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Classification of human walking 
context using a single‑point 
accelerometer
Loubna Baroudi 1*, Kira Barton 1,2, Stephen M. Cain 3 & K. Alex Shorter 1

Real‑world walking data offers rich insights into a person’s mobility. Yet, daily life variations can 
alter these patterns, making the data challenging to interpret. As such, it is essential to integrate 
context for the extraction of meaningful information from real‑world movement data. In this work, 
we leveraged the relationship between the characteristics of a walking bout and context to build 
a classification algorithm to distinguish between indoor and outdoor walks. We used data from 20 
participants wearing an accelerometer on the thigh over a week. Their walking bouts were isolated and 
labeled using GPS and self‑reporting data. We trained and validated two machine learning models, 
random forest and ensemble Support Vector Machine, using a leave‑one‑participant‑out validation 
scheme on 15 subjects. The 5 remaining subjects were used as a testing set to choose a final model. 
The chosen model achieved an accuracy of 0.941, an F1‑score of 0.963, and an AUROC of 0.931. This 
validated model was then used to label the walks from a different dataset with 15 participants wearing 
the same accelerometer. Finally, we characterized the differences between indoor and outdoor walks 
using the ensemble of the data. We found that participants walked significantly faster, longer, and 
more continuously when walking outdoors compared to indoors. These results demonstrate how 
movement data alone can be used to obtain accurate information on important contextual factors. 
These factors can then be leveraged to enhance our understanding and interpretation of real‑world 
movement data, providing deeper insights into a person’s health.

Walking is a fundamental human movement that has many benefits for mental and physical  health1–4. With the 
advancements of micro-electromechanical systems (MEMS), researchers are now able to measure human motion 
outside the lab for extended periods. Real-world measurements are often conducted over long periods where 
there is little to no control over or explicit knowledge of a participant’s behavior. Generally, people engage in 
numerous activities across different contexts in their daily life. Various methods have been developed to gather 
information about what an individual is doing. Human activity recognition (HAR) serves as the initial step in 
understanding real-world data as it allows for the classification of an individual’s activities and the identification 
of walking instances. HAR research has successfully utilized different combinations of wearable sensors (such as 
mobile phones and inertial measurement units) and methods (including classic machine learning models and 
deep learning) to achieve accurate classification  performance5–9. Research has also been conducted in the field of 
transportation mode detection using mobile phones and wearable  sensors10,11. However, even within the walking 
activity itself, there exists a range of contexts that give rise to different behaviors.

There are many factors that can cause changes in gait. Firstly, the location where an individual is walking has a 
significant impact on their kinematics. Different terrains have been shown to influence how people negotiate their 
 walk12,13. The location where someone walks can provide insight into their habits, such as whether they explore 
beyond their home and engage with the  community14. Additionally, certain features of the built environment 
that individuals navigate can impact their  mobility15,16. These various factors are directly related to health and 
well-being and therefore important to monitor. Secondly, the purpose of a walk can result in different walking 
strategies, even when individuals are walking in the same  location17. For example, people tend to walk faster 
when commuting compared to a leisurely walk, despite both taking place outdoors in similar locations. Thirdly, 
there are internal factors that can affect human movement, such as mood. Contrasting moods, like happiness 
versus sadness, can lead individuals to exhibit different walking  behavior18–20. Overall, acquiring information 
about these factors is crucial for understanding any observed variability in real-world walking.
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The utilization of GPS data has proven to be successful in answering various research questions related to real-
world human movement and  mobility21–23. Kim et al. found that both lower-limb amputees and non-amputees 
tend to walk faster when they are away from their  homes14. Similarly, Baroudi et al. recently quantified differences 
in walking speed for individuals walking in different real-world contexts, such as work, home, or  commuting17. 
These studies used either dedicated GPS receivers or leveraged the GPS capabilities of mobile phones. However, 
GPS receivers can be cumbersome to use over extended periods as they require frequent recharging, cause privacy 
concerns, and add an extra device for individuals to carry; mobile phones do not offer the same level of resolution 
and can result in sparse data that is challenging to utilize effectively. Another tool researchers have employed 
for gaining insights into an individual’s real-world context is self-reporting24,25. Self-reporting enables the col-
lection of more detailed data, but it heavily relies on the participant’s compliance and often leads to incomplete 
datasets. Furthermore, self-reporting is burdensome and not practical for extended periods of data collection. 
Cameras offer arguably the most direct means of gathering information about a person’s whereabouts. Doherty 
et al. used both a camera and an accelerometer to objectively quantify real-world  activity26. Researchers have 
also developed accurate frameworks for the classification of camera data to obtain information on terrain types 
and surface  inclines27. However, the use of camera data can raise privacy concerns, especially when used over 
extended periods. Practicality is another consideration as individuals need to carry the camera, keep it charged, 
and ensure there are no obstructions. Overall, although these methods are advantageous in many aspects, factors 
such as practicality, participant burden, and privacy need to be taken into account for real-world data collection.

