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Threshold of anthropogenic sound 
levels within protected landscapes 
in Kerala, India, for avian habitat 
quality and conservation
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Anthrophony is an important determinant of habitat quality in the Anthropocene. Acoustic 
adaptation of birds at lower levels of anthrophony is known. However, threshold anthrophony, 
beyond which biophony starts decreasing, is less explored. Here, we present empirical results of the 
relationship between anthrophony and biophony in four terrestrial soundscapes. The constancy of 
the predicted threshold vector normalised anthropogenic power spectral density (~ 0.40 Watts/Hz) 
at all the study sites is intriguing. We propose the threshold value of anthropogenic power spectral 
density as an indicator of the avian acoustic tolerance level in the study sites. The findings pave the 
way to determine permissible sound levels within protected landscapes and directly contribute to 
conservation planning.

The prospects of characterising habitats and ecosystems using acoustic data have attracted researchers from 
various disciplines to acoustic ecology. Over the last few decades, there has been a groundswell of interest in 
using sound to describe and characterise ecosystems1. The meteoric rise in technological capabilities and the 
plummeting cost of associated hardware2–4 helped acoustic ecology permeate laboratories worldwide. Ongoing 
research in acoustic ecology can broadly be classified as studies focusing on the landscape (community) and 
species levels. While the former is confined predominantly to interpreting acoustic indices5, the latter leverages 
the analytical powers of the current technology wave6,7. Either way, the primary focus is to extract ecological 
information from sonic data. Acoustic ecology is built up on the premise that a time-stamped soundscape is a 
signature of a landscape.

An offshoot of landscape ecology8, acoustic ecology is weighed down by the plurality of views and the lack 
of physical theories of the macroecological significance of soundscape9. The weak consensus on the interpreta-
tion of acoustic indices stems from the prevalent plurality. Intrinsic characteristics of mechanical waves, their 
propagation, and obstructions in terrestrial landscapes add to the complexity of acoustic ecology10,11. Not-
withstanding the advances in field recording techniques that help circumvent some of the challenges posed 
by the mechanical nature of sound waves12, the reciprocating nature of communication13 of indicator species 
(here, birds)14–18 increases the probability to miss capturing the vocalisation of all bird species present during 
acoustic data collection in a terrestrial landscape. A lack of scientific consensus on the duration and periodicity 
of acoustic data measurement also impedes progress in the domain. While strong reasons are put forward as 
arguments favouring extended and continuous sonic recording19,20, the counter-arguments are equally strong 
and multidimensional21,22.

The plurality of perspectives in acoustic ecology posits an absorbing canvas. It remains ambiguous whether 
biophonic heterogeneity can be ascribed to the diversity of vocalising species or the community diversity10. 
Despite the different perceptions, the scientific community of acoustic ecologists is unanimous in advocat-
ing the utility of acoustic data in biodiversity studies. The domain is gaining currency as a travelator, which 
we can ill-afford to overlook for timely biodiversity assessment and conservation23,24. The effectiveness and 
adoption of acoustic metrics for biodiversity monitoring hinge on unravelling the underlying physical theories 
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and developing mathematical constructs that aid objective conservation planning25. Formulating nomothetic 
theories in acoustic ecology is a need of the hour26,27. Soundscape dynamics, with its reflexive and evolutionary 
adaptations, posits the biggest hurdles in developing theories in acoustic ecology. Despite the thin ice on which 
acoustic ecological theories get constructed, the looming global biodiversity crisis leaves no option but to design 
innovative studies that lead to pragmatic results. The effectiveness of future conservation interventions hinges 
on translational research.

Here, we present empirical results of the affiliation between vector normalised power spectral density of 
anthrophony (0–2 kHz) and avian biophony (2–8 kHz) within a wildlife sanctuary, an urban park, and two 
sacred groves in Kerala, India. The results transform as permissible sound thresholds in terrestrial landscapes 
for effective conservation.

Result and discussion
Relationship between α and β
The normalized power spectral density of the anthrophony (α) and biophony (β) components derived from the 
sonic database at SABS, HPM, PK, and IK are presented in Supplementary Table 1. The regression analysis of the 
α and β in each soundscape fits into concave-down quadratic regression models (Fig. 1). Table 1 summarises the 
quadratic regression models at the four sites. HPM, PK, and IK reveal matching patterns with comparable quad-
ratic equation coefficients and standard deviations (Table 1). The consistently low standard deviation indicates 

Figure 1.   α–β regression model of the four sites SABS, HPM, PK, and IK.

Table 1.   Summary of the α–β regression model at the four sites.

