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Lightweight air‑to‑air unmanned 
aerial vehicle target detection 
model
Qing Cheng 1,2*, Yazhe Wang 1,2, Wenjian He 1 & Yu Bai 1

The rapid expansion of the drone industry has resulted in a substantial increase in the number of 
low-altitude drones, giving rise to concerns regarding collision avoidance and countermeasure 
strategies among these unmanned aerial vehicles. These challenges underscore the urgent need for 
air-to-air drone target detection. An effective target detection model must exhibit high accuracy, 
real-time capabilities, and a lightweight network architecture to achieve a balance between precision 
and speed when deployed on embedded devices. In response to these requirements, we initially 
curated a dataset comprising over 10,000 images of low-altitude operating drones. This dataset 
encompasses diverse and intricate backgrounds, significantly enhancing the model’s training capacity. 
Subsequently, a series of enhancements were applied to the YOLOv5 algorithm to realize lightweight 
object detection. A novel feature extraction network, CF2-MC, streamlined the feature extraction 
process, while an innovative module, MG, in the feature fusion section aimed to improve detection 
accuracy and reduce model complexity. Concurrently, the original CIoU loss function was replaced with 
the EIoU loss function to further augment the model’s accuracy. Experimental results demonstrate an 
enhancement in the accuracy of drone target detection, achieving mAP values of 95.4% on the UAVfly 
dataset and 82.2% on the Det-Fly dataset. Finally, real-world testing conducted on the Jetson TX2 
revealed that the YOLOv5s-ngn model achieved an average inference speed of 14.5 milliseconds per 
image. The code utilized in this paper can be accessed via https://​github.​com/​lucie​n22588/​yolov5-​ngn.​
git.

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are autonomous aircraft capable of carrying 
various payloads, executing multiple tasks, and being reusable. Their unique features, such as cost-effectiveness, 
minimal losses, zero human casualties, high maneuverability, stealth capabilities, and adaptability, have signifi-
cantly contributed to their widespread use in military, civilian, and scientific research fields1–4, thus fostering 
the growth of the drone industry.

The rapid expansion of the drone industry has resulted in the proliferation of numerous low-altitude UAVs. 
This surge has brought forth a range of challenges, particularly involving collision avoidance and countermeas-
ures among drones. The notable emergence of these challenges emphasizes the urgency and significance of 
conducting air-to-air target detection within the drone domain5–7. In this context, achieving swift, precise, and 
reliable drone target detection remains pivotal in enhancing the safety and functionality of UAV systems8–14.

Various sensor types are available for UAV detection, including visual sensors15–20, radar21,22, and acoustic 
sensors23,24, among others. However, due to stringent payload constraints associated with UAVs, selecting the 
appropriate sensor is crucial. Visual sensors are preferred due to their lightweight nature, adaptability, and 
ability to provide high-quality image data. This study emphasizes the use of widely adopted RGB monocular 
cameras for UAV detection, offering promise for UAV detection applications and supporting future research 
and technological advancements.

In recent years, driven by the widespread utilization of artificial intelligence technology and the progress in 
object detection techniques rooted in deep learning and computer vision,object detection methods leveraging 
Convolutional Neural Networks (CNN) have shown superior performance in detection and recognition over 
traditional machine learning methods, prompting many CNN-based detection methods to be proposed. Cur-
rently, Computer vision-based object detection algorithms can be categorized primarily into two groups: the 
first group comprises two-stage object detection models exemplified by Faster RCNN25 , while the second group 
encompasses one-stage object detection models exemplified by YOLO26,27 and SSD28. Two-stage object detection 
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models can effectively enhance detection accuracy through the utilization of region proposal networks for gen-
erating candidate object boxes.But the redundancy of structure and parameters makes it difficult to achieve fast 
detection. For one-stage object detection models,the primary advantage lies in its independence from the need 
for a region proposal network. and after training the backbone feature extraction network, it directly performs 
classification and regression on the input data, which can effectively shorten the training and inference time.

However, in the context of the widespread application of deep learning-based object detection technology, an 
increasing number of researchers have noted the issue of high computational demands, even within one-stage 
object detection models. This challenge results in these algorithms processing images acquired by computers 
at slower speeds, subsequently impacting their ability to achieve real-time object detection. Consequently, in 
recent years, some lightweight optimization approaches based on one-stage object detection models have been 
proposed with the aim of enhancing the efficiency of object detection. For example, Long et al.29 introduced 
LiraNet, a lightweight network tailored for ship detection in radar images. LiraNet amalgamates the concepts 
of dense connections, residual connections, and group convolution to enhance its efficacy.Furthermore, the 
researchers introduced a lightweight model, named Lira-YOLO, specifically designed for ship detection. This 
model employs LiraNet as its backbone network and incorporates a two-layer YOLO prediction layer for the 
purpose of object detection. Wang et al.30 proposed an efficient YOLO framework to address the limitations of 
traditional YOLOv3 in terms of model size and computation amount for on-road object detection tasks. The 
proposed framework achieves high accuracy while maintaining efficiency through iterative initialization strategy 
and comprehensive pruning schemes. Jiang et al.31 proposed a ship detection algorithm for Synthetic Aperture 
Radar (SAR) images using a multi-channel fusion method and the YOLO-V4-light deep learning framework. 
The proposed algorithm leverages image information and the network’s feature extraction capability, leading to a 
reduction in model complexity and detection time. The YOLO-V4-light network is optimized for three-channel 
images to mitigate the accuracy decline attributed to lightweighting.

The previously mentioned models have demonstrated outstanding performance in certain scenarios. None-
theless, their effectiveness on embedded devices is limited due to the computational constraints of UAV onboard 
computing systems. Moreover, these models face hurdles in detecting air-to-air UAV targets due to various factors 
such as intricate image backgrounds, image clarity concerns, and the small size of target UAVs. Consequently, 
additional exploration is crucial to achieve superior air-to-air UAV detection performance while upholding 
lightweight characteristics.

In pursuit of efficient and precise air-to-air UAV detection, we developed YOLOv5s-ngn, utilizing the 
YOLOv5s backbone structure. Acknowledged for its outstanding real-time object recognition capabilities in 
images or videos, the YOLOv5s model underwent extensive validation in practical scenarios. Our methodol-
ogy incorporates an inventive lightweight feature extraction network, employing channel splitting, channel 
reordering, and feature reuse concepts. This network optimizes the feature extraction process, supplanting the 
original YOLOv5s feature extraction network. Furthermore, we introduced a novel fusion module grounded on 
the Convolutional Block Attention Module (CBAM), which holistically models the feature pyramid structure of 
the backbone network by integrating spatial and channel attention mechanisms. This fusion unifies high-level 
semantic information and channel details while making predictions on a single feature layer, enhancing detec-
tion precision and curtailing model complexity. Additionally, we replaced the initial Complete IoU (CIoU) loss 
function with the Enhanced IoU (EIoU) loss function to accelerate convergence and refine regression accuracy, 
ultimately elevating the model’s overall precision.

