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Core network traffic prediction 
based on vertical federated 
learning and split learning
Pengyu Li 1*, Chengwei Guo 2, Yanxia Xing 1, Yingji Shi 2, Lei Feng 2 & Fanqin Zhou 2

Wireless traffic prediction is vital for intelligent cellular network operations, such as load-aware 
resource management and predictive control. Traditional centralized training addresses this but poses 
issues like excessive data transmission, disregarding delays, and user privacy. Traditional federated 
learning methods can meet the requirement of jointly training models while protecting the privacy 
of all parties’ data. However, challenges arise when the local data features among participating 
parties exhibit inconsistency, making the training process difficult to sustain. Our study introduces 
an innovative framework for wireless traffic prediction based on split learning (SL) and vertical 
federated learning. Multiple edge clients collaboratively train high-quality prediction models by 
utilizing diverse traffic data while maintaining the confidentiality of raw data locally. Each participant 
individually trains dimension-specific prediction models with their respective data, and the outcomes 
are aggregated through collaboration. A partially global model is formed and shared among clients 
to address statistical heterogeneity in distributed machine learning. Extensive experiments on 
real-world datasets demonstrate our method’s superiority over current approaches, showcasing its 
potential for network traffic prediction and accurate forecasting.

In recent years, network traffic has witnessed a significant surge, propelled by the rapid proliferation of diverse 
network paradigms such as 5G/6G, Internet of Things (IoT), and Industrial Internet, alongside the increasing 
popularity of emerging Internet applications like live streaming, video sharing, and virtual reality. This diversifica-
tion of network services introduces strong randomness, leading to the challenge of providing stable and reliable 
services. However, adopting traffic prediction can address this issue effectively by capturing the changing trends 
in user demand. By predicting traffic patterns, networks can proactively deploy communication and computing 
resources to meet quality of service (QoS) requirements. This predictive capability empowers networks to better 
adapt to the varying demands of different network services, ultimately providing stable and reliable services.

To achieve satisfactory performance in traffic prediction, researchers have proposed various methods, such as 
broadly categorized into statistical, machine learning, and deep learning approaches. When modeling network 
traffic prediction as univariate or multivariate time series, commonly used statistical and machine learning 
models include Autoregressive Integrated Moving Average (ARIMA)1 and Vector Autoregressive (VAR)2, etc. 
This model possesses advantages such as low computational cost and high interpretability. However, it may not 
be conducive to meeting the requirements of distributed training, and it may encounter challenges in addressing 
the heterogeneity of data. The majority of deep learning-based network traffic forecasting approaches follow a 
centralized paradigm. In these scenarios, the forecasting model undergoes training on a central server before 
deployment. This entails transmitting substantial amounts of raw data from participants to the data center for 
training a general-purpose prediction model. Such a process can result in excessive data transmission, signal-
ing overhead, potential network congestion, and compromises in payload transmission, raising concerns about 
participant data privacy. While federated learning addresses data privacy concerns, its performance is often 
constrained when there is heterogeneity among the training participants’ data.

In real-world scenarios, network traffic prediction attracts interest from multiple parties. However, each 
participant is cautious about sharing their local data due to data privacy concerns. For instance, in the core net-
work context, involved parties may encompass university network management departments, internet service 
providers, and internet content providers. These entities can be perceived as intelligent agents, equipped with 
their individual computing and communication infrastructure, capable of participating in traffic prediction 
tasks. In traffic prediction scenarios where multiple parties demand data privacy, distributed machine learning 
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proves more effective compared to training deep learning models on a single server3. Nonetheless, there has 
been limited exploration of whether this approach yields enhanced performance for network traffic prediction.