Study site α α2 (Constant) R2 βmax (Watts/Hz) αmaxβ (Watts/Hz)

Salim Ali Bird Sanctuary (SABS) 4.11 (± 0.16)  − 5.1 (± 0.17) 1.43 (± 0.02) 0.57 2.26 0.40

Hill Palace Museum (HPM) 3.45 (± 0.22)  − 4.29 (± 0.17) 1.29 (± 0.06) 0.85 1.98 0.40

Poyil Kavu (PK) 3.42 (± 0.28)  − 4.31 (± 0.25) 1.31 (± 0.07) 0.66 1.99 0.40

Iringole Kavu (IK) 3.35 (± 0.20)  − 4.34 (± 0.19) 1.42 (± 0.04) 0.65 2.06 0.39
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fewer Power Spectral Density (PSD) fluctuations in the quadratic fit. While the regression model of SABS was 
slightly different from the others, the overall trends of the sites are comparable. The statistical significance 
(p-value < 0.05) and high R2 values (0.57, 0.85, 0.66, 0.65 for SABS, HPM, PK, and IK, respectively) of datasets 
describe sonic powers are fit for the regression models.

The αmaxβ and βmax of the fitted curves are given in Table 1. αmaxβ values describe the changing behaviour of 
soundscapes across anthrophonic (α) and biophonic (β) components. The highest βmax (2.26 Watts/Hz) was 
observed at SABS. The four sites showed almost identical values αmaxβ (0.39–0.40 Watts/Hz).

Ecological significance of αmaxβ
PSD represents average sonic power during a specific time in a certain frequency range. It is a physical measure 
of information that leads to understanding the spatio-temporal dynamics of soundscapes. Mechanical and bio-
logical sounds are prevalent between 1–2 and 2–8 kHz, respectively28,29. The frequency ranges are divided into 
1 kHz frequency bins, and α and β estimate the vector normalised power spectral density of the anthrophony and 
biophony components by the sum of the power in these frequency bins. Since the prevalent anthrophonic range 
contains only one bin (1–2 kHz), the maximum α yields a power of 1 W/Hz30. This explains the convergence of α 
at 1 in Fig. 1. The magnitude of β represents the intensity of the biophony and thus reveals specific characteristics 
of vocal organisms in a soundscape.

The Ordinary Least Square regression analysis of α and β components across all the sites fits into con-
cave down quadratic functions. Biophony (β) increases with increasing anthrophony (α) to a maximum before 
decreasing. The empirical results presented here correspond well with the Lombard effect31,32. The positive rela-
tionship of α and β at lower levels of α at all sites (Fig. 1) explicates the biophonic adaptive resilience of birds to 
changing soundscapes. However, the biophonic resilience collapses to zero after βmax with increasing α (Fig. 1). 
Higher β indicates the intensified bird vocalisations at the study sites and their presence.

Anthrophonic level in a landscape (α) is a proxy for the degree of disturbance and stress to non-human vocal-
ising species. The notion of αmaxβ introduced in this paper is identical to the point corresponding to the vertex 
in Functional Calculus. It is the critical point where a curve changes direction from increasing to decreasing. 
Geometrically αmaxβ is the point at which the axis of symmetry through the vertex of the quadratic curve cuts 
the x-axis (α). The identical αmaxβ observed at all the sites (Table 1) open the prospect of defining acoustic limits 
in protected terrestrial landscapes. Elevated anthrophonic levels disturb indicator species like birds. They either 
become alarmed and silent or move to another soundscape with lower anthrophony22,33. Constant αmaxβ at the 
four sites point to similarities in their soundscapes. We presume αmaxβ to be dependent on geography. All sites 
in the present study are located in the tropical monsoon region. We put forth αmaxβ as a metric to denote the 
anthrophonic tolerance level of birds at the study sites.

Although several indices are available to study the presence and diversity of acoustic communities19,34,35, we 
are yet to arrive at a standard metric to denote the sonic characteristics of natural soundscapes. We propose 
estimating αmaxβ from the α–β regression model of the soundscapes as a pragmatic way to define the threshold 
anthrophonic sound in protected landscapes. The estimated αmaxβ of protected landscapes (soundscapes) pro-
vides a metric that can be used as the permissible threshold of anthrophony in protected landscapes. However, 
the validity and utility of α and β components of the soundscapes need to be further explored across multiple 
habitats by understanding the relationships between acoustic indices, biodiversity, and anthropogenic activities 
through proper habitat assessment. If so, the α–β regression model of soundscape will be a useful characteristic 
of the terrestrial landscape. Accordingly, it acts as a good surrogate that can be used to monitor habitat qual-
ity and taken as a baseline measure for landscape conservation planning. α–β regression models and αmaxβ are 
independent of the vocalization of individual species. While the Lombard effect in Aves can be considered 
as reflexive-adaptive36, the cumulative effect of persistent background anthrophony is known to shape bird 
sounds37–40. Consequently, baseline α–β regression models and αmaxβ can ingeniously be used to study drift in 
terrestrial soundscape, if any, over time.