The main contributions of this study include: 

(1)	 We have established a novel dataset for air-to-air unmanned aerial vehicle (UAV) target detection, taking 
into account the complexity of backgrounds in air-to-air scenarios. During the data collection process, we 
introduced various backgrounds, including residential areas, streets, fields, lakes, and mountainous terrain. 
Furthermore, the data collection efforts spanned the entire day, divided into three time periods: morning, 
noon, and evening, to ensure nearly equal data distribution across each time segment.

(2)	 We have introduced a lightweight target detection model (YOLOv5s-ngn) by incorporating novel light-
weight feature extraction modules, lightweight feature fusion modules, and introducing the EIoU function. 
This model achieves an improvement in model accuracy while maintaining its lightweight design.

(3)	 We conducted extensive experiments to assess the effectiveness of our approach. The experimental results 
demonstrate that our model exhibits industry-leading performance on the UAVfly and Det-Fly datasets. 
Simultaneously, we deployed the trained model onto an unmanned aerial vehicle equipped with TX2 
embedded hardware for real-time model detection. The experimental outcomes reveal that YOLOv5s-ngn 
can efficiently and swiftly detect unmanned aerial vehicles, enabling real-time application owing to its rapid 
response time.

The paper’s subsequent sections are arranged as follows: “Related work” provides an exploration of relevant 
research in the domain of target detection. Section “UAVfly dataset” provides a detailed description of the con-
struction process of the UAVfly dataset. Section “Methods” delineates the specifics of the proposed methodology, 
and “Results” encompasses the experimental results. Lastly, the conclusion is presented in “Discussion”.

Related work
Research on unmanned aerial vehicle (UAV) detection
The field of UAV detection encompasses two primary scenarios: ground-to-air21–24 and air-to-air detection32, 
each with its own unique features and applications. Ground-to-air detection involves monitoring UAVs in flight 
from terrestrial vantage points, often requiring the deployment of monitoring equipment such as radar or visual 
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cameras on the ground or stationary platforms. This method finds applications across various domains, includ-
ing military air defense surveillance and civilian aviation air traffic management.Conversely, air-to-air detection 
involves UAVs using their onboard cameras or sensors to detect other UAVs in flight. This is critical for swift 
and accurate detection to avoid collisions and enable cooperative operations, especially in multi-UAV systems.

In recent years, research on ground-to-air UAV detection has gained significant attention due to the rising 
utilization of UAVs. However, air-to-air UAV detection poses even greater challenges that remain underexplored. 
A key reason for this complexity is the contrasting monitoring environments.

In many ground-to-air UAV detection scenarios, stationary or minimally mobile ground-based cameras15–20 
capture images under relatively stable atmospheric conditions, such as clear or cloudy skies. Detection in such 
settings is comparatively straightforward due to the static background. Conversely, air-to-air UAV detection 
involves capturing images of UAVs in flight within dynamic and complex backgrounds, including urban and 
natural settings . These scenarios introduce additional visual complexities, as background elements, ground struc-
tures, and architectural features can obscure UAVs, exacerbating detection challenges. Furthermore, the dynamic 
flight characteristics of onboard cameras can lead to significant variations in the appearance of UAVs, affecting 
their shape, size, proportions, and color. This visual variability intensifies the difficulty of precise detection across 
diverse contexts.Another complicating factor is the small size of micro UAVs, making them inconspicuous in 
airspace and further increasing detection complexities. Effective solutions to air-to-air UAV detection necessitate 
addressing these challenges posed by diversity, complexity, and small-scale characteristics, representing a critical 
research focus in the current landscape.

Methods for unmanned aerial vehicle (UAV) detection
Unmanned aerial vehicle (UAV) detection involves employing various methodologies rooted in sensor technol-
ogy and signal processing:

•	 Radar Systems: These systems detect UAV-emitted radar signals, ensuring long-range detection reliability, 
even amidst varying environmental conditions.

•	 Infrared Sensors: Utilizing infrared radiation, these sensors capture thermal emissions from UAVs.
•	 Sonar Systems: Primarily intended for underwater UAVs, sonar technology is occasionally adapted for detect-

ing aerial UAVs using sound waves.
•	 Radio Frequency Spectrum Analysis: This method identifies UAV communication signals, uncovering inter-

actions between the UAV and its controller, facilitating inferences about the UAV’s position and operator.
•	 Image Processing and Machine Learning: Employing computer vision and machine learning algorithms, 

analysts assess aerial images and videos for UAV detection. These methods rely on discerning UAV visual 
features and movement patterns.

However, sensors such as radar, sonar, and radio frequency spectrum can suffer from interference from other 
UAV onboard sensors, potentially compromising accuracy. Additionally, most sensors lack the ability to identify 
specific target objects. Recent strides in computer vision have introduced vision-based techniques as innova-
tive detection methods. Vision sensors operate in more relaxed experimental settings, boast lower production 
costs, and encompass attributes like extensive data collection and broad detection capabilities. Consequently, 
researchers are increasingly focusing on vision-based target detection techniques.

Vision‑based object detection methods
Traditional approaches
Visual object detection is the process of identifying, recognizing, and labeling specific objects in images, 
which is closely related to object classification, tracking, and image segmentation. Traditional object detection 
methods33–35 typically employ a sliding window strategy to scan the entire image with a series of sliding windows 
to determine possible object locations. Hand-crafted features, such as scale-invariant feature transform36 and 
histogram of oriented gradients37, are then extracted from the image window, followed by classification using 
support vector machine (SVM) or AdaBoost classifiers.However, traditional object detection algorithms based 
on the sliding window strategy have issues of high computational complexity, limited efficiency in detecting 
objects, and difficulty in handling changes in object shape and background. Additionally, designing hand-crafted 
features for each new object class requires considerable time.

Current research on UAV detection employs two fundamental technical approaches. Firstly, one method 
utilizes feature extraction techniques to capture UAV characteristics within images, such as shape, color, and 
texture. Subsequently, discriminative classifiers, such as Support Vector Machines (SVM) or Convolutional 
Neural Networks (CNN), are employed to analyze and categorize these extracted features, thereby determining 
the UAV’s position, category, or state38,39.