Accelerometer-based methods have emerged as an alternative for analyzing real-world data with regard to 
context. Hu et al. used a single inertial measurement unit (IMU) on the lower back to differentiate between flat 
and uneven terrain, as well as distinguishing between older and younger  participants28. Hashmi et al. used IMUs 
embedded in a smartphone, placed on the lower back and chest, to classify various terrain  features13. While 
both studies demonstrated the feasibility of using IMUs to accurately classify terrain, the datasets used were 
created in a controlled environment, with participants walking at steady state on selected surfaces. This synthetic 
aspect of data collection may limit the ecological validity of the classifiers in real-world scenarios. Additionally, 
the sensor placements used in these studies may restrict the practical implementation of these solutions over 
extended periods.

Hashmi et al. also included a classification of indoor vs. outdoor  environments13, which can provide important 
insights for clinical decision-making. Understanding the proportion of time an individual spends indoors can be 
indicative of lifestyle choices and mental health. Outdoor walking, often more challenging, can be particularly 
useful for the assessment of certain patient groups’ mobility. Conversely, indoor walking occurs in a more con-
trolled environment that can be replicated in the lab. As such, differentiating movement in these two environ-
ments can provide insight into an individual’s health and well-being. Ali et al. proposed SenseIO, an accurate 
framework that combines different mobile phones modalities (e.g., Wi-Fi, accelerometer, proximity, light, and 
time-clock) for environmental classification (indoor vs. outdoor)29. However, this method suffers from a high 
consumption of smartphone energy. Kelishomi et al. propose an alternative approach that leverages smartphone 
motion sensors to help detect whether an individual is moving indoors or  outdoors30. While the classification 
results were accurate, the dataset used to train and evaluate the algorithm was synthetic and may not be a good 
representation of real-world scenarios.

In this study, we propose an approach to identify walking context in the real world utilizing a single thigh-
worn accelerometer. Our study makes the following contributions:

• Algorithm development We developed a classification algorithm that leveraged the natural grouping of real-
world walking into bouts to identify walks indoors versus outdoors.

• Validation of our algorithm with a real-world dataset To train and validate the model, we used a dataset gener-
ated from a data collection on 20 participants in the real world over a week, where GPS and self-reporting 
information were collected to label the different walks.

• Analysis of differences in walking kinematics with an extended dataset Once validated, we used our model 
to label indoor and outdoor walks from a different dataset, where 15 participants were equipped with the 
accelerometer over two consecutive weeks. Finally, we characterized the influence of walking indoors versus 
outdoors on walking kinematics.

This novel approach has the potential to facilitate the parsing and analysis of real-world walking data while 
utilizing only an accelerometer.

Methods
Overview
Figure 1 shows an overview of the data collection and processing framework. We leveraged two datasets in this 
study: datasets A and B. All methods were carried out in accordance with relevant guidelines and regulations. 
For both datasets, the University of Michigan’s Institutional Review Board approved the procedures. Every 
participant gave their informed consent, before the studies commenced. Dataset A was collected using a thigh-
worn accelerometer, self-report, and GPS data over 7 days with 20 participants. Participants were asked to report 
the purpose and location of the walks carried out throughout their day. Dataset B was collected using only the 
thigh-worn accelerometer over 14 days with 15 participants. We used the self-report and GPS data to label the 
walking periods from Dataset A. The walking periods labeled exclusively inside or outside were used to train, 
validate, and test a classification model. Then, we used the classification model to label the walking periods 
labeled as mixed (e.g., inside and outside), as well as the unlabeled walking periods from Dataset A, and all the 
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walking periods from Dataset B. Finally, all the labeled walking periods from both Dataset A and B were used 
to characterize the differences between indoor and outdoor walking periods.