Integrating the α–β regression models and αmaxβ into cost-effective conservation technologies opens pathways 
to quickly understand the anthrophonic tolerance level of birds, acoustic community structure, and their changes 
in response to environmental changes and anthropogenic activity. It encourages traditional bio-acoustics and 
biodiversity researchers unfamiliar with intensive acoustic-computational methods to arrive at recommendations 
for conservation policies. Though acoustic monitoring presents several advantages, as previously discussed, it 
also has certain limitations. References10,41, particularly at the community-level studies. Comprehensive field 
recordings, as well as the retrieval and management of data, require the substantial deployment of acoustic sen-
sors and the corresponding hardware, leading to higher costs. Systematic ground-truthing of acoustics indices 
and measures against ecosystem parameters across multiple habitats is inevitable42 to explicitly develop new 
analyses and techniques inferring meaningful ecological information43 Given the challenges mentioned above, 
deploying the proposed α–β regression models and αmaxβ for landscape conservation is currently challenging. 
However, our findings are transformative, rendering acoustic ecology exigent in conservation efforts. Validating 
this finding across diverse regions with varying spatial densities of acoustic sensors and temporal frequencies 
will possess an improved method for monitoring landscapes in the future.

Materials and methods
Study area
Acoustic data were collected from Salim Ali Bird Sanctuary (SABS), Hill Palace Museum (HPM), Poyil Kavu 
(PK), and Irigole Kavu (IK) in Kerala, India, in 2018 and 2019, respectively. SABS is an International Bird Area 
(IBA)44 located along the bank of the Periyar River spread over 25.16 km2 and lies between 10° 7′ and 11° N 
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latitudes and 76° 40′ and 76° 45′ E longitudes. Of the 284 bird species observed at SABS, 03 are vulnerable, 08 are 
near-threatened, and 11 are endemic. SABS also provides seasonal refuge to 72 migratory bird species.

HPM is an urban park spread across 22.8 ha, bound by 9° 57′ 10.27′′ N latitude and 76° 21′ 49.94′′ E longitude 
in the Ernakulam district. PK and IK are sacred groves in urban settings. PK is located at 11° 24′ 35.05′′ N latitude 
and 75° 42′ 58.55′′ E longitude in the Kozhikode district and sandwiched in 12 ha of land between the National 
Highway (NH 66) and Kappad beach. IK is situated at 10° 6′ 30.95′′ N latitudes and 76° 30′ 1.81′′ E longitude in 
the Ernakulam district and is spread across 20 ha.

Acoustic data collection
Acoustic recording was carried out at the study sites following standard protocol45. We focused on avian sounds, 
as they are indicator species27,46. As most bird species within the study sites were diurnal23, only daytime acoustic 
recording over a 12 h time window from 6.00 AM to 6.00 PM was carried out. All recordings were carried out at 
preselected locations within the study sites. Ten sound clips of 1 min each were recorded every hour, and their 
mean was taken as the representative acoustic sample of the respective hour. This processed data of 1-min dura-
tion is sufficient to analyse and provide potentially rich sources of ecological information about the abundance, 
distribution, and behaviour of avian species47. Acoustic data of SABS were recorded on 19 April, 07 September, 
11 December 2018, 18 April 2019, 09 September 2019, and 10 December 2019 at about > 500 m away from the 
river. Acoustic data of HPM and IK were collected for the same duration one day before and after that of the 
measurement at SABS in April, December 2018, and 2019, respectively. An identical framework was used to 
record the acoustic data of PK on 14 December 2018 and 21 April 2019. All the recordings at HPM, PK, and 
IK were carried out at the interior locations. The unitary dates were representative samples of summer, post-
monsoon, and winter at the study sites. The acoustic measurements were carried out using Marantz PMD 661 
MK III sonic recorder with an omnidirectional boundary microphone at 44.1 kHz/16-bit sampling rate. Acoustic 
data was stored in .wav format as signals in two channels (left and right).

Data analysis
Acoustic Data from each site was pooled separately for analysis. The Welch Power Spectral Density (PSD) (Watts/
Hz) in the frequency range between 1–2 kHz (α), and 2–8 kHz (β), of SABS, HPM, PK, and IK soundscapes at the 
two time periods were extracted as the average of the left and right channels using Tune R®48 and ndsi() function 
in soundecology®49 packages in R v.3.1.250.

The relationship between α and β was estimated using Ordinary Least Square regression. We determined 
the αmaxβ, where the fitted α function changes from increasing to decreasing (points correspond to maximum β, 
βmax) by calculating the axis of symmetry of a quadratic function:

where a and b are the coefficients of the quadratic fit function β(α) = aα2
+ bα + c.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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