The emergence and success of federated learning (FL)4 have enabled the resolution of prediction problems 
while preserving data locality5. FL has achieved great success in the medical field. It enables all medical institu-
tions to jointly use disease samples to train disease prediction models with good performance without sharing 
patient privacy data6, and has also made great contributions to the prediction of infection trends during the 
COVID-19 pandemic7. In the FL setting, participants exclusively transmit intermediate gradients or model 
parameters obtained through local training to a central server, rather than sharing raw data. This approach 
facilitates model co-training while safeguarding the data privacy of all participating parties. FL holds great 
potential for application in network traffic8; nevertheless, significant research challenges persist and necessitate 
addressing. User mobility introduces intricate spate-temporal coupling among wireless traffic, presenting difficul-
ties in accurately capturing and modeling it. Moreover, different base stations (BSs) may exhibit distinct traffic 
patterns, leading to highly heterogeneous traffic data. This heterogeneity poses a considerable challenge for FL 
to effectively learn and predict traffic data. We have observed that Vertical Federated Learning (VFL) is highly 
suitable for this scenario, as it adeptly addresses spatial-temporal coupling and handles heterogeneous data, 
thereby achieving precise network-wide wireless traffic prediction. Additionally, VFL encourages collaborative 
learning among multiple data owners, all the while protecting the privacy of their respective data. Consequently, 
VFL emerges as a compelling solution for tackling traffic forecasting problems.

To enhance model training performance while safeguarding user data privacy, a combination of VFL and 
SL proves beneficial. SL is a distributed learning approach that assigns distinct portions of the model to various 
devices or participants for computation. In SL, the model’s forward pass primarily occurs on the local devices 
of the participants, and solely the intermediate representations are transmitted to the central server for further 
processing. This significantly reduces the amount of sensitive information involved in the transmission process, 
bolstering privacy protection. By combining VFL and SL, a higher level of privacy protection can be achieved. 
In this merged approach, participants collaborate using VFL to train the model while employing SL to distribute 
specific model segments to their respective devices for computation. As a result, sensitive data do not need to 
be fully exposed to the central server, and only processed intermediate representations are transmitted, fur-
ther enhancing data privacy protection. This integrated approach effectively balances data privacy and security 
while facilitating joint learning without compromising performance. Its potential is particularly significant in 
addressing privacy-sensitive tasks. Therefore, as depicted in Fig. 1, addressing these challenges necessitates the 
exploration of novel network traffic prediction methods.

Our primary objective is to enhance traffic prediction accuracy in subnets characterized by substantial data 
heterogeneity through the adoption of VFL and vertical partitioning techniques. By adopting this approach, we 
can develop high-performing deep-learning models for traffic prediction while ensuring privacy protection, 
thereby leveraging the advantages of collaborative intelligence. The paper’s primary contributions are as follows:

1.	 We introduce a distributed machine learning framework tailored for scenarios characterized by diverse data 
profiles among participants. This framework enables each participant to train directly on their unique dataset 
through vertical partitioning. Subsequently, the model is aggregated into a comprehensive global model via 
vertical federated learning. This framework effectively addresses the challenge in federated learning where 
disparate data characteristics among participants hinder training convergence, making full use of the local 
data of each participant for training, thus enhancing the efficiency of model training.

2.	 We propose a novel model training approach for core network traffic prediction by combining federated 
learning with split learning. Through the application of our method, we effectively address challenges such 
as data privacy protection, distributed training, and data heterogeneity in the context of core network traffic 
forecasting.

Figure 1.   Motivation for the study.
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3.	 We conducted experiments based on actual network datasets to validate the feasibility of the methods above. 
The experimental results demonstrate that the proposed framework can significantly enhance traffic predic-
tion efficiency by improving prediction accuracy.

Related work
In recent years, precise modeling and prediction of network traffic have emerged as crucial elements for various 
tasks in network communications, garnering significant attention. Network traffic prediction inherently rep-
resents a time series forecasting challenge, with solution methods broadly categorized into three main groups: 
statistical and machine learning methods, deep learning methods, and distributed machine learning methods. 
The overarching goal of these methods is to offer effective prediction strategies to adeptly handle traffic fluctua-
tions in wireless communications.

