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Atypical brain lateralization 
for speech processing 
at the sublexical level in autistic 
children revealed by fNIRS
Baojun Lai 1,2,3,7, Aiwen Yi 4,7, Fen Zhang 5, Suiping Wang 2, Jing Xin 6, Suping Li 6 & Luodi Yu 1,2*

Autistic children often exhibit atypical brain lateralization of language processing, but it is unclear 
what aspects of language contribute to this phenomenon. This study employed functional near-
infrared spectroscopy to measure hemispheric lateralization by estimating hemodynamic responses 
associated with processing linguistic and non-linguistic auditory stimuli. The study involved a group 
of autistic children (N = 20, mean age = 5.8 years) and a comparison group of nonautistic peers (N = 20, 
mean age = 6.5 years). The children were presented with stimuli with systematically decreasing 
linguistic relevance: naturalistic native speech, meaningless native speech with scrambled word order, 
nonnative speech, and music. The results revealed that both groups showed left lateralization in the 
temporal lobe when listening to naturalistic native speech. However, the distinction emerged between 
autism and nonautistic in terms of processing the linguistic hierarchy. Specifically, the nonautistic 
comparison group demonstrated a systematic reduction in left lateralization as linguistic relevance 
decreased. In contrast, the autism group displayed no such pattern and showed no lateralization when 
listening to scrambled native speech accompanied by enhanced response in the right hemisphere. 
These results provide evidence of atypical neural specialization for spoken language in preschool- and 
school-age autistic children and shed new light on the underlying linguistic correlates contributing to 
such atypicality at the sublexical level.

Individuals with autism spectrum disorders (henceforth autism) exhibit atypical language profile. According to 
the diagnostic criteria outlined in the DSM-51, autistic individuals universally manifest challenges in the social-
pragmatic aspect of language. Despite the pronounced heterogeneity in language profiles associated with autism, 
a majority of children diagnosed with autism concurrently present language disorders, exhibiting delays and 
difficulties across various core language domains, including phonology, semantics, and syntax2,3. The prevalence 
of co-occurring language disorders is estimated to range from 50 to 60% within the spectrum4–6. Approximately 
25~30% of autistic children remain nonverbal or minimally verbal7–10. One possible neurobehavioral mechanism 
underlying the language atypicalities in autism is reduced neural specialization for the processing of linguistic 
structures and vocal signals, as was found in earlier studies on autistic children11–13. Left-lateralization of 
speech processing is a hallmark of specialized language function in the brain14,15. This organization has been 
shown to signify language competence in a variety of populations, including children with typical and atypical 
language development and second language learners16–20. Because autistic children often show subtle or reversed 
hemispheric lateralization for language processing, understanding the underlying mechanisms is crucial for 
supporting their language development.
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Language-related hemispheric dominance is well-documented in neurotypical infants and children. In 
neonates, natural speech predominantly activates the left fronto-temporal language regions21–24, which is 
considered to reflect a built-in bias for language learning in the left hemisphere25. Research has also established 
that as children age and their language skills progress, the lateralization of language processing becomes more 
pronounced14,26,27. Such developmental change is thought to be consequential from the growth of individual 
language experience. Specifically, as age increases and phonological knowledge consolidates, the processing 
functions of the left and right hemispheres differentiate for various linguistic features and components. Native 
phonological and linguistic information (e.g., phonemic and semantic processing) tends to be lateralized to the 
left hemisphere, and nonnative and paralinguistic information (e.g., intonational prosody) becomes specialized 
within the right hemisphere. Support for the experience-dependent language specialization also comes from 
adult studies, wherein the successful acquisition of a linguistic form, such as a nonnative language or sinewave 
speech, is associated with emergence of left lateralization16,19.

However, lateralization of the fronto-temporal language regions was found to be substantially deviated in 
infants and young children diagnosed with autism. Compared to age-matched typically developing (TD) peers, 
autistic children aged 1–4 years showed lower responsivity in the left superior temporal gyrus (STG) and higher 
responsivity in the right homologue region when listening to natural speech when asleep28,29. It was further 
demonstrated that this group difference became more prominent at 3- and 4-year of age29. Reversed lateralization 
has also been reported in electrophysiological studies examining cortical processing of words. Specifically, a link 
between reduced left lateralization in the ERP responses to word meaning and greater autism symptoms was 
found in 2-year-old autistic toddlers30,31.

