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Cellular automata (CA) are computational systems that exhibit complex global behavior arising 
from simple local rules, making them a fascinating candidate for various research areas. However, 
challenges such as limited flexibility and efficiency on conventional hardware platforms still exist. 
In this study, we propose a memristor‑based circuit for implementing elementary cellular automata 
(ECA) by extending the stateful three‑memristor logic operations derived from material implication 
(IMP) logic gates. By leveraging the inherent physical properties of memristors, this approach offers 
simplicity, minimal operational steps, and high flexibility in implementing ECA rules by adjusting 
the circuit parameters. The mathematical principles governing circuit parameters are analyzed, 
and the evolution of multiple ECA rules is successfully demonstrated, showcasing the robustness in 
handling the stochastic nature of memristors. This approach provides a hardware solution for ECA 
implementation and opens up new research opportunities in the hardware implementation of CA.

Cellular Automata (CA) are discrete computational systems that consisting of cells on a grid. They exhibit com-
plex global behavior arising from the simple local rules. CA was originally introduced by John von Neumann and 
Stanislaw Ulam in the  1940s1. It has been proved advantageous to various areas, e.g.  cryptography2,3, biological 
 modeling4, theoretical  physics5, chemistry  engineering6 and image  processing7. In recent decades, there has been 
a growing interest in implementing cellular automata on hardware platforms to achieve acceleration and improve 
efficiency. Several studies implemented the CA on conventional hardware platforms such as  FPGA8,9,  CPU10 
and  GPU10,11. While some breakthroughs have been achieved, challenges like higher hardware costs and limited 
flexibility in evolving rules continue to be obstacles in implementing CA on conventional hardware platforms. 
Therefore, the exploration of non-conventional hardware platforms that are better suited for implementing CA 
is highly desired.

In recent years, memristor-based hardware platforms have been gaining significant prominence. Memristor 
is a non-linear two-terminal device whose resistance can be programmed by the applied current or voltage. It 
was first theorized by Leon Chua back in  197112 and later experimentally confirmed by Dmitri B. Strukov et al. 
in  200813. For over a decade, memristor-based hardware platforms has demonstrated promising properties in 
various areas, e.g. artificial neural  networks14,15, in-memory  computing16,17 and memristor-based  logic18. One 
outstanding approach to realize memristor-based logic was material implication (IMP) logic gates. This innova-
tive concept was initially introduced by Julien Borghetti et al. in  200819. Building upon this idea, Ahmad Karimi 
et al. proposed a novel structure based on IMP logic gates in  201820. Expanding on the idea of IMP logic gates, 
Kyung Min Kim et al.21 and A. Siemon et al.22 conducted studies on a stateful three-memristor logic gate in 2019.

In this work, we propose a memristor-based circuit design for the implementation of elementary cellular 
automata (ECA) by extending stateful three-memristor logic operations derived from IMP logic gates. This 
approach leverages the inherent physical properties of memristors, providing significant flexibility and simplicity 
in implementing ECA rules ranging from 0 to 255 by adjusting the circuit parameters. Through detailed circuit 
analysis, we determined mathematical principles governing circuit parameters and demonstrated the electrical 
characteristics of memristors in ECA evolution. We successfully achieved ECA evolution of various rules using 
the proposed memristor-based circuit design. In this approach, the memristors serve as both memory units and 
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computing units, which effectively aligns with the concept of in-memory computing. This makes the memristor-
based ECA circuit distinct from the conventional hardware platforms.

Methods
Elementary cellular automata (ECA) are one-dimensional cellular automata characterized by cells that can exist 
in two states: “0” or “1”. In ECA, the state of a cell in the next generation is determined by the current states of 
both the cell and the cell’s two adjacent cells. There are 23 = 8 possible patterns for a cell and its two neighbors 
( P0 = 000 , P1 = 001 , ..., P6 = 110 , P7 = 111 ). The dimension of ECA is wrapped around, hence the left neighbor 
of the leftmost cell is the rightmost cell, and the right neighbor or the rightmost cell is the leftmost cell. Figure 1a 
shows the evolutionary process of ECA governed by rule 110. This rule serves as the evolution principle, dictating 
the state transitions of each cell in the subsequent generation. The rule number is interpreted as a binary repre-
sentation, such as 110 (in decimal), which translates to 01101110 in binary. Each digit determines the state of the 
cell in the next generation. For instance, the ith digit (counting from right to left) determines the state of the ith cell 
(counting from right to left) in the next generation. There are 223 = 256 possible rules of ECA (from 0 to 255).

Figure 1b illustrates the hard-switching characteristics of the memristor model employed in this work, which 
is adapted from the mean metastable switch (MMSS) memristor model proposed by Knowm  Inc23 and closely 
resemble the switching behaviors of a memristor like the Au/HfO2/Ni memristor reported in our previous  study24. 
Further details about the model are described in Supplementary Note 1. In logic operations based on memris-
tors, the low-resistance state (LRS) is defined as logical “1”, while the high-resistance state (HRS) is defined as 
logical “0”. To align with the characteristics of the memristor, the evolution of the ECA can be categorized into 
two groups of logic operations: SET and RESET, as depicted in Fig.  1c. The SET operation corresponds to the 
initial state of “0”, while the RESET operation corresponds to the initial state of “1”.