Statistical and machine learning methods include parametric techniques that use statistical and probabilistic 
tools for modeling and predicting wireless traffic. A classical example is Autoregressive Integrated Moving Aver-
age (ARIMA)9. Researchers have examined ARIMA and its variations to account for self-similarity and burstiness 
in wireless services. A recent study10 decomposed wireless traffic into regular and random components, revealing 
that ARIMA could predict the regular component but not the stochastic one. In addition to ARIMA, alternative 
approaches such as α-stability models11, entropy theory12, and covariance functions13 have been explored for 
wireless traffic prediction. These methods aim to better capture the complexity and stochastic nature of wireless 
traffic. Traditional approaches like ARIMA and α-Stable Models have shown drawbacks in adapting to diverse 
user data features. ARIMA, while straightforward, struggles to capture intricate patterns, making it less effective 
in dynamic wireless environments. Similarly, α-Stable Models face challenges in predicting the self-similar and 
bursty nature of traffic accurately. Parametric methods such as Entropy Theory and Covariance Functions offer 
enhanced predictive capabilities but are not immune to limitations. Entropy Theory may fall short in capturing 
intricate traffic patterns, especially when data features vary among users. Covariance Functions, while contrib-
uting to a comprehensive understanding, may encounter challenges in achieving high precision in the presence 
of diverse data features.

In recent years, deep neural network-based approaches have gained momentum. For instance, a wireless mesh 
network prediction method based on deep belief networks was proposed in a study14. Another study15 introduced 
a hybrid deep learning framework that simultaneously captures spatiotemporal dependencies among different 
cells by combining autoencoders and long short-term memory networks (LSTM). These research endeavors 
harness deep learning techniques to deliver more robust and accurate solutions to wireless traffic prediction chal-
lenges. Despite their contributions to network traffic prediction, these approaches fall short of fully accounting 
for distinct regional traffic characteristics and scenarios involving distributed intelligence. In the study16, embed-
ded techniques address data sparsity and mitigate inaccurate trust predictions caused by feature information 
forgetting. The authors use LSTM to demonstrate the establishment of trust over time, significantly improving 
prediction accuracy. Reference17 introduces a real-time control algorithm, optimizing model accuracy with 
dynamic global aggregation frequency within a fixed resource budget. Metapaths and LSTM are employed to 
address sparsity in trust relationships18. In the study19 augmented Intelligence of Things and graph convolution 
network dynamically represent user information, enhancing the recommendation system. However, our paper 
differs by focusing on resolving data heterogeneity in distributed machine learning through vertical federated 
learning, complementing challenges not addressed in other papers. LSTM enhances predictive performance in 
recommendation systems20. Our approach differs, This paper concentrates on leveraging distributed machine 
learning to handle data feature heterogeneity, effectively complementing other works addressing diverse user 
data heterogeneity.

While LSTM excels in centralized training, our paper emphasizes that the mentioned vertical federated 
learning approach performs better in distributed scenarios with data heterogeneity. In the study21, a method for 
safeguarding user privacy in recommendation systems is proposed, differing from our paper’s focus. In distrib-
uted scenarios, our paper utilizes the differential privacy algorithm, which consistently demonstrates excellent 
performance. Centralized deep neural network-based approaches, while powerful in centralized scenarios, pose 
privacy concerns and scalability issues in collaborative training settings with multiple users. Privacy-preserving 
solutions, therefore, become crucial in the collaborative training landscape. Distributed machine learning meth-
ods, such as FL4, address the needs of user data privacy and distributed training. However, they may not perform 
optimally under conditions of data heterogeneity. As depicted in Table 1, we have summarized the optimization 
objectives, key techniques employed, training modes, and characteristics of training data for various referenced 
methods. Through comprehensive research, it is evident that only our approach is capable of meeting the col-
laborative training requirements under distributed conditions, accommodating diverse data features among 
participating entities.