Datasets
The details for the data collection of Dataset A and B can be found  here17,31. Briefly, for Dataset A, we collected 
data on 20 participants over a week in the real world (Table 1). 13 females and 7 males between 21 and 49 years 
old with an average of 26.1 were recruited from a population of students during the summer in Ann Arbor, 
Michigan. The participant aged 49 years was a non-employed adult. Contextual information was collected using 
self-reporting and GPS data from their phones using an app called Ethica app (Ethica Data [Toronto, Canada]). 
For the self-reporting, participants were asked to maintain an activity log describing where they walked (ex: 
home, work, etc.) and the purpose of their walk (ex: going to work). We also conducted an exit interview after the 
real-world data collection to ensure that the self-reporting was complete and accurate. Motion data was collected 
using the activPAL  (activPALTM [PAL Technologies Ltd., Glasgow, UK]), a thigh-worn accelerometer. This device 
can be placed on the thigh using tape and offers 2-week continuous monitoring. It samples at 20Hz and possesses 
a 3-axis accelerometer ( range = ±4 g ). The sensor’s size and battery life allow for an unobtrusive placement 
and high compliance. Additionally, the proprietary algorithm of the sensor offers an accurate classification of 
activities that we used to isolate  walking32,33. Dataset B was collected on 15 participants over 2 weeks in the real 
world, using only the activPAL (Table 1). All the participants were students between 20 and 30 years old. It is 
important to note that 4 subjects are in both datasets. Additionally, although dataset B was over a longer period, 
the data collection period was amidst the COVID-19 pandemic, which might lead to a decrease in measured 
activity. Information about fitness and occupation were not part of the exclusion criteria and were not collected.

Classification algorithm development
Figure 2 shows the data processing framework we used to create the algorithm to classify walking periods into 
outdoor or indoor.

Figure 1.  Data collection and processing overview—(A) Dataset A was collected over 7 days on 20 participants, 
using an accelerometer, self-report, and GPS data from the participants’ phones. Dataset B was collected over 
14 days on 15 participants using an accelerometer. (B) The walking periods from dataset A were labeled using 
the GPS and self-report data. Walking periods labeled exclusively indoor or outdoor were used to train, validate, 
and test a classification model. The walking periods labeled mixed (e.g., inside and outside), as well as all the 
unlabeled walking periods from dataset A and B were classified using the model to characterize indoor versus 
outdoor walks.

Table 1.  Datasets details.

Dataset A Dataset B

Sample size 20 15

Age µ = 26.1

σ = 6.1

µ = 25.3

σ = 2.1

Male:female 6:11 7:8

Measurements
activPAL
Self-report
GPS

activPAL

Duration 7 days 14 days
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Walking period extraction
Walking in the real world can be understood as an ensemble of walking bouts. However, there are bouts of walk-
ing that are likely to belong to a same walking activity. For instance, if an individual stops at a pedestrian light, 
the walks before and after that stop could be grouped together. We introduced the notion of walking period 
to capture this start-and-stop dynamic of real-world walking. This method was created and outlined in earlier 
 work31. Briefly, we used the activPAL to identify stepping bouts. Then, bouts that were separated by a standing 
period of less than 1 min were grouped together into a stepping period. Lastly, we developed a classification 
algorithm to extract walking periods from these stepping periods, since the activPAL does not distinguish 
between walking and  running31.

Data labeling
We manually labeled the walking periods from Dataset A using the self-report and GPS data. We combined a 
visualization of the GPS data with a satellite map and the information given in the participants’ self-report to 
assign either an inside or outside label, or a mixed label when it appeared participants were walking both inside 
and outside (Fig. 3). There are walking periods that were not labeled, either because there was no associated GPS 
data, because the self-report was missing, or both.

Feature extraction
We used a custom algorithm to extract strides from the thigh-worn accelerometer. Using the timing between 
strides, we computed stride time and stride frequency for each stride in a walking period. Then, we first extracted 
what we named the biomechanics feature set, based on our domain knowledge. This set includes walking period 

Figure 2.  Classification model—We extracted walking periods from the accelerometer that we then labeled 
using self-report and GPS data. We extracted features from the accelerometer data and the stride detection. 
Labeled walking periods were then split into training, validation, and testing set. We trained and validated two 
different learning algorithms, Random Forest and Ensemble SVM, using a leave-one-participant-out scheme. 
This led to 15 trained models that were then tested on the 5 remaining untouched participants’ data. The best-
performing model was chosen for the rest of the analyses.