The second approach revolves around the detection of moving objects within images, with UAVs typically 
categorized as one type of moving object. Subsequently, generative classifiers are deployed to assess whether these 
moving objects correspond to UAV targets. This method emphasizes the analysis of trajectories, velocities, and 
motion patterns of moving objects to distinguish UAVs from other mobile entities40–42.

Deep learning‑based approach
The domain of target detection methodologies in the realm of deep learning encompasses a diverse array of 
techniques and architectures. While Convolutional Neural Networks (CNNs) remain predominant, alternative 
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methodologies persist. The subsequent elucidation presents some prominent deep learning-based target detec-
tion methods:

•	 Convolutional Neural Network (CNN) Methods: R-CNN Series: Encompassing R-CNN43, Fast R-CNN44, and 
Faster R-CNN25, these methodologies achieve target detection by introducing candidate regions and Region 
Proposal Networks (RPN). YOLO Series: Including YOLO (You Only Look Once)45, YOLOv246, YOLOv326, 
YOLOv427, and YOLOv547, these approaches treat target detection as a regression problem, enabling real-
time detection. SSD (Single Shot MultiBox Detector)28: Efficient single-stage object detection is attained 
by concurrently detecting targets at different hierarchical levels and producing multiple detection results. 
RetinaNet48: Addressing the imbalance between positive and negative samples through Focal Loss, RetinaNet 
enhances detection performance for small targets while maintaining high recall.

•	 Non-Convolutional Approaches: Non-Convolutional Methods in Deep Learning: In addition to CNNs, cer-
tain deep learning-based target detection methods adopt non-convolutional structures, such as those based 
on Recurrent Neural Networks (RNNs)49 or attention mechanisms.

•	 Graph Neural Network (GNN) Approaches: Applications of GNN in Target Detection: Certain studies explore 
the application of Graph Neural Networks (GNNs) in target detection, leveraging the capture of relational 
information within graph structures to enhance detection performance50.

•	 Transformer-Based Approaches: Target Detection Based on Transformers: Recently, some endeavors have 
sought to apply Transformer architectures to the field of target detection, incorporating self-attention mecha-
nisms to capture global and local relationships51,52.

These methodologies exhibit distinctive advantages and applicability in various application scenarios and 
tasks. Researchers continually explore novel deep learning approaches to address challenges in target detection, 
thereby expanding the developmental landscape of deep learning-based target detection technologies.

UAVfly dataset
Datasets are indispensable for training object detection models, providing essential information to facilitate target 
learning. Their quality significantly influences model performance and generalization capabilities. Therefore, 
constructing datasets with high quality, diversity, representativeness, and balance is crucial for training and 
evaluating object detection models. However, collecting datasets for visually detecting air-to-air unmanned 
aerial vehicles (UAVs) is challenging due to the inherent complexities, such as complex backgrounds and image 
distortions from dynamic flights.

Currently, datasets explicitly designed for the precise detection of unmanned aerial vehicle (UAV) targets 
in the empty-to-empty scenario are exceedingly rare. Zheng et al.32. introduced a dataset named “Det-Fly” to 
address this gap. The dataset comprises 13,271 images of UAVs in the empty-to-empty scenario, captured from 
three different angles across four environmental backgrounds. Notably, it incorporates challenging backgrounds 
such as varying lighting conditions, dynamic blurring, and other factors that faithfully reflect the authentic 
operational processes of UAVs. However, practical utilization of models trained on this dataset reveals suboptimal 
accuracy in detecting UAVs in complex background settings. To address this issue, we propose a novel dataset 
named “UAVfly.” Its primary distinction from Det-Fly lies in providing more intricate empty-to-empty scenario 
images, thereby enhancing the dataset’s generalization capabilities. Table 1 illustrates the comparison between 
Dataset Det-Fly and Dataset UAVfly.

In this study, we employed three unmanned aerial vehicle devices (DJI AIR2s) to collect datasets in an air-to-
air fashion, conducted across three distinct Chinese provinces: Shanxi, Sichuan, and Guangdong.

The dataset consists of 10,281 images with a resolution of 1280× 720 pixels. It comprehensively covers diverse 
geographical environments, encompassing urban blocks, suburbs, deserts, fields, lakes, skies, and mountains. 
Each environmental background type contributes nearly equally to the entire dataset, ensuring a high degree of 
diversity and representativeness. The dataset collection process spans an entire day, segmented into three time 
periods: morning, noon, and evening, with each period contributing almost equally to the dataset. This diverse 
and uniformly distributed data collection methodology ensures the dataset’s comprehensiveness and applicability, 
offering researchers a wealth of experimental material.

Regarding challenging backgrounds, we adopted the collection strategy from Dataset Det-Fly, accounting 
for factors such as varying lighting conditions, dynamic blurring, and partial occlusion of target objects. Specific 

Table 1.   Comparison between dataset det-fly and dataset UAVfly.

Model Categories of backgrounds Relative viewing angles Proportion of small targets Challenging scenarios

Det-fly Sky urban field mountain
Front view (36.4%)
Top view (32.5%)
Bottom view (31.1%)

Approximately half
Strong/weak lighting (10.8%)
Motion blur (11.2%)
Partial target occlusion (0.8%)

UAVfly

Urban block
Suburb
Desert
Field
Lake
Sky
Mountain

Front view (33.8%)
Top view (34.6%)
Bottom view (31.6%)

30.2%
Strong/weak lighting (14.5%)
Motion blur (13.8%)
Partial target occlusion (1.1%)
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efforts were not made to collect images of small target objects (objects with a height and width less than 10% of 
the entire image). Instead, images were captured at fixed time intervals during the UAV’s operation, ensuring 
coverage of various UAV horizontal distance scenarios in the dataset collection.

During the data collection process, we adhered to the following data collection strategies. 

(1)	 Throughout the data collection process, strict adherence to local regulations governing unmanned aerial 
vehicle (UAV) operations was maintained to ensure full compliance and safety.

(2)	 In order to render the dataset versatile for a broad spectrum of applications within the low-altitude airspace 
domain, a comprehensive evaluation of background complexity was undertaken, leading to the establish-
ment of a maximum UAV flight altitude of 100 m. Additionally, a mandatory constraint was enforced, 
stipulating that UAVs must maintain a minimum separation distance of 5 m, thereby guaranteeing the safe 
execution of data collection activities.