Atypical lateralization is not a phenomenon confined to early development but also frequently seen in 
school-age children, adolescents and adults with autism during a variety of language-based tasks, including 
word production32, word detection33, sentence comprehension34–36, and communicative intent comprehension35. 
Others have found an association between individual language competence and hemispheric lateralization in 
this population. For example, left temporal lobe activation and language skills in 11- to 16-year-old autistic 
adolescents were positively correlated, although atypical right frontal activation was also found to be associated 
with better language abilities as well37. In another study, autistic adults who had a history of language delay 
showed no significant leftward asymmetry in the N400 component, a neurophysiological marker associated with 
semantic processing, unlike those without a history of language delay38. These findings suggest a long-lasting 
effect of atypical hemispheric specialization that could be an important neural marker for understanding autistic 
language12.

Notably, reduced leftward asymmetry in autism is often accompanied by increased involvement of the right 
hemisphere12,39. In neurotypical brain, the right hemisphere is considered responsible for the processing of 
paralinguistic and contextual information instead of phonological and lexical processing14,40,41. In autistic children 
who show reduced or reversed lateralization, the right-hemisphere network may compensate for the insufficient 
development of a language network in the left hemisphere12,29,37,42. Enhanced involvement of the right hemisphere 
in autism has been linked with auditory biases for computational properties of the right hemisphere, namely 
preferences for spectral information and slow-changing acoustic patterns13,43,44. The hyperactivity of the right 
hemisphere, whether due to compensation or auditory bias, could potentially suppress language functions related 
to the processing of paralinguistic cues and contextual information, which are typically handled by the right 
hemisphere. This possibility is in line with the clinical characterization of autism1 and lab-based studies that have 
identified marked difficulties with receptive and expressive prosody, pragmatic and contextual understanding 
in autistic individuals45–50.

Neuroimaging research on language lateralization in autism has mostly utilized higher-order tasks involving 
multiple linguistic aspects and skills beyond the language network in the brain (e.g., executive function), 
rendering it difficult to attribute the lateralization differences to specific language factors35. Studies with young 
autistic children using advanced imaging techniques (e.g., functional magnetic resonance imaging or fMRI) often 
struggle with testability51, and have mostly employed native speech without exploring the interaction between 
hemisphere and speech type28,29. Therefore, there remains a knowledge gap regarding the specific aspect within 
the linguistic hierarchy responsible for the altered lateralization and heightened right hemisphere activities in 
autism. Addressing this question can offer important information to the developmental mechanisms of neural 
specialization for language in autistic children with language difficulties.

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that utilizes the 
absorption of near-infrared light to measure the fluctuation of hemoglobin concentrations in the cortex as a proxy 
for neuronal activity52,53. fNIRS has several advantages over other neuroimaging techniques including portability, 
ability to withstand head movement, affordability, and efficacy in natural experimental setting. fNIRS has been 
shown to be an effective technique for studying brain function in autism51,54 and language development55,56. 
Compared to the enclosed space typical of fMRI research, the bigger visible room with attenuated ambient noise 
in fNIRS testing provides a more comfortable setting for participants with special needs such as individuals with 
noise intolerance.

The present study aimed to identify the specific linguistic or phonological component that drives the atypical 
hemispheric lateralization in autistic children. fNIRS was utilized to examine cortical activation in the bilateral 
language-related areas when processing auditory signals that varied along the linguistic hierarchy. The linguistic 
hierarchy was created using four stimulus conditions with parametrically decreasing linguistic relevance or 
content: naturalistic native speech, native speech with scrambled word order, nonnative speech, and music. We 
hypothesized that leftward asymmetry in the nonautistic comparison children would decrease parametrically as 
a function of linguistic relevance of the stimuli. In contrast, autistic children would exhibit atypical patterns of 
lateralization. The level of linguistic relevance at which the atypical lateralization became evident would provide 
insight into the specific language component that drives atypical auditory-linguistic processing in autism.
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Methods
Participants
Thirty autistic children and 25 nonautistic comparison children aged 3–10 years old participated in the study. 
The children were recruited through advertisements requesting study volunteers in the pediatric department 
of a local hospital. One child’s data were excluded due to left-handedness57. Two children’s data were excluded 
due to incompletion of the fNIRS experiment. After preprocessing of fNIRS data, 9 autistic children and three 
nonautistic children were excluded from final analysis due to channel noise or poor data quality (see fNIRS 
data processing). Participant attrition details, aligning with reporting guidelines to address phenotypic bias in 
neuroscientific research58–60, are provided in Supplementary Material Table S1. The final dataset consisted of 
20 autistic children (1 girl and 19 boys, M = 5.8, SD = 2.2, 3.7–10.8 years) and 20 nonautistic children (10 girls 
and 10 boys, M = 6.5, SD = 1.7, 3.8–9.9 years). There was no significant difference in age between the two groups 
(t(38) =  − 1.12, p = 0.269; Table 1).