Unlike the literature mentioned earlier, this article proposes a novel approach that addresses the issue of data 
heterogeneity through the integration of FL and SL. The adaptability of them to diverse data features among 
users makes it a significant advancement, offering both robustness and privacy in the collaborative training 
paradigm. It not only addresses collaborative training challenges effectively but also ensures user data privacy 
through advanced techniques like differential privacy and homomorphic encryption. This innovative approach 
contributes to the evolving landscape of wireless traffic prediction, promising more accurate and secure predic-
tions in multi-user scenarios.
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Problem formulation
The core network base station traffic prediction mechanism
Assume that there are K data holders collaborating to train a machine learning model.They hold the local pri-
vacy data {D1, . . . ,Dk} . D =

⋃K
i=1 Didenotes the data that all can be aligned. The feature space is represented 

as X, The label space is expressed as Y, and the sample ID space is represented as I. Dk = (Xk ,Yk , Ik) . The 
VFL system assumes N alignable samples D, D =

{
(xi , yi)

}N
i=1

 , training a joint machine learning model, the 
label information of the Kth party is yi = yi,k , each feature vector xi ∈ R1×d distributed among K participants 
D =

{
xi,k ∈ R1×dk

}K
k=1

 , dk is the dimension of the data characteristics of the participant with id k. The goal is 
to use dataset D to collaboratively train machine learning models while preserving the privacy of local data and 
models.

A subnet may consist of multiple base stations, each storing local traffic data, typically including call traffic, 
SMS traffic, and network traffic. User traffic in a region often exhibits regular patterns, prompting us to utilize 
historical traffic information for predicting future traffic usage.

The user overlap among these base stations is high; however, each base station only possesses a subset of 
the data related to user traffic information features. For instance, certain base stations may only have user SMS 
traffic data, while others might solely have user network traffic data. With the application of our method, we can 
develop a model capable of predicting the complete traffic features of users.

Given K base stations, each base station has its own local network traffic data, denoted as 
dk =

{
dk,1, dk,2, . . . , dk,z

}
 , where Z is the total number of time intervals. We want to predict future net-

work traffic based on the information of current and historical network traffic. Assuming that dk,z is the tar-
get traffic we need to predict, the wireless traffic prediction problem can be expressed in the following form: 
dk,z = f

(
�; dk,1, dk,2, . . . , dk,z−1

)
 , where f is a function, � are the parameters of the model. This equation rep-

resents the target flow dk,z based on traffic data from past time intervals dk,1, dk,2, . . . , dk,z−1 and the model 
parameters � to predict. The function f defines the specific form of the model, which can be a linear function, a 
nonlinear function, or other complex models. By learning the model parameters, we can predict future wireless 
traffic based on the existing historical data. For machine learning-based wireless traffic prediction techniques, 
only part of the historical traffic data is usually used as input features to reduce the complexity. Therefore, based 
on the traffic data dk , we can use a sliding window scheme to generate a set of input-output pairs 

{
xi , yi

}
 , Among 

them xi denotes the historical flow data associated with yi , Specifically, xi can be expressed as 
{
dk,1, dk,2, . . . , dk,z

}
 . 

Here, we focus only on the problem of one-step-ahead prediction. We want to use the traffic of the first n weeks 
of historical data to predict the traffic at hour t at base station k. If we use 1 h as the minimum time interval, then 
sweek = (24× 7 = 168) , we denote the prediction by d̂k,t , which can be expressed as

Objective function formulation
The loss function is defined as follows

� is used to represent the shared machine learning model. We can decompose the global model � into local 
models ϑk parameterized by θk , k ∈ {1, . . . ,K} , These individual models act only locally, and the global model 
is represented as Fk with �K as parameters. Only the K participant, known as the active party, can hold. γ (�) 
denotes the loss function and the regularizer. The loss function can be redefined as

(1)d̂k,t = f
(
�; dk,(t−s week ×1), dk,(t−s week ×2), . . . , dk,(t−s week ×(z−1))

)
.

(2)min
�

l(�;D) �
1

N

N∑

i=1

f
(
�; xi, yi

)
+ �

K∑

k=1

γ (�).

Table 1.   Methods for numerical prediction and improving prediction performance.