(3)	 Within the dataset, a subset of images was captured by onboard monocular cameras at regular 0.5-s inter-
vals. This data acquisition strategy proved advantageous in capturing temporal dynamics, including posi-
tional and state alterations of the targets at distinct timepoints, thereby imbuing the dataset with valuable 
temporal context.

(4)	 Furthermore, to ensure data accuracy and usability, professional annotation software, LabelMe, was 
employed, and the annotation process was conducted by highly skilled experts. This meticulous annota-
tion procedure facilitated the creation of a repository of meticulously annotated high-quality data, thereby 
establishing a reliable cornerstone for subsequent research endeavors.

The self-constructed dataset is illustrated in Fig. 1. The dataset was partitioned randomly in a 7:3 ratio, lead-
ing to the creation of training and validation sets. This proportional division was orchestrated to maximize the 
effective use of the dataset for model training. Subsequent evaluation and validation were performed on the 
dedicated validation set to improve the model’s generalization performance. The employment of this random 
partitioning methodology serves to uphold dataset diversity and proficiently mitigate the risk of model overfit-
ting to specific data distributions.

Methods
Abbreviation
As depicted in Table 2, explanations for the abbreviations referenced in the article have been provided.

The original YOLOv5s network
YOLOv5s is a highly efficient object detection model and the smallest in scale in the YOLOv5 series47. The model 
uses a lightweight backbone network and a multi-scale feature fusion and efficient output prediction strategy to 
achieve efficient, accurate, and real-time object detection53,54.

Figure 1.   UAVfly dataset.
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The YOLOv5s network architecture comprises an input section, backbone network, feature fusion module, 
and output section. The input segment employs the Mosaic-4 data augmentation technique, which enhances 
image information by utilizing cropping, concatenation, and resizing operations. This method is particularly 
effective for small object detection. The backbone network uses CSPDarknet53 as the feature extractor, which 
can improve feature extraction capabilities while maintaining efficiency.The feature fusion module employs a 
hybrid of Feature Pyramid Network (FPN) and Pyramid Attention Network (PAN) architectures to enhance 
the features extracted by the backbone network, thereby enhancing the network’s feature fusion capacity. The 
output end uses an efficient prediction strategy, including the use of multi-scale feature maps in the backbone 
network, feature fusion in convolution layers, and efficient processing in the output layer to achieve fast and 
accurate object detection.

Compared with other models in the YOLOv5 series, YOLOv5s has a smaller model size and faster inference 
speed but slightly lower accuracy than other larger models. The model demonstrates strong performance across 
various public object detection datasets and has found extensive utilization in diverse real-world applications, 
including intelligent surveillance, autonomous driving, and robotic vision. The YOLOv5s structure is illustrated 
in Fig. 2.

Table 2.   Abbreviation explanation.

CNN Convolutional neural network

CBAM Convolutional block attention module

ESA Efficient spatial attention structures

FC Fully connected

FPN Feature pyramid network

GAP Global average pooling

GAS Global average squeezing

GMS Global maximum squeezing

IoU Intersection over union

PAN Pyramid attention network

SGD Stochastic gradient descent

SPP Spatial pyramid pooling

SVM Support vector machine

Figure 2.   YOLOV5s structure.
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Lightweight feature extraction
The feature extraction network in this paper has been improved in two parts: Firstly, the modification involves 
substituting the C3 module within the backbone network with CF2. Secondly, the alteration encompasses the 
transformation of the downsampling segment following the C3 module in the backbone network to MC.

The CF2 network structure, illustrated in Fig. 3, processes the input by applying a 1× 1 convolution and 
channel split operation to divide it into two sub-features (referred to as gray and blue features). In convolutional 
operations, channel splitting involves segmenting the input channels into multiple subsets, each subset undergo-
ing convolution independently. This approach enhances network parallelism, thereby improving the computa-
tional efficiency of the model and enabling more effective utilization of hardware resources within the network.

Sub-feature 1 (gray) remains unchanged, while sub-feature 2 (blue) is sent to the F module for feature learn-
ing. The learned blue feature is then fed into the F module again to generate the purple feature. The gray, blue, and 
purple multi-scale features are concatenated to enhance feature reuse, and are then sent to a 1× 1 convolution to 
obtain the output feature. The idea of multi-scale feature concatenation and feature reuse comes from VOVNet55. 
Feature reuse refers to the process of utilizing features extracted from preceding layers and employing them in 
subsequent layers. In neural networks, lower-level features usually encompass more fundamental information, 
while higher-level features encapsulate more abstract and advanced characteristics. By enabling the model to 
efficiently leverage information gleaned from earlier layers, feature reuse enhances the model’s performance 
and efficiency. This technique has the potential to diminish computational complexity, decrease the number of 
parameters, and shorten training time, all while enhancing the model’s generalization capabilities.

The F module consists of two 3× 3 grouped convolutions, where channel shuffling is performed to facilitate 
inter-group feature interactions56. The channel shuffle technique is frequently employed on the output of convo-
lutional layers that possess multiple channels. Its purpose is to facilitate the exchange and fusion of information 
among channels by reordering the arrangement of channels, thereby amplifying the network’s representational 
capacity. The channel shuffle operation encompasses grouping, interlacing, and reconfiguring feature maps 
derived from various channels. This procedure helps enhance the model’s capability to abstractly represent fea-
tures, thereby reinforcing interrelations and diversification among features, ultimately contributing to optimizing 
the model’s performance.

The MC network structure, as shown in the Fig. 3, is mainly inspired by the downsampling method in 
PeleeNet57. The Stemblock structure in PeleeNet ensures strong feature expression ability and reduces a significant 
number of parameters. In the MC structure, one branch uses max pooling and a 1× 1 convolution to reduce the 
number of channels by half (represented by c in the figure), while the other branch uses a 3× 3 convolution with 
a stride of 2 to reduce the number of channels by half. The outputs of the two branches are then concatenated to 
obtain the output feature, ensuring that the final result has sufficient semantic information while reducing the 
number of parameters and avoiding excessive loss of information.

Lightweight feature fusion
In the feature fusion section, this paper extensively utilizes spatial and channel attention mechanisms to holis-
tically model the high-level semantic information and channel-wise characteristics derived from the feature 
pyramid structure of the backbone network58.