The children in the autism group received best-estimate diagnosis of autism by pediatricians with at least 
10 years of expertise in diagnosing autism. Because the Autism Diagnostic Observation Schedule (ADOS) and 
the Autism Diagnostic Interview-Revised (ADI-R) have not been validated or widely adopted in China61–63, the 
autistic participants’ diagnoses were supplemented by Childhood Autism Rating Scale (CARS)64 and Autism 
Behavior Checklist (ABC)65. Both are widely used diagnostic instruments in China62,66. All 20 children in the 
autism group had CARS scores at or above the cutoff of 30 for autism (M = 33.5, SD = 3.4, range = 30–44), and 17 
had ABC scores at or above the cutoff of 53 for autism (M = 63.4, SD = 18.4, range = 15–96). Additionally, Social 
Response Scale (SRS)67 scores were available for 16 autistic children (M = 70.4, SD = 22.6, range = 36–112) and 12 
nonautistic children (M = 37.3, SD = 17.7, range = 14–83). The autistic children scored significantly higher than 
the nonautistic children on SRS (t(26) = 4.19, p < 0.001), indicating greater social communication atypicalities. 
None of the children had any known genetic condition, psychiatric condition, or neurodevelopmental disorder 
other than autism. None were regularly taking medications at the time of the study. All the participants spoke 
Mandarin Chinese as their native language.

Chinese version of the Peabody Picture Vocabulary Test-Revised (PPVT-R)68,69 was administered by a trained 
experimenter to measure the children’s receptive vocabulary. PPVT scores were available for 12 children in the 
autism group, with 8 children either not meeting the minimal scoring requirement or discontinuing the test due 
to agitation. The autism group’s average PPVT-R score was significantly lower than that of the comparison group 
(t(30) =  − 7.23, p < 0.001), indicating lower receptive language level.

Stimuli
There were four stimulus conditions with decreasing linguistic relevance: natural native speech, native speech 
with scrambled word order, nonnative speech, and music. In the natural native speech condition (Native), a 
children’s story “The Mower and the Wolf ” was read by a female speaker in Mandarin Chinese, and was expected 
to produce canonical leftward asymmetry of brain activation in native listeners. In the scrambled native speech 
condition (Native-scrambled), words within each sentence of the native story were shuffled such that the sentence 
preserved the phonological and prosodic features of the native speech but eliminated the lexico-semantic content. 
The nonnative speech (Nonnative) was the original story read in Russian, which allowed testing of language-
general phonetic processes. The speech stimuli were recorded by the same female speaker who was a Chinese-
Russian bilingual. The music condition (Mozart’s Piano Sonata No. 4 in E flat major) was used as a non-verbal 
auditory control. Music shares similar acoustic and structural complexity with speech but requires specific tonal 
pitch processing, which is known to engage distinct brain networks with a rightward asymmetry70,71.

Each audio recording was divided into nine 15-s segments (trials; M = 15.3 s, SD = 0.6 s), resulting in a total 
of 36 trials. Each speech trial contained complete sentence(s) and each music trial contained entire musical 
phrases with natural beginnings and endings. A block design was used based on previous studies23,72. Each block 
presented four trials from each of the four conditions in a random order (Fig. 1). There was a 30-s silence before 
the presentation of stimuli and a 20-s silence between each trial to allow the hemodynamic activity to reset to 
baseline55,73. There were 9 blocks with a total of 21 min.

Apparatus and procedure
FNIRS data were collected using a 52-channel continuous wave system (ETG-4000, Hitachi Medical Corporation, 
Tokyo, Japan) at a sampling rate of 10 Hz (wavelengths: 695 and 830 nm). A 3 × 11 probe set including 17 light 

Table 1.   Sample characteristics of the autism and the comparison groups. PPVT-R Age-based standards scores 
of Peabody Picture Vocabulary Test-Revised, SRS Social Response Scale, CARS Childhood Autism Rating 
Scale, ABC Autism Behavior Checklist.