Index Training methods Optimization objectives Data feature Key technology

Ref.[9] Centralized Accuracy Isomorphism ARIMA

Ref.[10] Centralized Accuracy Isomorphism ARIMA

Ref.[11] Centralized Accuracy Isomorphism ARIMA and SVR

Ref.[15] Centralized Accuracy Isomorphism LSTM and Lasso

Ref.[16] Centralized Accuracy Isomorphism Embedding technique and LSTM

Ref.[17] Distributed Accuracy Isomorphism Federated learning

Ref.[18] Centralized Accuracy Heterogeneity Metapath and LSTM

Ref.[19] Centralized Privacy and accuracy Isomorphism Graph convolutional neural network

Ref.[20] Centralized Accuracy Heterogeneity Locality-sensitive hashing and LSTM

Ref.[21] Centralized Accuracy Isomorphism Graph convolution network

Proposed Distributed Accuracy Heterogeneity Vertical federated learning and split learning
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Global model Fk can be the one that needs to be updated using the backpropagation method. The VFL scene is 
consistent with split neural networks (splitNN), where the whole model is divided vertically into different parts.

In our problem, the data features of K base stations are different, and our objective is to enable each base sta-
tion to utilize its data effectively to minimize the test error. This goal can be reformulated as the minimization 
of the weighted sum of prediction errors across all K base stations. Therefore, we can achieve this by solving the 
parameter � . Through the machine learning approach, we can use the training dataset to fit the model and find 
the parameter values that minimize the prediction error. Specifically, we can use the input-output pairs 

{
xi , yi

}
 

in the training dataset to train the model. By tuning the parameters � , we enable the model to obtain the best 
prediction performance on the training data. Usually, this can be achieved by minimizing the loss function of 
the prediction error. Once we have finished training the model, we can use the parameter � to make predic-
tions. For a given new input feature, we can use the model and the parameter � to compute the corresponding 
prediction value. By making predictions on all K base stations and comparing the predicted values with the true 
values, we can evaluate the performance of the model and make further improvements. Thus, by solving for the 
parameter � , we can achieve the goal of minimizing the prediction error at all base stations and improving the 
accuracy of network traffic prediction.

Overview of the training process
As shown in Fig. 2, Base Station A, Base Station B, and Base Station C each possess a local neural network model: 
NetA , NetB , and NetC , respectively. These models are employed to extract features from the local training data. 
Subsequently, the feature representations ZA on Base Station A and ZC on Base Station C are transmitted to Base 
Station B, where they are concatenated with ZB along the feature dimension. The final output Yout is then gener-
ated by passing the merged feature output through another neural network model. There are two key differences 
to consider in this setup. Firstly, the local model output z for a single data sample in logistic regression is a scalar, 
which needs to be summed up for loss computation. On the other hand, the local output Z in the neural network 
is a vector representing the feature representation. Secondly, Base Station B needs to construct an additional 
neural network model to make predictions based on the concatenated features. It should be noted that the overall 
output of neural networks in VFL differs from that in centralized learning. This discrepancy arises because the 
neural network is divided into several separate sub-networks.

In this distributed computation architecture, each base station is responsible for computing a fixed portion of 
the neuron network. X1,X2, . . . ,XN are the local raw data of these clients, and the features of the data they hold 
determine the part of the local model they need to train, They calculated and obtained the intermediate features 
result Z1,Z2, . . . ,ZN . The computed portion is then passed to the active party. The active party takes this partial 
result Combines it into a complete vector Z and completes the remaining computations on the network. After 
completing the computations, the active party performs back-propagation and returns the jacobians (gradients) 
to the respective station. The stations can then perform their individual back-propagation steps using the received 
jacobians to update their local model parameters accordingly.

(3)min
�

f
(
�; xi , yi

)
= min

�,�K

L
(
FK

(
�K ;ϑ1

(
xi,1, θ1

)
, . . . ,ϑK

(
xi,K , θK

))
, yi ,K

)
.

Figure 2.   Vertical federated split neural network scheme.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4663  | https://doi.org/10.1038/s41598-024-53193-y

www.nature.com/scientificreports/

This architecture allows for distributed and collaborative computation, enabling efficient training of complex 
models in a decentralized manner. By splitting the workload among base stations and utilizing the active party 
for final computations, the overall training process can be accelerated while preserving privacy and security 
aspects in certain scenarios.