Figure 3.  Data labeling using GPS and self-report data—We show here 3 examples for walking periods labeled 
indoor, outdoor, and both indoor and outdoor. The GPS sampling was variable and dependent to the type of 
phone used. The text in quotations corresponds to the participant’s self-report.
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duration, walking period continuity (e.g., proportion of total standing time within a period, with 100 being no 
standing time), mean and standard deviation of stride frequency. Stride frequency was normalized by 

√

g · l0 , 
with l0 being leg  length34. Leg length was measured from the anterior superior iliac spine to the floor. Walking 
period continuity was defined as:

This reduced feature set was selected because of the demonstrated relationship between walking period 
duration and continuity and walking  variability31. Stride frequency is also a key parameter that is likely to vary 
with the environment. Moreover, this feature set can be derived using other accelerometer-based sensors with 
different body placements. Additionally, we computed 20 other features from both stride frequency and the raw 
accelerometer signal. These other features were selected based on the existing  literature31,35,36. We compared 
model performance using both feature sets to identify features best capable of distinguishing between different 
walking environments. A table describing the features is available in the Supplementary Material.

Classification model
Learning algorithms and hyperparameters. We compared the performances of two supervised ensemble learn-
ing algorithms that use different classification principles to separate indoor versus outdoor walking periods: 
Ensemble Support Vector Machine (SVM)37 and Random  Forest38. We used ensemble methods to solve the issue 
of imbalanced classes but also improve the generalizability of our  model39. Ensemble methods combine multiple 
base models to improve classification performances. Both SVM and Random Forest algorithms have success-
fully been used for terrain classification tasks with both humans and  robots13. We used grid search to optimize 
the hyperparameters of both algorithms. The ensemble SVM we used is a bagging (e.g., bootstrap aggregation) 
classifier with SVM as a base model, 60 estimators, and a radial basis function kernel. The Random Forest 
algorithm used 40 estimators and used bootstrapping to build the trees. We trained both algorithms on the set 
of biomechanics features and all features. In summary, we evaluated 4 different cases: Ensemble SVM with bio-
mechanics features, Ensemble SVM with all features, Random Forest with biomechanics features, and Random 
Forest with all features. We used the Scikit-learn library (version 1.0.2) from Python to train and evaluate the 
different learning  algorithms40.

Model training, validation, and testing. To build our model, we only used walking periods labeled exclusively 
indoor or outdoor (Fig. 1). We divided our dataset into training, validation, and testing sets. The training and 
validation set contained walking periods from 15 participants and followed a leave-one-participant-out method 
to tune the hyperparameters of our models and evaluate the generalizability to new participants. This means 
that we trained a model on data from 14 participants and validated it on the remaining participant. This process 
was iteratively performed 15 times, with each participant serving as the validation set once, and for each of the 
four cases described in the previous paragraph (2 algorithms × 2 features sets). This provided 15 models that we 
evaluated and we chose the best-performing case to use on the 5-participant testing set. For instance, if the aver-
age performance of the models (e.g., average accuracy, f1-score, and AUROC) that were trained and validated 
using Ensemble SVM on all features is the highest, we will use the 15 models from this case on the testing set. 
The model that performed the best (e.g., highest accuracy, f1-score, and AUROC) on the testing set among the 
15 trained models for the best case was chosen for the classification of the walking periods labeled as mixed and 
the unlabeled walking periods of dataset A, as well as all the walking periods in dataset B (Fig. 1).

Model evaluation. We used different metrics to evaluate our model and represent its performances both dur-
ing training and testing in the different cases and for the different models. First, we used accuracy to determine 
the overall proportion of correctly classified walking periods. We complemented accuracy with F1-score since 
accuracy can be misleading when dealing with imbalanced datasets. F1-score takes into account both false posi-
tives and false negatives to ensure that the performance is not biased towards the more frequent class. Finally, 
we also used Area Under the ROC Curve (AUROC) to measure the model’s ability to separate between indoor 
and outdoor classes. AUROC is also useful for imbalanced datasets as it takes into account false positives and 
false negatives. The combination of these different performance metrics provides a more comprehensive picture 
of the model’s performance.

Feature importance. We used feature permutation to estimate the importance of each feature in the perfor-
mances of our model. This method consists of randomly shuffling the values of a given feature in the validation 
set and calculating the change in performance of the model with the shuffled data. We used the test set to evalu-
ate feature importance.