Autism Comparison p

Age 5.8 ± 2.2 6.5 ± 1.7 0.269

PPVT-R score 83.7 ± 14.0 135.1 ± 23.5  < .001

SRS score 70.4 ± 22.6 37.3 ± 17.7  < .001

CARS score 33.5 ± 3.4 - -

ABC score 63.4 ± 18.4 - -
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sources and 16 detectors was adjusted with elastic straps over the participant’s head. The positioning of the 
optodes was based on the international 10–20 system. To cover the regions of interest, the patch was placed 
3–5 cm vertically from the eyebrow centering the middle probe of the most inferior row over Fpz, and the left 
and right sides were respectively centered at T7 and T8, so that measurement channels covered large areas of 
temporal and frontal parietal lobe cortex (Fig. 2).

The children were accompanied by their caregivers in a quiet room and sat in a comfortable chair in front 
of a mobile phone screen used to play cartoons of their own choice. A research assistant positioned the fNIRS 
headband over designated regions of interest, and made adjustment to ensure the participant’s comfort while 
maintaining adequate contact between the optodes and the participant’s scalp. The children wore inserted 

Figure 1.   Block design of the current study. The experimental design consisted of 9 blocks, each containing 
four trials. Individual trials started with a 20-s silence interval, succeeded by a 15-s stimulus segment. Trial 
presentation within each block occurred in a randomized manner.

Figure 2.   Probeset distribution and channel clusters with significant activation in response to natural native 
speech (Native). Red circles are the sources, blue circles are the detectors, and thin lines represent channels. The 
yellow color (5 channels per hemisphere) represent the ROIs in the autism group, and the pink color (3 channels 
per hemisphere) represent the ROIs in the comparison group.
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earphones that played the sounds at a comfortable level (70 dB SPL). The children were instructed to watch 
cartoons while ignoring any sounds from their earphones. They were encouraged to remain still while seated. 
The child and their parent could withdraw at any time whenever the child expressed discomfort or a desire to 
stop participation.

The experimental protocol was approved by the Research Ethics Committee of South China Normal 
University, and all experiments were performed in accordance with relevant guidelines and regulations. The 
informed consent was obtained from parents or guardians of all participating children in the study.

fNIRS data processing
The analysis of the fNIRS data was performed using the HOMER2 package74 together with custom scripts. 
Data from the initial 52 participants after preliminary screening (see Participants section) were preprocessed 
using methods recommended for infant and child data75,76. First, the measured light intensity was converted to 
optical density. Then, channels with optical intensity that were stronger or weaker than the set standard range 
[mean (d) < 0.001 or > 7] were discarded from the analyses. Next, motion artifacts were defined as signal changes 
exceeding an amplitude of 0.5 mmol × mm threshold and/or a standard deviation of 50 within a one-second 
timeframe, to reject the remaining uncorrected motion artifacts of the optical intensity data77,78. Wavelet filtering 
(iqr = 0.8) was performed for de-noising and waveform smoothing75,79, and PCA (nSV = 0.85) was performed on 
detected motion artifacts 75,80. The optical density signals were then band-pass filtered to attenuate low-frequency 
drift and cardiac oscillations with cut-off frequencies of 0.01–0.1 Hz. The signals were converted to estimated 
changes in the concentration of HbO and HbR through application of the modified Beer-Lambert Law74. The 
hemodynamic responses of trials from a time interval of − 5.0 s to 25.0 s were extracted and averaged for each 
stimulus condition. After preprocessing, we used plotting and visual inspection to remove noisy channels and 
trials that were not identified in the previous steps81–84. In this step, children were included in the analysis if 
they had less than or equal to 20 out of 52 channels detected as noisy and less than or equal to 4 out of 36 trials 
rejected. By applying these criteria, data were available for 20 autistic children and 20 nonautistic children. The 
average number of trials was 35 per participant.

Statistical analyses
Nonparametric cluster-based permutation tests (CBPT)85 were performed to identify channel clusters showing 
significant responses in each condition. The signal from multiple channels and time points were subjected to 1000 
permutations to reduce the error rate. The HbO and HbR concentration values within 5–25 s post-stimulus were 
compared with zero baseline. The zero baseline was established by linearly fitting the 5 s preceding trial onset. 
Significant HbO clusters identified by the CBPT in the Native condition were used as regions of interest (ROI) in 
each hemisphere. These clusters represent the canonical language region that offers a unified criterion to examine 
how sounds at different linguistic levels activate this region. Because oxyhemoglobin (HbO) has been reported 
to show higher signal-to-noise ratio than deoxyhemoglobin (HbR) in children86,87 and that no significant HbR 
clusters were identified for the Native condition in either group, we used HbO for further statistical analysis and 
HbR was only reported in Table 2 and Fig. 3 for descriptive purposes.