Proposed framework
This section provides a specific explanation of the VFL traffic prediction framework used in the problem scenario 
proposed and demonstrates the complete process of implementing the framework.

Due to the functional differences in urban areas, there are significant differences in base station traffic patterns 
from region to region, which are necessary to support daily urban operations. In addition, there are differences 
in users’ mobility and communication behaviors, further increasing the diversity of wireless service patterns. 
As a result, wireless service data from different base stations are highly heterogeneous, and by nature, they are 
non-independently and identically distributed (non-iid). Performing federated learning on non-independently 
and identically distributed data is quite challenging. Traditional federated learning algorithms usually assume 
that the data are independently and identically distributed, which means that the data from different devices 
or base stations have similar statistical characteristics. However, these assumptions no longer hold in the face 
of non-independently homogeneously distributed data, leading to new challenges and difficulties. However, by 
using our methods and techniques, these challenges can be overcome and accurate and interpretable models 
can be obtained.

The participating training base stations are divided into active and passive sides, the global model is trainable, 
and the passive-side local model, after training intermediate results, collaborates with the active-side local model 
to form the global model F and uses the active-side labels for the next training together. The first step for the VFL 
system to start co-training is to align the data from the base stations. This process, also called entity pairing, uses 
a technique called private set intersection to find common sample IDs without exposing unaligned datasets, and 
after alignment, the participants can use the aligned samples to start training the VFL model. Specifically, each 
base station k computes its local model output HK = ϑk(xk , θk) , on a small batch of samples x, and then sends 
the local output to the base station of the active party holding the labels. 

Algorithm 1.   Vertical Split algorithm.
The objective of this scenario is to minimize the error in the inference of the model, Thus, the problem of 

subnet k is formulated as

The process is described in detail below. Specifically, each party k computes its local model output as shown in 
the following equation

where HK represents an intermediate calculation result. Each participating entity will utilize Eq. (5) to compute 
over a mini-batch of samples x and send the final result HK to the active party,

With all the {Hk}
K
k=1 , the active party computes the training loss following Eq. (4). Then, the active party computes 

the gradients ∂ l
∂�K

 of its global module and updates its global module using ∂ l
∂�K

 as Eq. (6).

Next, the active party computes the gradients ∂ l
∂Hk

 for each party and transmits them back. Finally, each party k 
computes the gradient of its local model θk as Eq. (7). In (7), the chain rule was applied, where the subscript i 
denotes the index utilized in the chain rule for differentiation.

(4)argmin
�K

(
L
(
FK

(
�K ;ϑ1

(
xi,1, θ1

)
, . . . ,ϑK

(
xi,K , θK

))
, yi ,K

))
.

(5)HK = ϑk(xk , θk),

(6)�
j+1
K = �

j
K − η1

∂ l

∂�K
.

(7)∇θk l =
∂ l

∂θK
=

∑

i

∂ l

∂Hi,k

∂Hi,k

∂θk
.
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Through the VFL training process, we eventually get the parameters θ1, θ2, . . . , θK for the local model and �K 
for the global model by Algorithm 1 and get the value of them through a certain number of rounds of iterations. 
First, we have to set the learning rate η2 of the local model and η1 of the global model. We may set the participant 
with the label K as the active party holding the label, and for the participants 1, 2, 3, . . . ,K  we initialize their 
model parameters, θ1, θ2, . . . , θK ,�K . Entering the iterative training process, in each training round, as shown 
in Algorithm 2, for each base station k(k = 1, 2, 3, . . . ,K) , a random sample set x(x ∈ D) is used for training. 
First, each participant k computes the local model output (4) and then sends the result HK to the active party 
K. After obtaining the intermediate result for each participant, the active party K uses the stochastic gradient 
descent method to update the global model with (5), and subsequently, the active party K computes ∂ l

∂Hk
 , and 

sends it to the other base stations. After receiving the information from the active party, the other participants 
first calculate (6), and then perform the update of the local model (8). Differential privacy techniques can be 
used when sending messages.

We employ two evaluation metrics, namely Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE), to assess the effectiveness of the aforementioned method.