The spatial and channel attention mechanism is a technique employed in neural network architectures, nota-
bly in convolutional neural networks (CNNs), to refine feature representation.The spatial attention mechanism 
is geared toward identifying and accentuating pertinent spatial areas within an image. It allocates weights to 
distinct spatial locations, highlighting regions of greater significance for the given task. This approach enables 

Figure 3.   Lightweight feature extraction.
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the network to focus on vital image sections, thereby bolstering its capacity to effectively capture spatial infor-
mation.Conversely, the channel attention mechanism strives to accentuate crucial channels within the feature 
maps generated by diverse network layers. It assesses interdependencies among channels and assigns weights to 
emphasize channels harboring more pertinent information for the designated task. This process empowers the 
network to prioritize and concentrate on informative channels, thus enhancing its ability to extract relevant fea-
tures from the data.The coordinated interplay of spatial and channel attention mechanisms enables the network 
to better discern critical spatial areas and channel-specific features within the data.

A novel fusion module (MG) is devised, and predictions are generated based on a distinct feature layer.The 
MG network structure, as shown in the Fig. 4.

To ensure alignment in terms of channel and feature map size, the feature pyramid structure C3, C4, C5 
obtained from the backbone network undergoes operations such as convolution with a stride of 2, 1× 1 convo-
lution, and upsampling with a 1× 1 convolution. Efficient spatial attention structures (ESA) are subsequently 
introduced after each convolutional structure. Within the ESA, channel information is effectively compressed by 
employing two global compression techniques along the channel dimension, namely global average squeezing 
(GAS) and global maximum squeezing (GMS). This compression process facilitates the formation of comprehen-
sive global information in the spatial domain. The two branches of features are then concatenated and processed 
using a 7× 7 convolutional operation, enabling effective fusion of the global information. The resulting score 
map, after sigmoid activation, is element-wise multiplied with the original feature map.

Moreover, the concatenated feature maps derived from the three layers undergo global average pooling (GAP), 
leading to the generation of a one-dimensional vector encapsulating the global channel-wise information for 
the multi-scale feature maps. This vector is subsequently subjected to global information compression through 
fully connected (FC) layers, a process referred to as “squeeze”59. Additionally, the squeezed vector is separately 
fed into three distinct FC layers, facilitating distinct learning of channel-wise information for the three feature 
maps. Consequently, three different vectors (designated as green, dark yellow, and light yellow) are obtained. 
By applying the softmax function to each vector, attention levels for the diverse multi-scale global information 
are effectively discerned. Following the softmax operation, the vectors are element-wise multiplied with their 
corresponding scale feature maps, and subsequently aggregated to yield the final single-feature prediction head.

Figure 4.   MG feature fusion module.
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Improvement of the loss function
Intersection over union (IoU) loss
Illustrated in Fig. 5, the red box signifies the predicted bounding box, while the green box represents the ground 
truth box (annotated box). The Intersection over Union (IOU) quantifies the extent of overlap between the 
ground truth box and the predicted box through the subsequent steps:

•	 Compute the intersection area between the ground truth box and the predicted box.
•	 Calculate the union area between the ground truth box and the predicted box.
•	 Determine the IOU ratio by dividing the intersection area by the union area. 

The IoU Loss is defined as follows:

The Intersection over Union (IoU) metric assesses the detection performance between predicted and ground 
truth bounding boxes. It possesses scale invariance, demonstrating insensitivity to scale variations. In regression 
tasks, IoU serves as a direct indicator of the distance between the predicted box and ground truth (GT). However, 
IoU encounters the following limitations:

•	 Inability to conduct gradient backpropagation: The IoU cannot be used directly for gradient updates. When 
IoU equals 0 (indicating no intersection between the two boxes), computing a loss as 1− IoU leads to dif-
ficulties in gradient backpropagation.

•	 Incapability to ascertain the distance between predicted and ground truth boxes: IoU yields 0 when there is 
no intersection between the boxes, making it challenging to gauge the distance between these boxes.

•	 Lack of information about the nature of intersection between boxes: IoU fails to describe how the two boxes 
intersect or the overlap pattern they exhibit.

•	 Inability to precisely quantify the degree of overlap between two boxes: IoU lacks the granularity needed to 
precisely measure the level of overlap or coincidence between the two bounding boxes.

CIoU loss function
YOLOv5s utilize the CIoU Loss function, which is defined as follows:

The values of α and v are defined as:

(1)IoU =
Intersection

Union

(2)IoULoss = 1− IoU

(3)LCIoU = 1− IoU +
ρ2(b, bgt)

c2
+ αv

Figure 5.   Intersection over Union (IoU) schematic diagram: (a) illustrates the positions of the predicted box 
and the ground truth box, (b) shows the intersection between the predicted box and the ground truth box, and 
(c) represents the union of the predicted box and the ground truth box.
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The gradient of the CIoU Loss function with respect to the side lengths w and h is:

In the equation, b and bgt correspond to the centers of the predicted box and the ground truth box, respec-
tively. The term ρ2 indicates the Euclidean distance between these centers, while c represents the diagonal length 
of the smallest encompassing closed region that includes both the predicted and ground truth boxes.

While the CIoU Loss function incorporates considerations for bounding box regression, including overlap 
area, center point distance, and aspect ratio, the inclusion of the penalty term for relative proportion in the CIoU 
Loss function does not affect the regression process when the width and height aspect ratios of the predicted 
and ground truth boxes exhibit a linear relationship. Additionally, the gradient values of w and h have opposite 
signs, meaning that an increase in one value results in a decrease in the other value, making it impossible to keep 
them increasing or decreasing simultaneously.

EIoU Loss function
The EIoU Loss function represents an enhanced iteration of the CIoU Loss function60. In contrast to the CIoU 
Loss function, the EIoU Loss function employs an EIoU metric to quantify the overlap between the predicted 
and ground truth bounding boxes. It directly imposes penalties on the predicted width and height results.The 
EIoU metric effectively penalizes discrepancies in the predicted width and height from the ground truth values. 
Furthermore, it circumvents the gradient conflict issue encountered during gradient computation in the CIoU 
Loss function.The EIoU Loss function is defined as:

The variables Cw and Ch represent the width and height of the predicted box and the ground truth box mini-
mum bounding rectangle, respectively.The EIoU Loss function partitions the loss function into three compo-
nents: overlap loss ( LIoU ), center distance loss ( Ldis ), and width-height loss ( Lasp ). The aspect ratio loss term is 
separated into the discrepancy between the predicted width and the width of the minimum bounding rectangle, 
along with the discrepancy between the predicted height and the height of the minimum bounding rectangle.
This approach enhances the aspect ratio loss convergence rate and enhances regression precision.