Linear mixed modeling (LMM) implemented by the R package lme488 was used to assess the effects and 
interactions of the factors of interest on HbO. First, we evaluate whether the groups differed in responses in the 
two hemispheres: model1 = lmer (meanOxyhemoglobin ~ Age + Group*Hemisphere + (1|subject)). In this model, 
age was first entered as a controlled variable; group (autistic or nonautistic), hemisphere (left or right), and their 
interactions were fixed factors, while subject was entered as a random effect to control for individual variance. 
Additionally, the effects of Hemisphere × Condition were examined for autism and nonautistic separately: 
model2 = lmer (meanOxyhemoglobin ~ Age + Condition*Hemisphere + (1|subject)). Finally, Pearson correlation 
analysis was performed to examine potential brain-behavior relationships between neural responses to different 
sound classes and clinical measures.

Table 2.   Significant channel clusters identified by the cluster-based permutation tests. Hemis = Hemisphere. 
HbO = oxyhemoglobin. HbR = deoxyhemoglobin. Four conditions: natural native speech condition (Native), 
scrambled native speech condition (Native-scrambled), nonnative speech (Nonnative), and music (Music). 
Two-sided test, * p < .025.

Group Index Condition Hemis Channels of cluster Time (s) p T-statistic

Autism HbO

Native Left 10, 20, 31, 41, 42 13.3–23.1 .012 * 1080.99

Native-scramble
Right 11, 12, 13, 22, 24, 25, 33, 35, 45, 46 5.8–21.0  < .001 * 2154.87

Left 20, 30, 31, 41, 42, 52 5.9–20.1 .003 * 1658.85

Nonnative Left 28, 39, 49 19.5–25.0 .049  − 440.06

Comparison
HbO

Native Left 31, 41, 42 12.6–21.7 .007 * 1147.48

Nonnative Left 31, 41, 42 12.8–18.4 .043 566.03

HbR Nonnative Left 30, 31, 41 6.7–12.1 .021 *  − 436.34
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Results
Selection of regions of interest
Table 2 shows the significant channel clusters identified by the cluster-based permutation tests for each stimulus 
condition in reference to baseline.

According to the permutation test results, the autism and comparison groups had overlapping channels 
showing significant activation in the Native condition (Table 2, Fig. 2). Therefore, in both groups, the set of 
significant channel clusters in the left temporal lobe was selected as the left ROI, and the set of significant 
channel clusters in the right temporal lobe (symmetrical to the left cluster) was used as the right ROI (Fig. 2). 
The mean HbO concentration for each participant within each hemisphere was computed for further statistical 
analysis. Figure 3 shows the group-averaged hemodynamic response function (HRF) in each hemisphere in 
each stimulus condition.

Figure 3.   Group-averaged hemodynamic response function (HRF). Red and blue colors represent 
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR), respectively. Shaded areas indicate standard error 
values (± 1SE). The significant channel clusters in the left temporal lobe was selected as the left ROI, and the 
significant channel clusters in the right temporal lobe (symmetrical to the left cluster) was used as the right 
ROI. The average hemoglobin concentration levels of the channels in ROIs was calculated to obtain the HRF for 
the autism group and the comparison group in the four stimulus conditions: natural native speech condition 
(Native), scrambled native speech condition (Native-scrambled), nonnative speech (Nonnative), and music 
(Music). The x axis represented the time from 5 s pre-stimulation to 25 s post-stimulation.
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Lateralization patterns in the autism and comparison groups
In the LME regression combining both groups, there was a significant two-way interaction of Group × Hemisphere 
(F = 5.01, p < 0.05, η2

p = 0.01; Fig. 4). Post hoc comparisons indicated that HbO concentration in the left ROI was 
significantly greater than that in the right ROI in the comparison group (t(278) = 4.61, p < 0.001, Cohen’s d = 0.73, 
95% CI = [0.41, 1.05]) but not in the autism group (t(278) = 1.45, p = 0.150, Cohen’s d = 0.23, 95% CI = [− 0.08, 0.54]); 
The comparison group had a greater response than the autism group in the left ROI (t(76.7) = − 2.60, p < 0.05, 
Cohen’s d =  − 0.41, 95% CI = [− 0.72, − 0.09]) but response amplitude was comparable between the two groups in 
the right ROI (t(76.7) =  − 0.06, p = 0.948, Cohen’s d =  − 0.01, 95% CI = [− 0.32, 0.30]).