Analysis of mixed walking periods, labeled indoor and outdoor. We did not use walking periods that hap-
pened both inside and outside to train our model to avoid decreasing the model’s ability to distinguish between 
indoor and outdoor. However, we investigated how the chosen model classified these mixed walking periods. 
The researcher used both the GPS data and the participant’s self-report to label as best as possible the mixed 
walking periods based on whether they appeared to be mostly indoor or mostly outdoor. Then, we investigated 
whether the model would classify a mostly indoor walk as indoor and vice versa. It is important to note that the 
GPS data can be noisy and interpretation can be difficult, even with the support of the self-report data (Fig. 3).

(1)period continuity =
period duration− standing time

period duration
× 100.
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Outdoor versus indoor walking analysis
Once we chose the best performing model, we classified the walking periods labeled indoor and outdoor and the 
unlabeled walking periods of dataset A, as well as all the walking periods in dataset B (Fig. 1). Then, we char-
acterized the differences between indoor and outdoor walking periods. We looked at the differences in walking 
period duration and continuity, as well as an essential health indicator: walking speed.

Walking speed estimation
We used the method described in Baroudi et al.41 to estimate stride speed from the accelerometer. Briefly, this 
method leveraged the relationship between stride speed v and stride frequency f42,43:

where a and b are model parameters. Stride frequency f can be accurately estimated from stride detection using 
the accelerometer and we identified in previous studies the parameters a and b for each subject in both datasets 
using a foot-worn inertial measurement  unit17,31. Researchers reported that 97% of the stride speed error was 
under 0.2m · s−1 using this method. This framework can be used to estimate the relative speed differences for 
individuals walking in the real world using only an accelerometer.

Statistical analysis
Our goal was to understand the difference in walking speed, walking period duration, and continuity between 
indoor and outdoor settings, whilst taking into account the nested nature of our data: walking speeds are nested 
within walking periods, and walking periods are nested within participants. To tackle these inherent dependen-
cies and repeated measures from each participant, we used linear mixed-effects models. This strategy facilitated 
the management of our multilevel data structure, properly adjusting for the correlations among multiple walking 
speeds, walking period duration, and continuity measures taken from the same walking period and participant. 
We built three models using walking speed, walking period duration, and walking period continuity as the 
dependent variables, while the indoor/outdoor condition was the fixed effect, and the walking period (for the 
walking speed model only) and participant identifiers were the random effects. We tested the assumption of 
normally distributed and homogeneous residuals by visualizing QQ-plots and residuals versus fitted values plots. 
We normalized walking speed by 

√

g · l0 , with l0 being the participant’s leg  length34. This design effectively cap-
tured the variability in walking period parameters both within and across periods and participants. The models 
were implemented in R using the ‘lme’ function from the ‘nlme’  package44. We explored different correlation 
structures for the random effects and selected the most appropriate model based on the Akaike Information 
Criterion (AIC)45,46. The model with the lowest AIC was deemed the best fit for our data. The estimated fixed 
effect for the condition serves as an indication of the expected change in parameters when transitioning from 
indoor to outdoor environments, while accounting for the nested structure of the data.

Results
Classification algorithm evaluation
Model validation
Tables 2 and 3 summarize the validation results for the different cases. The data from subjects 1, 4, 7, 17, and 
19 were randomly selected to be kept for the test set. The training set contained between 957 and 1040 walking 
periods, with 67.9± 4.4% (range) of indoor labels. The validation set contained between 29 and 112 walking 
periods, with 66.0± 51.4% of indoor labels. This high range can be explained by the fact that participants had 
different habits and behavior. Most participants had mostly indoor walking periods, but for instance S6 had 
only 34.5% of indoor walks. The test set contained 339 walking periods and 78.8% of these periods were labeled 
indoor. The models perform better when using the biomechanics feature set. The average accuracy, F1-score, 
and AUROC increase of approximately 0.2 for both Ensemble SVM and Random Forest models from using 
all features to the biomechanics features only. Random Forest and Ensemble SVM perform comparably with 
both sets of features. Because Random Forest algorithms are easier to interpret and use, we chose the Random 
Forest algorithm with the biomechanics feature set to use with our test set. The model trained and validated 
using Random Forest and the biomechancs features with S8 held out performed the worst ( accuracy = 0.828 , 
F1-score = 0.857 , AUROC = 0.897 ) while the one with S9 held out performed the best ( accuracy = 1.000 , 
F1-score = 1.000 , AUROC = 1.000).