MAE is the most common regression metric. Its calculation formula is

 where ŷi is the predictive value and yi is the actual value.
RMSE is extended by MAE. It amplifies the error value, and its calculation formula is

  

Algorithm 2.   Vertical Split Federated Learning algorithm.

Methods and results
We used in our experiments the cellular traffic datasets provided by Telecom Italia22 The detailed experimental 
parameter settings are shown in Table 2. These two datasets record the call details of Milan (MI)23 in the last two 
months of 2013. They are among the most commonly used datasets in the field of cellular traffic forecasting24. The 
datasets contain five types of traffic, including SMS input/output, voice call input/output, and Internet services, 
and are recorded at spatio-temporal granularity. The detailed parameter configurations for our experiments are 
provided in Table 2. In our experiments, we focus on voice call traffic and Internet service traffic, which are the 
most common types of cellular traffic in existing networks. Our task is to predict the traffic in week 7 based on 
the traffic in the first six weeks. We divide the historical traffic data into intervals of the minimum scale of hours 
and then use the traffic data for each hour of the week to predict traffic data for the corresponding hours in the 
next week. Specifically, we base our predictions on the traffic data for the 168 h (24 × 7) per week available in the 
historical dataset. In addition, we normalize the traffic data so that the traffic within each grid has zero mean and 
unit variance. By normalizing, we can eliminate scale differences between grids to ensure that the model treats 
the data fairly across grids. To summarize, we performed preprocessing operations on the dataset, including 
aggregating statistical intervals to the hour, intercepting data to avoid holiday effects, and normalizing the flow 
data to ensure that the data have a uniform scale. We compare our proposed traffic prediction framework with 
four baseline methods as follows:

(8)θ
j+1
k = θ

j
k − η2∇θk l.

(9)MAE =

∑n
i=1

∣∣ŷi − yi
∣∣

n
,

(10)RMSE =

√∑n
i=1

(
ŷi − yi

)2

n
.
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1.	 Lasso: A linear model for regression.
2.	 LSTM25: LSTM exhibits a robust capacity for modeling time series datasets and typically outperforms linear 

and shallow-learning models in terms of prediction accuracy.
3.	 Support Vector Regression (SVR)26: SVR, a classical machine learning algorithm, has found successful appli-

cations in traffic prediction.
4.	 FedAvg27: First introduced in pioneering federated learning research, FedAvg employs weight averaging from 

local models for aggregation.

To ensure generality and reduce computational complexity, we randomly selected 100 base stations in each 
dataset and conducted experiments on three types of wireless traffic from these base stations. In the experiments, 
we used the traffic from the first seven weeks to train the prediction model, while the traffic from the last week 
was used to test the performance of the model. By randomly selecting 100 base stations, we can reduce the com-
plexity of computation and processing while retaining data diversity. Such a sampling method can represent the 
characteristics of the entire dataset and provide reliable results in the experiments. The training model uses the 
first seven weeks of traffic data so that the model can learn the patterns and trends of the historical data. We then 
use the trained model to make predictions for the last week of traffic to evaluate the performance of the model on 
future data. With such an experimental design, we can verify the accuracy and reliability of the prediction model 
and provide meaningful results for further analysis and decision-making. Also, since we randomly selected 100 
base stations, our experimental results can be generalized over the entire dataset. We use two evaluation metrics, 
MAE and MSE, to evaluate the effectiveness of the above method.

It is evident from Tables 3 and 4 that our proposed method, VFL, outperforms all the baseline methods across 
all types of wireless traffic in the Milan datasets and Trento datasets. To further assess the predictive performance 
of different algorithms, we provide comparisons between the predicted values and the actual values for each 
algorithm in Fig. 3. In Fig. 3, the results are presented for the Milano dataset. Specifically, the three subfigures of 
Fig. 3 display the comparisons between the predictions and the ground truth for SMS, Call, and Internet service 
traffic of randomly selected cells. Here, we select FedAvg as the benchmark for performance comparison since 
it achieves the best performance among all baseline methods, as shown in Table 3. By analyzing Fig. 3, we can 
observe that VFL consistently achieves better prediction performance than FedAvg across all three types of 
wireless traffic. Furthermore, VFL exhibits smaller prediction errors, particularly when dealing with high and 
unstable traffic volumes.