We then analyzed the effects of Condition × Hemisphere for each group separately. In the autism group, 
the Condition × Hemisphere interaction was significant (F = 4.87, p < 0.01, η2

p = 0.09). Further analysis 
revealed that left hemisphere activation decreased as linguistic relevance decreased (Native > Native-
scramble > Nonnative > Music), and that the right hemisphere was the most responsive for the Native-scrambled 
speech. In addition, left lateralization was evident in the Native and Nonnative conditions (Native: t(133) = 3.02, 
p < 0.01, Cohen’s d = 0.96, 95% CI = [0.29, 1.61]; Nonnative: t(133) = 2.35, p = 0.020, Cohen’s d = 0.74, 95% CI = [0.10, 
1.38]). In the Music condition, there was a trend towards right lateralization (t(133) = − 1.68, p = 0.096, Cohen’s 
d =  − 0.53, 95% CI = [− 1.16, 0.10]). The only condition lacking hemispheric difference was the Native-scramble 
condition (t(133) = − 0.27, p = 0.785, Cohen’s d = − 0.09, 95% CI = [− 0.70, 0.54]; Fig. 5).

In the comparison group, no significant Condition × Hemisphere interaction was found. However, exploratory 
analysis revealed that the effect size of hemispheric difference decreased as a function of linguistic relevance of 
the stimuli, suggesting decreasing left lateralization (Native: t(133) = 3.66, p < 0.001, Cohen’s d = 1.16, 95% CI = [0.48, 
1.82]; Native-scramble: t(133) = 2.60, p = 0.010, Cohen’s d = 0.82, 95% CI = [0.17, 1.46]; Nonnative: t(133) = 1.73, 

Figure 4.   Group × Hemisphere interaction. Overall oxyhemoglobin concentrations in the left ROI (L) and the 
right ROI (R). Black dots in the violin shapes represent group average levels. Error bars indicate 95% confidence 
interval. *p < .05, ***p < .001.

Figure 5.   Hemispheric lateralization for the four stimulus conditions in the autism group and the comparison 
group. Black dots in the violin shapes represent the group means. Error bars indicate 95% confidence interval. 
*p < .05, **p < .01, + p < .1.
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p = 0.086, Cohen’s d = 0.55, 95% CI = [− 0.09, 1.18]; Music: t(133) = 0.54, p = 0.593, Cohen’s d = 0.17, 95% CI = [− 0.45, 
0.79]; Fig. 5).

Brain‑behavior correlations
In the comparison group, age was negatively correlated with the response to native and nonnative speech in the 
left hemisphere (r native =  − 0.51, r nonnative =  − 0.46, ps < 0.05, Fig. 6), displaying a developmental decrease of left 
hemisphere activity to native language.

In the autism group, several significant correlations were identified (Fig. 6). Specifically, response to nonnative 
speech in the right hemisphere increased with age (r = 0.71, p < 0.001). The SRS score was positively correlated 
right hemisphere response to native and nonnative speech (r native = 0.61, r nonnative = 0.63, ps < 0.05), suggesting a 
link between greater social symptoms and higher right hemisphere responsivity to speech. The ABC score was 
negatively correlated with the response of right hemisphere to music (r =  − 0.49, p < 0.05).

No other brain-behavior correlations were found (for a summary of the statistical results, see Supplementary 
Material Tables S3).

Discussion
In this fNIRS study, we examined the activation patterns of frontal–temporal language regions during the 
processing of auditory stimuli with varying linguistic relevance in autistic children and nonautistic children. As 
hypothesized, the comparison group demonstrated an increasing left lateralization as the linguistic hierarchy 

Figure 6.   Scatter plots of significant brain-behavior correlations in the autism group and the comparison group. 
SRS: Social Response Scale. ABC: Autism Behavior Checklist. L = Left hemisphere; R = Right hemisphere.
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of the auditory stimuli became more pronounced. In contrast, the autism group in the current study displayed 
a distinct lateralization pattern, showing heightened activity in the right hemisphere specifically when listening 
to scrambled native speech. These findings suggest that atypical language specialization in autism is associated 
with the phonological aspects of speech processing, and the right hemisphere involvement in autistic children 
may be influenced by sublexical information.