Model testing and choice
We evaluated the 15 models validated using Random forest and the biomechanics feature set on the 5-participant 
test set. We found that Model S16 (e.g., the model that was trained and validated with S16 held out) outperforms 
the other models, with an accuracy of 0.941, an F1-score of 0.963, and an AUROC of 0.931, which represented 
at least + 0.01 than the other models for all metrics (Table 4). As such, we chose this model to label the rest of 
the data and characterize the differences between indoor and outdoor walking periods.

Feature importance
We found that walking period duration was the most important feature in the model we chose (Fig. 4). When 
the values of this feature were shuffled within the validation set, it led to a decrease in model accuracy of 0.19. 
Walking period continuity, mean stride frequency, and standard deviation of stride frequency led to decreases 
in accuracy of 0.04, 0.06, and 0.02 respectively.

(2)v = exp
ln (a · f )

1− b
,
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Model classifications on mixed walking periods
Figure 5 shows a visualization of walking periods labeled mixed (e.g., indoor and outdoor) using principal 
component analysis with the walking periods labeled only indoor or outdoor. We observed that the majority 
of walks labeled mostly indoor clusters with the walks labeled only indoor and vice versa for outdoor walking 
periods. The model we chose classified 71% of mostly outdoor walks as outdoor and 88% of mostly indoor 
walks as indoor. Figure 5 also shows the self-report and GPS data from two walking periods. It is likely that the 
researcher incorrectly labeled these mixed walks, but the model managed to classify them more accurately as it 
reached good validation performances showing its learning of the characteristics of indoor versus outdoor walks.

Characterization of indoor versus outdoor walking periods
After all walking periods were labeled, we had 69,616 stride speed values and 3766 walking periods from dataset 
A, compared to 53,930 stride speed values and 3701 walking periods from dataset B. The ratio of indoor versus 
outdoor was approximately 80:20 for both datasets. Different linear mixed models were built to evaluate the effect 
of context (e.g., walking environment) on walking speeds, walking period duration, and continuity. First, we 
found a large significant effect of context on walking speed b = 0.095 , t(117678) = 79.5 , p < 0.001 . This indi-
cates that normalized walking speed increases by 0.095 from indoor to outdoor walks (the normalized value of 

Table 2.  Model validation with all features.

Held out subject

Accuracy F1-score AUROC

Ensemble SVM Random forest Ensemble SVM Random forest Ensemble SVM Random forest

S2 0.958 0.938 0.974 0.960 0.909 0.982

S3 0.911 0.911 0.949 0.948 0.780 0.975

S5 0.789 0.853 0.853 0.892 0.807 0.863

S6 0.862 0.879 0.833 0.851 0.968 0.982

S8 0.862 0.862 0.889 0.889 0.899 0.887

S9 1.000 1.000 1.000 1.000 1.000 1.000

S10 0.897 0.936 0.927 0.953 0.963 0.971

S11 0.788 0.859 0.862 0.913 0.898 0.943

S12 0.990 0.990 0.994 0.994 0.971 0.984

S13 0.863 0.843 0.851 0.833 0.904 0.957

S14 0.900 0.867 0.906 0.875 0.968 0.955

S15 0.709 0.722 0.693 0.711 0.857 0.921

S16 0.907 0.926 0.944 0.955 0.825 0.938

S18 0.978 0.989 0.986 0.993 0.979 0.979

S20 0.781 0.781 0.840 0.840 0.832 0.830

Average 0.880 0.890 0.900 0.907 0.904 0.945

Table 3.  Model validation with biomechanics features.

