROC

Logistic regression
28 8

0.82 0.89 0.87 0.94
6 66

SVM
26 4

0.76 0.96 0.89 0.96
8 70

Decision trees
24 10

0.71 0.86 0.82 0.86
10 64

Random forest
26 0

0.76 1.00 0.93 0.98
8 74

Gradient boosting
23 4

0.67 0.95 0.86 0.93
11 70

Figure 4.  AUC ROC analysis of the applied machine learning methods. Random Forest model represents the 
best diagnostic accuracy.
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Amino acid ratios (Fisher and GSG) were increased in IHD group. The Fisher ratio represents the sum of 
BCAA divided by the sum of aromatic amino acids (Tyr, Phe). Its elevated levels were previously found in people 
with insulin resistance and pre-diabetes33. The GSG ratio contains amino acids involved in glutathione synthe-
sis—the glutamine divided by the sum of serine and glycine.

Tryptophan catabolism consists of three main pathways: kynurenine, serotonin, and  indole34. In the presented 
study, whereas tryptophan itself was significantly decreased in the IHD group, the kynurenine and serotonin 
pathways were significantly increased. The kynurenine pathway (KP) represents the major degradation route 
of tryptophan catabolism. Recently, plenty of studies indicated an association of the KP with the progression of 
CVD, which may be explained by its pathogenetic involvement in cardiovascular risk factors, including hyperten-
sion, diabetes mellitus, dyslipidemia, and obesity, as well as in vascular inflammation and  atherosclerosis35. The 
presented study identified significant increased levels of three intermediates of KP—anthranilic acid, kynurenic 
acid, and xanthurenic acid.

Serotonin was significantly increased. Serotonin is a potent vasoconstrictor and enhances the hypertensive 
effects of several vasoconstrictors, such as angiotensin and  endothelin36. In the previous studies, serotonin was 
found to be increased in patients with primary hypertension and certain types of secondary  hypertension37,38.

In contrast to increased serotonin level, we found that intermediates of the indole tryptophan catabolic path-
way, consisting of indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxaldehyde, were decreased 
in IHD patients. These metabolites are presumably generated through the gut microbiota’s direct or indirect 
 metabolism39,40.

Figure 5 summarizes the scheme of the significantly altered metabolic pathways associated with IHD.

Figure 5.  Significantly changed metabolites and metabolic pathways in the IHD pathogenesis and diagnostics.
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ML model
The introduction of machine learning methods to clinical diagnostics represents a promising healthcare 
approach. In the presented study, to find out the best model for IHD diagnostics, we compared five supervised 
ML algorithms, among which the best diagnostic accuracy was shown by the random forest model with an AUC 
value equal to 0.98.

However, it should be mentioned that all applied algorithms except for the decision trees model provided 
slightly the same prediction quality. In this regard, we analyzed and compared the utilized in each model set of 
metabolites to elucidate those whose concentration level provided the highest impact on the diagnostics of IHD 
patients (Table S3). Figure 6 represents features utilized in each ML method, having p-value < 0.05 and AUC 
score > 0.65.

Based on this finding, we may conclude that metabolites Norepinephrine, Xanthurenic acid, Anthranilic 
acid, Serotonin, C6-DC, C14-OH, C16, C16-OH, GSG, Phenylalanine, and Methionine were found significant 
in most of the ML models. So, each of the ML model (RF; GB; SVH; LR) can be used separately as the prelimi-
nary diagnostic panel in patients with IHD. We hypothesize that these metabolites and ML model can be used 
for screening of IHD.

Advantages and limitations of the study
The main advantage of the study is that the presented approach provides new insights into the development of 
IHD from the metabolic point of view and the selected metabolic panel may be applied in the diagnostics of 
IHD in clinical practice.

Limitations of this study must be addressed. We acknowledge that a larger cohort studies are recommended 
which would confirm the presented findings. At the same time, we identified unexpected changes in concentra-
tion levels of several endogenous metabolites in IHD patients’ compared to non-CVD subjects, that were previ-
ously unknown or disagreed with already published data.

Conclusion
In conclusion, the presented study has successfully applied plasma metabolite-based ML modeling in screening 
IHD patients from non-CVD subjects, showing its efficacy in diagnostics of IHD with high levels of accuracy. 
Thus, even though this study was pilot, the presented results may facilitate future combination of ML-modeling 
and clinical metabolomics profiling for up-to-date diagnostics. Moreover, the suggested regression method for 
age-adjustment correction of metabolic data may be helpful in future metabolic studies with cohorts of non-
balanced on-age participants. In addition, the identified, through the univariate analysis, significantly changed 
metabolites may also serve for the interpret of the molecular pathogenesis of IHD.

Data availability
All data generated and analysed during this study are included in this published article and its Supplementary 
Information files.
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