Reduced neural specialization for language processing in autistic children
One main finding was the absence of overall lateralization for sound processing in the autism group as compared 
with the comparison group. Specifically, the comparison group showed a clear leftward asymmetry in the 
temporal lobe, whereas no such pattern was found in the autism group. Further analysis confirmed that the 
leftward asymmetry in the comparison group was unique to speech processing, in particular native speech. The 
robust left lateralization for native speech in the comparison group aligns well with a previous report of reliable 
left lateralization for language in the temporal network by the age of 7 years26.

Rather than finding focal cortical activity in terms of left lateralization, we observed more broadly activated 
cortical areas for sound processing in the autistic children compared to the nonautistic children. The significant 
cluster in response to normal native speech in the autism group was larger than that in the comparison group. In 
addition, the significant cluster in the autism group were located at supramarginal gyrus in the left hemisphere, 
whereas the comparison group’s significant cluster was concentrated in the Wernicke’s area. This observation 
aligns with a recent meta-analysis of 11 studies utilizing fMRI89. The results of the meta-analysis showed that 
autistic individuals recruited additional areas in the middle temporal gyrus (MTG) and superior temporal gyrus 
(STG) during semantic processing, which were not activated in the TD brain. These findings, combined with 
the current results, suggest that these autistic children might need more widely distributed cortical resources for 
speech processing when compared to nonautistic children.

Moreover, we observed a positive association between right hemisphere response to nonnative speech and 
age in the autism group. This finding coincides with existing developmental data from autistic toddlers aged 
12–48 months obtained using fMRI, which demonstrated an age-dependent increment of right lateralization 
for speech processing29,42. However, in the current study, age-related change in right hemisphere response was 
evident for nonnative speech only, but not for native speech and music. Because the nonnative speech is phonetic 
in nature but lacking linguistic relevance, we could imply that the developmental change was related to language-
independent auditory function. Given that brain response to nonnative speech is considered an indicator of 
atypical neural commitment for language90,91, we have reasons to argue that an over-responsive right hemisphere 
for auditory processing might negatively impact neural commitment or specialization for linguistic processing 
in autistic children.

Atypical right hemisphere involvement for sublexical speech processing in autistic children
The comparison group demonstrated a clear pattern of left lateralization in response to native speech, regardless 
of its semantic integrity. However, the left lateralization was only weakly present in the nonnative speech 
condition and was absent for music. This parametrically decreasing left-lateralization as a function of linguistic 
relevance fits well with our hypothesis about the nonautistic children. Notably, the lateralization measure but 
not the unilateral activation measure was uniquely reflective of linguistic processing. This result could signify a 
neurobehavioral outcome of language acquisition in which the brain becomes specialized for auditory signals 
of linguistic relevance. However, the systematic pattern of brain lateralization was absent in the autism group.

Another main finding was the lack of increasing left lateralization as a function of linguistic relevance in the 
autism group. As in the comparison group, the autism group showed leftward asymmetry when the speech was 
native and naturally presented; however, the asymmetry disappeared for the scrambled native speech associated 
with elevated responsivity in the right hemisphere. Lack of hemispheric asymmetry for speech processing is 
a highly replicated phenomenon in autism research11–13,44,92. Yet little is known about the specific component 
of language that could drive such differential lateralization in autistic children. The current findings provide 
important evidence of underlying correlates in this regard.

First, we consider psychoacoustic factors associated with the hyper-responsivity of the right hemisphere. 
Autistic individuals show an auditory bias for right-hemisphere functions such as the bias for spectral 
information13,44,93. This bias could be responsible for an atypical functional specialization for speech characterized 
by prominent pitch variations. In the current study, this type of speech was presented as scrambled Mandarin 
Chinese. The Chinese language is a typical tonal language with syllable-level pitch variations, a quality not 
present in the Nonnative Russian speech. Moreover, the Chinese speech in the Native-scramble condition did 
not have the grammatical markers that are present in naturally produced speech with regular word order. Thus, 
this scrambled speech might have appeared extra prosodic compared to normal Chinese. The right hemisphere 
of the Chinese autistic children might overly respond to these stimuli due to their spectrally prominent prosodic 
variations33,43. In line with this interpretation, our data demonstrated a trend of right lateralization in the autism 
group when listening to music, consistent with a right-hemisphere bias for melodic information.