Held out subject

Accuracy F1-score AUROC

Ensemble SVM Random forest Ensemble SVM Random forest Ensemble SVM Random forest

S2 0.917 0.938 0.947 0.960 0.894 0.979

S3 0.893 0.884 0.939 0.933 0.789 0.878

S5 0.874 0.863 0.909 0.901 0.848 0.899

S6 0.862 0.879 0.833 0.851 0.908 0.986

S8 0.862 0.828 0.889 0.857 0.846 0.897

S9 1.000 1.000 1.000 1.000 1.000 1.000

S10 0.885 0.923 0.919 0.944 0.905 0.962

S11 0.941 0.882 0.966 0.929 0.946 0.905

S12 0.990 0.962 0.994 0.976 0.972 0.968

S13 0.863 0.863 0.851 0.851 0.894 0.909

S14 0.950 0.967 0.958 0.971 0.958 0.984

S15 0.810 0.848 0.776 0.806 0.881 0.934

S16 0.926 0.889 0.955 0.930 0.909 0.975

S18 0.978 0.989 0.985 0.993 0.999 0.999

S20 0.822 0.822 0.876 0.874 0.838 0.848

Average 0.905 0.902 0.920 0.918 0.906 0.941
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0.095 corresponds to approximately 0.28m · s−1 depending on the participant’s leg length). We also found a large 
significant effect of context on walking period duration and continuity, b = 9.25 , t(7446) = 48.9 , p < 0.001 and 
b = 20.14 , t(7446) = 26.2 , p < 0.001 . These results suggest that duration increases by 9.25 min and continuity 
by 20.14% from indoor to outdoor walks.

These results are illustrated in Figs. 6 and 7. We observe that outdoor walking periods have overall higher 
duration ( µoutdoor = 11.4 min versus µindoor = 2.2 min) and continuity ( µoutdoor = 81.7% versus µindoor = 61.6% ). 
Participants walked on average 0.28m · s−1 faster when walking outdoor compared to indoor. We also observe 
a larger variability in the distribution of stride speed indoor compared to outdoor ( σindoor = 0.43m · s−1 versus 
σoutdoor = 0.31m · s−1).

Discussion
In the real world, individuals exhibit great variability in walking patterns and are able to adapt to diverse environ-
mental contexts. Understanding these contexts is essential for extracting meaningful information about a person’s 
mobility. Determining whether an individual is walking indoors or outdoors is a critical element of context, given 
the stark differences in environment and conditions that these two settings present. Here, we developed a novel 
framework that utilizes only an accelerometer to accurately classify indoor versus outdoor walks. To be able to 
ensure ecological validity from this reduced sensor set, we leveraged a unique dataset with an extended sensor 

Table 4.  Model choice—Results of the 15 models with the 5-participant test set. Model Sx corresponds to the 
models trained and validated with the leave-one-participant-out scheme with Sx held out using the Random 
Forest algorithm with the biomechanics features set as shown in Table 3. Model S16 performs the best, as it had 
the highest accuracy, F1-score, and AUROC.

Accuracy F1-score AUROC

Model S2 0.917 0.948 0.940

Model S3 0.917 0.948 0.935

Model S5 0.909 0.942 0.923

Model S6 0.920 0.950 0.921

Model S8 0.917 0.948 0.932

Model S9 0.929 0.956 0.918

Model S10 0.920 0.951 0.936

Model S11 0.917 0.948 0.924

Model S12 0.920 0.950 0.927

Model S13 0.926 0.954 0.926

Model S14 0.914 0.946 0.932

Model S15 0.932 0.958 0.917

Model S16 0.941 0.963 0.931

Model S18 0.923 0.952 0.930

Model S20 0.923 0.952 0.942

Best model 0.941 0.963 0.931

Figure 4.  Feature importance using feature permutation—Decrease in model accuracy for each shuffled 
feature. The error bars represent standard deviation. A decrease in accuracy indicates that, when the given 
feature was perturbed (e.g., randomly shuffling its values), the performance of the model degraded. This means 
that this feature contains meaningful information on which the model relies to make its predictions.
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suite that contained the accelerometer. Then, we used this approach to quantify the differences between indoor 
and outdoor walking patterns. This framework not only demonstrates the potential to use a minimal sensor suite 
to successfully gain important contextual information but also enables a more comprehensive understanding 
of real-world walking behavior.

Both Ensemble SVM and Random forest trained with different feature sets were able to learn the characteris-
tics of indoor and outdoor walks. The performances across models were very high, as reflected by average accura-
cies, F1-scores, and AUROC exceeding 0.88, 0.90, and 0.86 respectively for all training scenarios (Tables 2, 3). 
Trained models performed better with the biomechanics feature set, suggesting that these features are sufficient 
to capture the inherent differences between indoor and outdoor walking periods (Table 3). Notably, walking 
period duration was the most important feature (Fig. 4) with outdoor walks being longer on average than indoor 
walks ( ∼ +9min ) (Fig. 6). Average stride frequency was also an important feature, as outdoor walks tend to 
have a higher intensity than indoor walks. The high performance of the classifier also suggests that the grouping 
of walking bouts into walking periods is an effective representation of real-world  walking31. We chose the best 
performing model that used the Random Forest algorithm trained with the biomechanics feature set (Table 4). 
Using the biomechanics feature set as opposed to the raw data enables the model to be reused with different 
sensor types and placements. In fact, stride frequency was chosen because it can easily be derived directly from 
various sensors, even from  smartwatches47–49. The choice of Random Forest also increases the interpretability 
and generalizability of our model for other populations. As such, the model we developed could be extended to 
other studies of mobility and help improve the understanding of human data from wearable sensors.