Results
We conducted extensive model training on the UAVfly and Det-Fly32 datasets to comprehensively validate the 
effectiveness of our proposed algorithm. This meticulous training process was undertaken with the aim of ensur-
ing the algorithm’s robustness and generalization capabilities across diverse datasets, further substantiating its 
outstanding performance in the field of unmanned aerial vehicle (UAV) visual detection. The combined utiliza-
tion of these two datasets facilitated the capture of UAV images in various scenarios and contexts, enabling a 
more comprehensive assessment of the algorithm’s performance and reliability.

Experimental environment
The training environment for all models in this experiment was Windows 10, with an AMD Ryzen 5 4600H with 
Radeon Graphics 3.00 GHz CPU, 16 GB of RAM, an NVIDIA GeForce GTX 1660 Ti GPU, and Pytorch as the 
deep learning framework. The Python version used was 3.7.

Datasets

•	 UAVfly. The detailed information regarding the dataset UAVfly is elaborated upon in “UAVfly dataset”. We 
collected datasets in air-to-air form using three unmanned aerial vehicle devices (DJI AIR2s) .The datasets 
encompass residential areas, streets, fields, lakes, and mountains. Each environmental background type 
contributes nearly equally to the overall dataset.

•	 Det-Fly. The Det-Fly dataset32 comprises over 13,000 images of airborne unmanned aerial vehicles taken by a 
DJI Mavic2 drone. It encompasses diverse real-world scenarios, featuring varied background scenes, viewing 
angles, relative distances, and flying altitudes. The dataset contains data from three different perspectives, 
including front view , top view , and bottom view .

(4)v =
4
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Evaluation metrics
The evaluation metrics for lightweightness
This paper employs three key metrics to evaluate the lightweight nature of the model: the number of parameters 
required (Param), floating-point operations (FLOP), and Frames Per Second (FPS). The number of param-
eters represents the total model parameter count affecting memory usage and program initialization time. The 
parameter count is specific to the network model, and once confirmed, it remains unchanged. During model 
lightweighting, the parameter count decreases. Upon completion of model training, each parameter has a precise 
value, allowing direct usage of parameter files for target predictions during detection tasks.

Floating-point operations (FLOP) serve as a metric to measure algorithmic complexity and are commonly 
used as an indirect measure of the speed of neural network models. Each multiplication or addition represents 
one FLOP. The computational complexity (FLOP) indicates the model’s demand on hardware computational 
units and reflects the number of multiplications and additions required for forward inference.

Frames Per Second (FPS) refers to the number of frames (images) the network can process (detect) per sec-
ond. It evaluates the detection speed, depicting the quantity of images processed per second or the time needed to 
process a single image. A shorter time implies a faster speed. FPS serves as a direct measure of the neural network 
model’s speed, validating the algorithm’s detection speed in subsequent embedded experiments.

The performance evaluation metrics of the model
In machine learning and deep learning, the prediction outcomes of a classification task are categorized into the 
following four types, collectively known as the confusion matrix:

•	 True Positive (TP): Predicted positive and labeled positive, indicating a correct prediction.
•	 False Negative (FN): Predicted negative but labeled positive, indicating a misclassification.
•	 False Positive (FP): Predicted positive but labeled negative, indicating a misclassification.
•	 True Negative (TN): Predicted negative and labeled negative, indicating a correct prediction.

Here, positive and negative refer specifically to unmanned aerial vehicles.
Object detection algorithms typically use several metrics to evaluate their performance, including precision, 

recall, average precision (AP), and mean average precision (mAP). The equations for calculating precision, recall, 
AP, and mAP are as follows:

Upon analysis of the formula, it is evident that Precision concerns the predicted positives in relation to the 
true positives and negatives. As Precision increases, the number of False Positives (FP) diminishes. This reduction 
signifies fewer instances of misclassifying other categories as the designated class, indicating higher purity in 
the predicted positives. Higher Precision corresponds to fewer false alarms or instances of erroneous detections.

Upon analysis of the formula, it is apparent that Recall concerns the predicted positives and negatives in 
relation to the true positives. As Recall increases, the number of False Negatives (FN) decreases. This decrease 
implies fewer instances of misclassifying positives as negatives, indicating a higher capacity to capture a larger 
portion of all actual positives. Higher Recall corresponds to fewer instances of missed detections or lower rates 
of failing to identify actual positives.

Although named average precision (AP), the calculation method of AP does not involve computing the aver-
age of Precision values. Instead, it computes the area enclosed by the Precision-Recall curve and the coordinate 
axes for each class, utilizing integral methods for computation. If a model has a larger AP, signifying a larger area 
enclosed by the Precision-Recall curve and the coordinate axes, it implies higher Precision and Recall overall.

The mAP averages the AP values for all classes. AP reflects the precision of predictions for each class, while 
mAP represents the average AP across all classes, serving as an indicator of the overall accuracy of the entire 
model.

The mAP encompasses two forms: one is mAP@0.5, which denotes the mAP value at an IOU threshold of 
0.5. In this scenario, when the Intersection over Union (IOU) between the predicted box and the annotated 
box exceeds 0.5, the object is considered predicted correctly. The mAP is then computed under this premise. 
The other form is mAP@[0.5:0.95], which represents the mAP across multiple IOU thresholds within the range 
[0.5, 0.95] with an interval of 0.05. It involves utilizing ten IOU thresholds within this range to compute their 
respective mAP values, followed by averaging these values. A larger mAP@[0.5:0.95] indicates more accurate 
predicted boxes as it encompasses a wider range of higher IOU thresholds.

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)AP =

∫ 1
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(11)mAP =
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Training parameters
The YOLO algorithm is a widely used method for object detection, and the training parameters play a crucial 
role in determining the model’s effectiveness and precision. Here’s a succinct overview of key parameters and 
their respective functions:

•	 Number of Epochs: Specifies the number of complete passes the model makes through the entire dataset 
during training. Increasing epochs may improve model performance but can also lead to overfitting.

•	 Batch Size: Determines the quantity of samples fed into the model for weight updates in each iteration. Larger 
batch sizes generally expedite training but may require more memory resources.

•	 Learning Rate: Governs the size of adjustments made to model parameters during training. A higher learning 
rate can hasten convergence but might result in unstable training. Conversely, a lower learning rate could 
demand more training time but contributes to a more stable convergence towards an optimal model.

•	 Optimizer: An algorithm employed to fine-tune model weights to minimize the loss function. Common 
optimizers include Stochastic Gradient Descent (SGD), Adam, RMSprop, each offering distinct advantages 
and suitability in various contexts.

•	 Image Size: Specifies the dimensions of input images. Larger image sizes generally enhance detection accuracy 
but also increase computational load and training duration.