Evidence of a second factor potentially responsible for the atypical lateralization concerns the “holistic” 
nature of processes carried out by the right hemisphere. A recent ERP study with school-age autistic children 
identified an atypical engagement of the right hemisphere in response to speech differing in linguistic relevance, 
namely, native versus nonnative pseudowords43. This finding suggests a sublexical component driving atypical 
cerebral specialization for language that is consistent with the current observation. This study did not support 
a pure auditory explanation because there was no difference between groups in lateralization for nonspeech 
sounds (native vs. nonnative prosodic acoustics). Instead, the researchers proposed a neurolinguistic explanation. 
Specifically, the right hemisphere is predominantly responsible for processing slow-changing holistic speech 
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patterns such as supra-segmental word forms and envelope modulations15,94–96. Thus, it is conceivable that the 
atypical right hemisphere effect in autism could reflect overly holistic processing of speech. In other words, 
neurotypical children might hear the scrambled Chinese as combinations of fine-grained phonological units 
or potential words, whereas some autistic children might hear it as holistic speech forms97. Over-processing of 
such information might hinder their mastery of the correct phonological rules and grammatical structures. The 
over-responsivity of the right hemisphere might also inhibit paralinguistic and contextual processing functions 
that typically rely on the right hemisphere29,40.

A third factor that potentially contributes to the observed differential lateralization in autism could 
be restricted language experience. Although school-age autistic children have received ample language 
exposure, exposure is not equivalent to vocabulary and language experience. According to models of language 
neurodevelopment, brain functional change has its dynamic interplay with individual language experience14,98–100. 
Specifically, it was proposed that cerebral specialization for language is not only age-dependent but also synergistic 
with the mastery of the native phonology that facilitates efficient speech processing and learning14. In the current 
study, the autistic children displayed a bilateral activation pattern unique to the sublexical, phonological level of 
native speech processing associated with elevated right-hemisphere response, which could reflect an unreliable 
phonological representation insufficient to support a specialized language network. In line with this notion is the 
limited but converging evidence showing increased functional connectivity within homologue right-hemisphere 
regions of the core language network throughout development in autism101. An insufficiently specialized neural 
network could, in turn, impede efficient word use and acquisition, further limiting the child’s experience with 
language14,100.

Limitations
First, we did not have standardized assessments for high-order receptive language such as syntactic ability or 
expressive language, which limits our ability to further examine the relationship between brain lateralization 
and language development in autism. For instance, previous work demonstrated a link between lateralization (as 
indexed by handedness) and expressive language, but not receptive language in autism102. PPVT as a measure of 
receptive vocabulary also has its apparent limitations in revealing structural language differences in children103. 
Second, the age range of our participants spanned across preschool to school age. We statistically controlled 
for age effects in the regression models, but it will also be useful to test the hypotheses in different age groups. 
Nonetheless, fNIRS data on language lateralization in preschoolers, and in children on the autism spectrum is 
extremely rare104. Finally, our speech materials were recorded by human voices rather than computer-generated 
speech. This method provides high ecological validity but lacks strict control over some acoustic parameters such 
as envelope, amplitude and frequency. However, the psychoacoustic differences across conditions were inherent 
in presenting stimuli that varied in linguistic relevance, and thus it might be impossible to fully eliminate the 
effects of these differences. Future investigations of fine-grained auditory and linguistic components are needed 
to better understand the underlying correlates of brain lateralization in autism.

Conclusion
This study demonstrated the atypical brain lateralization in autistic children during speech processing. The 
nonautistic children showed an overall left-lateralization for sound processing, whereas the autism group 
displayed a bilateral activation pattern. Moreover, the nonautistic children’s degree of left lateralization 
systematically decreased with decreasing linguistic relevance of the auditory stimuli. In contrast, the autism 
group’s brain lateralization did not follow the linguistic hierarchy. Instead, autistic children showed a lack of 
neural specialization for language at the sublexical level, driven by an over-responsivity of the right hemisphere. 
The findings underscore the potential auditory and neurolinguistic correlates of autism-related biases for right-
hemisphere functions, and the role of language experiences in strengthening specialized language networks in the 
brain. However, it is essential to apply caution in interpreting these conclusions and acknowledge the limitations 
of generalizability across the entire spectrum, given the marked heterogeneity present in the language profiles of 
autistic individuals2,3. The ongoing debate surrounding the nature of language disorder as either a dimensional 
feature intrinsic to autism or a distinct condition additive to the autistic phenotype further underscores the 
complexity of the heterogeneity issue2,3,105–107. Future research may incorporate these considerations into study 
designs to advance our understanding of the underlying language mechanisms in autism.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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