We used the developed model to characterize the differences between walking indoor compared to outdoor 
using a large dataset. We found that outdoor walking periods were significantly longer, more continuous (e.g., 
less standing time), and had higher stride speed (Figs. 6, 7). Researchers have been increasingly interested in the 
measurement of walking speed in the real world, as it is a critical health indicator for various health  issues1,50–52. 
Our observations show that individuals greatly vary their walking speed indoor (Fig. 7). On the other hand, 
individuals took more strides outdoor, with less variability in walking speed. This suggests that isolating out-
door walks could potentially improve estimates of preferred walking speed in the real world. This substantiates 
the findings that longer walks show greater discriminative power for clinical  populations53. Understanding the 

Figure 5.  Analysis of mixed walks—(A) GPS and self-report data is shown for a sample of walks labeled by the 
model as indoor (left two images) and outdoor (right two images), as indicated by the coloring. The second and 
fourth images were originally labeled as mostly outdoor and mostly indoor by the researcher as indicated by 
the star and square shapes. The mixed walking periods highlighted here were mislabeled by the researcher. The 
sampling rate of the GPS data is variable and depends on the participant’s phone type. (B) Principal component 
analysis with the mixed walking periods colored based on the model classification. The shapes represent the 
researcher’s labels. We can see that the majority of mostly indoor walks are labeled indoor and vice versa, and 
that the walking periods that were mislabeled by the researcher are correctly labeled by the model.
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Figure 6.  Indoor and outdoor walking periods duration and continuity—Relationship between walking period 
duration and continuity—(A) Scatter plot with marginal distributions of waking period duration and continuity. 
Each dot corresponds to a walking period. (B,C) We binned all walking periods by their context and looked at 
their durations and continuity.

Figure 7.  Stride speed for walking periods indoor vs. outdoor—Distribution of stride speeds for all participants 
grouped by context. Each shaded area represents the shape of the distribution, and the horizontal lines mark the 
mean.
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proportion of activity spent indoor versus outdoor can also be useful for the improvement of physical activity. 
Although any increase in physical activity matters, there are proven benefits to walking  outdoors54–56. As such, 
our models could be used in the different stages of intervention design, from the baseline physical activity assess-
ment to the monitoring of intervention efficacy. The reduced sensor set also enables higher compliance (e.g., the 
degree to which users correctly and consistently wear the device as intended), which is essential for the reliability 
and validity of data collected in the real world.

While this study integrates fundamental elements of context for real-world walking, there are numerous 
other contextual factors that can have an impact on walking behavior and biomechanics. There are also nuances 
within indoor and outdoor walks, such as terrain type, that also induce changes in walking  patterns12,13. Future 
work should investigate those factors and their relationships with motion to potentially integrate additional 
classes or sub-classes into the model we developed. Further, we developed our model with 20 young adults, who 
were mostly students. Populations with specific habits, like a nurse, would potentially show long walks indoors 
that could be mistaken for outdoor walks given the importance of walking period duration in our model. Addi-
tionally, individual habits may be affected by climate and thus geographical location. Thus, the accuracy and 
generalizability of our model can be improved by collecting a larger dataset with a more diverse population over 
an extended period. Additionally, the off-the-shelf system used for this work was designed to be placed on the 
thigh. The gait metrics and the activity classification algorithm were tuned to measurements made from this 
location. However, this particular placement can become inconvenient for users during extended measurement 
periods. Future research should explore the use of consumer-grade wearables like smartwatches. The feature set 
we derived for our classification algorithm can potentially be accurately obtained from sensors with different 
placements. Lastly, our method was mainly developed for offline classifications, in the scenario where data is 
retrieved and post-processed to gain information on an individual’s behavior. Expanding this framework for 
online classification should be pursued, for potential use in fields like rehabilitation or assistive robotics.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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