The results presented in Table 4 and Fig. 4 demonstrate that our method achieves superior prediction per-
formance on the Trento datasets as well. By integrating both VFL and splitNN, our approach effectively cap-
tures both spatial and temporal dependencies, leading to improved prediction accuracy. Moreover, our method 
significantly reduces data heterogeneity compared to traditional FL algorithms, enabling a high generalization 
capability. It strikes a balance between data from different base stations during training, resulting in more accu-
rate predictions. Compared with fully distributed algorithms that consider only the temporal dependence of 

Table 2.   Experimental parameter settings.

Parameter name Parameter values Parameter meanings

Bs 100 Number of base stations

Frac 0.1 Fraction of clients

Local-epoch 50 The number of local epochs

Local-batch 40 Local batch size

Epsilon 1 Stepsize

Lr 0.01 Learning rate of NN

Opt Sgd Optimization techniques

Momentum 0.9 Momentum

Table 3.   Comparison of MSE and MAE prediction performance of different methods on Milano dataset. The 
optimal values are in bold.

Milano

Methods MSE MAE

SMS Call Internet SMS Call Internet

SVR 0.5294 0.1211 0.1252 0.3981 0.2134 0.3120

Lasso 0.8411 0.3215 0.4621 0.7214 0.5162 0.6122

LSTM 0.5922 0.1545 0.1874 0.4721 0.3134 0.3122

Fedavg 0.4853 0.1466 0.1168 0.4176 0.2045 0.3109

VFL 0.3479 0.1023 0.1132 0.3742 0.2001 0.2976
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network traffic operations (e.g., SVR and LSTM), our approach can capture both spatial and temporal dependence 
through model fusion, resulting in greater robustness. Compared to traditional FL algorithms, our approach 
allows the learning process to be tuned for specific cases. In addition, the application of longitudinal federation 
greatly reduces the impact of heterogeneity of data. As a result, our method has a high generalization capability 
and can better adapt to the differences and characteristics among different base stations. Our approach is able 
to strike a balance between capturing the unique characteristics of base station clusters and the macro traffic 
patterns shared among different clusters. This allows our method to provide more accurate prediction results 
while balancing the specificity of individual base stations with the shared nature of the overall traffic patterns.

Conclusion and discussion
In this work, we study the problem of wireless traffic prediction and propose a VFL framework for traffic pre-
diction based on the heterogeneity of base station data characteristics. Dedicated traffic prediction models for 
subnets with specific characteristics are obtained through VFL. We designed a training architecture combining 
VFL and splitNN and trained a model through this architecture. Experimental results show that the framework 
improves the traffic prediction efficiency of the model by solving the problem of different data characteristics 
between base stations, allowing base stations with different data characteristics to participate in the FL process 
at the same time. We finally verified the effectiveness and efficiency of VFL on two real-world datasets. How-
ever, there are also some shortcomings. On the one hand, predicting future traffic in this framework completely 

Table 4.   Comparison of MSE and MAE prediction performance of different methods on Trento dataset. The 
optimal values are in bold.

Trento

Methods MSE MAE

SMS Call Internet SMS Call Internet

SVR 5.3142 1.1823 5.8086 1.1322 0.5721 1.0329

Lasso 4.6123 1.6322 5.6235 1.3221 0.8342 1.5237

LSTM 3.2384 1.2344 4.5723 0.9328 0.5217 1.1356

Fedavg 2.1322 1.4563 4.5232 0.7525 0.5349 1.0348

VFL 1.8246 1.0023 2.3452 0.6231 0.4012 0.7162

Figure 3.   Comparisons between predictions and the real values of Milan datasets.

Figure 4.   Comparisons between predictions and the real values of Trento datasets.
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relies on historical traffic, lacking the use of other multidimensional data, such as regional population density 
and emergency event information. These data are valuable for cellular traffic forecasting, and we will conduct 
further research in the future.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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