The meticulous selection and fine-tuning of these parameters can significantly impact training speed, model 
performance, and convergence. Strategic adjustments aid the model in better adapting to the dataset, ultimately 
enhancing detection accuracy.

The hyperparameter settings for this experiment are as follows: initially, experiments involved varying the 
training epochs between 100, 200, 300, and 400 to optimize model performance while minimizing overfitting 
risks. Ultimately, we determined the optimal training epochs as 300. Considering the influence of batch size on 
memory usage and guided by equipment limitations, a batch size of 16 was chosen for training. The training 
images were standardized to dimensions of 640× 640 pixels. Stochastic Gradient Descent (SGD) served as the 
optimizer for this study. To dynamically regulate the learning rate during training, we initialized the lr0 (initial 
learning rate) at 0.01, applying the cosine annealing algorithm for adjustments. Figure 6 depicts the comparative 
analysis of mean Average Precision (mAP) between our modified algorithm and the original approach post-
parameter tuning. The graphical representation distinctly exhibits the enhanced model’s superiority in both 
detection accuracy and convergence speed over the original YOLOv5s.

Comparative experiments of YOLOv5s with different backbone networks
This section presents a comparative experiment on three different backbone networks of YOLOv5 using the 
UAVfly dataset to validate the effectiveness of improving the backbone network with CF2-MC-SPP. The experi-
mental model details are as follows: First, the backbone network C3Net is replaced by our proposed lightweight 
convolutional neural network CF2-MC to obtain model 2. Then, the YOLOv5-CF2-MC backbone network is 
restructured by adding a Spatial Pyramid Pooling (SPP) module to obtain model 3. To validate whether the 
improved lightweight backbone model can reduce network complexity, decrease network computation, and 
effectively reduce inference time, this study conducted comparative experiments using unimproved YOLOv5s 

Figure 6.   Comparison of mAP between the improved algorithm and the original algorithm during training.
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and two lightweight networks, Model 2 and 3. The evaluation metrics for the three different backbone networks 
of YOLOv5s are shown in Table 3.

Table 3 displays that model 2, replacing the lightweight convolutional neural network CF2-MC directly as 
the YOLOv5s backbone, exhibits a slightly reduced detection accuracy compared to the original YOLOv5s. 
However, its lightweight metric significantly outperforms the latter. The experimental results illustrate the effi-
cacy of employing CF2-MC to achieve model lightweighting. The substantial reduction in parameter count and 
computational demands contributes to effectively lowering the hardware prerequisites for both model training 
and inference.To compensate for the accuracy loss caused by lightweighting, the CF2-MC backbone network 
was optimized by adding an SPP module after the last convolutional layer of the YOLOv5-CF2-MC backbone 
network, and the model’s mAP@0.5 increased from 92.16 to 93.5%. The outcomes indicate that employing the 
enhanced CF2-MC-SPP as the backbone network leads to a substantial enhancement in detection accuracy in 
comparison to model 2. Through this experiment, the effectiveness of the lightweight backbone model based on 
CF2-MC-SPP has been validated.

Ablation experiments of feature fusion network models
Merely relying on the lightweight design of the backbone network is insufficient to meet our requirements. In 
this section, we conducted lightweight ablation experiments on the feature fusion part of YOLOv5s using the 
UAVfly dataset to achieve a lower parameter count and higher detection accuracy.

In the ablation experiments, YOLOv5s was used as the baseline. Model A was obtained by replacing the 
backbone network of YOLOv5s with CF2-MC-SPP. Building upon Model A, Model B was derived by introducing 
the MG fusion module, and Model C was developed by incorporating the EIoU function.

Table 4 presents the results of the ablation experiments, demonstrating that by replacing the backbone net-
work of YOLOv5s with CF2-MC-SPP and utilizing both the MG fusion module and the EIoU function, the 
YOLOv5s-ngn model achieved a reduction in parameter count and an improvement in accuracy. Model B 
exhibited a 57.7% reduction in parameter count and a 41% reduction in FLOP compared to Model A, with a 
corresponding 0.7% increase in mAP0.5. Model C, which solely employed the EIoU function, showed no change 
in parameter count and FLOP compared to Model A, but achieved a 1.3% increase in mAP0.5. Subsequently, 
Model D (YOLOv5s-ngn) was derived by incorporating the EIoU function into Model B, further enhancing 
detection accuracy. These experiments validate the performance of the proposed improved model. YOLOv5s-ngn 
achieved a balance between speed and accuracy by reducing the parameter count, while surpassing the detection 
accuracy of the original YOLOv5s.

Comparative experiments of classical object detection networks
Experimental results on the self‑constructed UAVfly dataset
In order to confirm the superiority of the proposed YOLOv5s-ngn network over conventional object detection 
algorithms, we conducted training using various network models of object detection algorithms on a dataset 
we created. To ensure experimental reliability, YOLOv761, YOLOX62, YOLOv5, YOLOv427, and YOLOv326 were 
trained using identical hyperparameters to their unimproved counterparts. The evaluation metrics for these 
eight network models are presented in Table 5.

Based on the detection results in Table 5 for the eight network models, it is evident that the YOLOv5s-ngn 
model outperforms all six models, except YOLOv7, in mAP for UAV object detection. Furthermore, it also 
surpasses the other seven models in lightweight metrics, including parameter count and FLOP.These findings 
underscore the exceptional performance of the YOLOv5s-ngn model in UAV object detection tasks. However, 
alternative approaches exhibit limited generality in this context, encountering challenges such as insufficient 
detection accuracy and slow detection speeds. Therefore, the choice of YOLOv5s-ngn as the target detection 
algorithm for identifying UAV objects is highly compelling. This selection not only ensures high detection 

Table 3.   Comparative experiment of different backbone networks for YOLOv5s.

Model Backbone network Param M FLOP G mAP 0.5 mAP 0.5:0.9

1 YOLOv5s (baseline) 7.02 15.8 0.936 0.594

2 CF2-MC 5.31 9.2 0.921 0.577

3 CF2−MC+ SPP 5.65 10.0 0.935 0.598

Table 4.   Ablation experiments of YOLOv5s-ngn. (“� ” indicates the usage of this model).

Model Baseline CF2−MC+ SPP MG EIoU Param M FLOP G mAP 0.5 mAP 0.5:0.9

YOLOv5s � 7.02 15.8 0.936 0.594

A � 5.65 10.0 0.935 0.598

B � � 2.39 5.9 0.942 0.612

C � � 5.65 10.0 0.948 0.607

D � � � 2.39 5.9 0.954 0.615
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accuracy but also provides significant advantages in lightweight design, offering robust support for real-time 
UAV object detection.

Experimental results on the Det‑Fly dataset
We conducted a comprehensive comparison between YOLOv5s-ngn and mainstream algorithms applied to the 
Det-Fly dataset, with specific results presented in Table 6. These findings reveal that YOLOv5s-ngn achieves 
outstanding detection accuracy in urban and sky backgrounds. Additionally, its mean Average Precision (mean 
AP) surpasses that of the other eight algorithms significantly across the four different background conditions. 
This underscores the exceptional performance of YOLOv5s-ngn across various background environments, high-
lighting its prowess in target detection tasks.

Embedded experiments
The NVIDIA TX2 is an embedded artificial intelligence computing platform designed by NVIDIA. It incorpo-
rates a high-performance NVIDIA Pascal architecture GPU, providing robust computational power and energy 
efficiency. Specifically tailored for machine learning, deep learning, computer vision, and associated domains, 
the TX2 boasts multiple connectivity interfaces and comprehensive software support. Consequently, it has found 
extensive use across diverse domains including unmanned aerial vehicles, robotics, intelligent cameras, and 
similar fields.The specific specifications of the NVIDIA TX2 used are detailed in Table 7.

We established the experimental setup on the NVIDIA TX2 platform using JetPack 4.5.1 and CUDA 10.1, 
and implemented PyTorch 1.8.1. Subsequently, the trained model was successfully deployed on the TX2 for real-
time unmanned aerial vehicle (UAV) detection tests based on the UAVfly dataset scenarios. Detailed information 

Table 5.   Comparative experiment of classic target detection network.

Model Param M FLOP G Urban block Suburb Desert Field Lake Sky Mountain mAP 0.5

YOLOv5s 7.02 15.8 0.887 0.912 0.948 0.944 0.968 0.971 0.921 0.936

YOLOv4 52.5 119.8 0.874 0.922 0.931 0.945 0.933 0.958 0.906 0.924

YOLOv3 61.15 192.1 0.821 0.889 0.912 0.918 0.921 0.920 0.884 0.895

YOLOv5m 20.9 48.2 0.884 0.917 0.947 0.951 0.954 0.969 0.967 0.941

YOLOX-s 8.94 26.7 0.872 0.953 0.959 0.968 0.951 0.972 0.958 0.949

YOLOv7 36.49 103.5 0.932 0.952 0.976 0.976 0.961 0.982 0.948 0.961

YOLOv7-tiny 6.01 13.2 0.901 0.948 0.952 0.959 0.952 0.971 0.953 0.948

YOLOv5s-ngn 2.39 5.9 0.941 0.951 0.954 0.961 0.967 0.983 0.923 0.954

Table 6.   Comparative experiments of YOLOv5s-ngn with other mainstream methods on the Det-Fly Dataset.

Algorithms Field Urban Sky Mountain mAP 0.5

Casade R-CNN63 68.1 67.4 94.5 81.8 77.950

FPN64 71.7 71.5 85.1 77.8 76.525

Faster R-CNN25 65.2 61.5 87.8 79.2 73.425

Grid R-CNN65 76.2 78.2 91.5 73.2 79.775

RefineDet66 69.4 55.8 87.4 74.1 71.675

RetinaNet48 74.4 71.6 89.8 71.2 76.750

SSD51228 75.1 68.8 93.1 77.8 78.700

YOLOv326 68.8 61.2 87.5 79.2 74.175

YOLOv5s-ngn 74.8 79.1 95.2 79.8 82.225

Table 7.   Detailed specifications of the Jetson TX2 embedded system.

Items Specification

CPU Dual-core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM Cortex-A57 MPCore

GPU 256-core NVIDIA Pascal architecture GPU

Power 7.5 W/15 W

Memory 8GB 128-bit LPDDR4 Memory 1866 MHx

Storage 32 GB eMMC 5.1

Operating system Linux for Tegra 28.1
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regarding the average inference speed of various models processing individual frame images is presented in 
Table 8. The obtained outcomes highlight the model we proposed achieving a processing rate of 69 frames per 
second (FPS), demonstrating substantial potential to meet practical demands in UAV detection tasks.

Unmanned aerial vehicle detection results
Figure 7 demonstrates the detection performance of the original YOLOv5s model and the improved model on 
unmanned aerial vehicle (UAV) targets. Based on Fig. 7, it is noticeable that the enhanced model demonstrates 
heightened confidence in UAV detection outcomes, with anchor boxes displaying a strong alignment with UAV 
positions, thereby implying improved localization accuracy. The improved network model can accurately identify 
UAVs, therefore, the proposed lightweight network-based model can perform real-time detection on UAVs.

Discussion
To address the challenge of achieving real-time detection among drones during operation, we propose a light-
weight air-to-air drone detection model based on the YOLOv5s architecture. Initially, we achieved lightweight 
feature extraction by integrating the CF2−MC+ SPP lightweight feature extraction network into YOLOv5s. 
Simultaneously, we introduced an innovative feature fusion module (MG) and applied the EIoU loss function, 
aiming to enhance the detection accuracy while reducing the complexity of the YOLOv5s model. The optimized 
YOLOv5s model demonstrated outstanding performance on the UAVfly and Det-Fly datasets. Lastly, embedded 
experiments conducted on the NVIDIA TX2 platform revealed an average inference speed of only 14.5 ms per 
single-frame image. Despite YOLOv5s-ngn accomplishing real-time detection of air-to-air drones, it still faces 
limitations, such as the datasets’ inability to fully represent the actual operational environments of drones and 
challenges in distinguishing between multiple overlapping drone images. Our future work will involve expanding 
the dataset to encompass a more comprehensive range of real-world drone operating environments, including 
scenarios with multiple overlapping drones. Furthermore, our focus will extend to exploring model optimiza-
tion techniques to achieve faster and more accurate drone detection, which will remain a significant focal point 
in our future endeavors.

Table 8.   Embedded experiment results.

Model mAP 0.5 Inference speeds (ms) FPS

YOLOv5s 0.933 17.3 58

YOLOv4 0.927 34.4 29

YOLOv3 0.901 47.6 21

YOLOv5m 0.943 25.6 39

YOLOX-s 0.951 22.3 45

YOLOv7 0.958 28.6 35

YOLOv7-tiny 0.939 16.2 62

YOLOv5s-ngn 0.952 14.5 69

Figure 7.   Detection performance.
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Data availability
The datasets generated during and/or analysed during the current study are available at https://​github.​com/​lucie​
n22588/​UAVfly.​git.
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