Figure 2a shows the circuit schematic of the memristor-based ECA. Each cell consists of two parallel mem-
ristors connected in parallel with its neighboring cells, with one being the main memristor and the other being 
the dummy memristor. All cells are interconnected at their lower potential node, and a load resistor Rload is 
connected from this node to ground. The resistance of Rload is chosen to be equal to the LRS of the memristor. 
For clarity and easy reference, we have designated three specific cells as A, B and C. Each cell consists of two 
parallel memristors. The parallel memristors of the three cells are labeled as A and A′ , B and B′ , and C and C′ , 
respectively. The memristor A, B and C are defined as the main memristors, while the memristor A′ , B′ and C′ 
are defined as the dummy memristors in each cell. The voltages applied to the top-electrode of each memristor 
are defined as VA , VA′ , VB , VB′ , VC , and VC′ , respectively. The voltages applied to Rload is denoted as Vload . The 
node voltage of the common line connected to the bottom-electrode of each memristor is defined as Vref  . In 
the circuit, all switches (i.e., the MOSFETs shown in Fig.  2) are controlled by external signals. Assuming cell 

Figure 1.  (a) Elementary cellular Automata, (b) typical hard switching characteristics of the memristor, and (c) 
logic operations divided into two stages: SET and RESET.
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B is the current cell, its neighbors are cell A (on the left) and C (on the right). When voltage VB is applied, the 
potential difference across the memristor B should be VB − Vref  . The main memristors and dummy memristors 
store the state of the cell for different purposes. The new state of cell B for the next generation is determined by 
the relationships among the parameters RA′ , RB , RC′ , Rload , VA′ , VB , VC′ , and Vload , respectively. By appropriately 
adjusting the voltages, the specified logic operation can be realized. To ensure the completeness of the ECA 
algorithm, two logic operation strategies were introduced: the “non-floating Rload ” strategy and the “floating 
Rload ” strategy, as shown in Fig. 2b,c, respectively. The rules corresponding to the “non-floating” strategy and 
“floating” strategy are detailed in Supplementary Note 2. The circuit underwent thorough analysis to derive the 
mathematical principles governing the interactions between the parameters.

Firstly, the “non-floating Rload ” strategy is analyzed. When the state of cell B is “0”, the SET operation is per-
formed. During this process, the relationships among the parameters RA′ , RB , RC′ , Rload , VA′ , VB , VC′ and Vload 
are obtained using Kirchhoff ’s Circuit Laws, as shown in Eq. (1).

The value of Rload is much smaller than RHRS , which can be considered negligible in the above equation 
when ABC ∼ (000) (i.e., the cell state of cell A, B and C is “0”, “0” and “0”, respectively). Similarly, the value 
of RLRSRload is much smaller than RLRSRHRS and RloadRHRS , which can be neglected in the equation when 
ABC ∼ (001), (100) or (101) . Therefore, Eq. (1) can be simplified as Eq. (2).

The values of V (000)
SET  , V (001)

SET  , V (100)
SET  and V (101)

SET  depend on VA′ , VB , VC′ and Vload . If V (ABC)
SET  is greater than the 

SET threshold of memristor, the state of cell B changes from “0” to “1”. Otherwise, the state of cell B remains 
“0”. By applying appropriate VA′ , VB , VC′ and Vload , the conditional SET operation with the “non-floating Rload ” 
strategy can be realized.
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Figure 2.  (a) Schematic illustration of the memristor-based ECA, (b) “non-floating Rload ” strategy, and (c) 
“floating Rload ” strategy.
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To ensure the completeness of the ECA rules from 0 to 255, it is necessary to employ the “floating Rload ” strat-
egy during the SET stage. The relationships among the parameters RA′ , RB , RC′ , VA′ , VB and VC′ can be obtained 
from the Kirchhoff Circuit Laws, as shown in Eq. (3).

As the value of RLRS is much smaller than RHRS , which can be considered negligible in the above equation 
when ABC ∼ (001), (100) or (101) . Therefore, Eq. (3) can be simplified as Eq. (4),

The values of V (000)
SET  , V (001)

SET  , V (100)
SET  and V (101)

SET  depend on VA′ , VB and VC′ . If V (ABC)
SET  is greater than the SET 

threshold of the memristor, the state of cell B changes from “0” to “1”. Otherwise, the state of cell B remains “0”. By 
applying appropriate VA′ , VB and VC′ , conditional SET operation with the “floating Rload ” strategy can be realized.

When the state of cell B is “1”, the RESET operation is performed. For this operation, the relationships among 
the parameters RA′ , RB , RC′ , Rload , VA′ , VB , VC′ and Vload are obtained from Kirchhoff ’s Circuit Laws, as shown 
in Eq. (5).

The value of RLRSRload is much smaller than RLRSRHRS and RloadRHRS , which can be considered negligible in 
the above equation when ABC ∼ (010), (011) or (110) . Therefore, Eq. (5) can be further simplified as Eq. (6).

The value of V (010)
RESET , V (011)

RESET , V (110)
RESET and V (111)

RESET are dependent on VA′ , VB , VC′ and Vload . If V (ABC)
RESET is greater 

than RESET threshold of memristor, state of cell B changes from “1” to “0”. Otherwise, the state of cell B remains 
“1”. By applying appropriate VA′ , VB , VC′ and Vload , the conditional RESET operation can be realized. Being dif-
ferent from the SET stage, the RESET stage of all ECA rules can be realized based on the “non-floating Rload ” 
strategy. Therefore, the “floating Rload ” strategy is not necessary for the RESET stage.

There are 16 types of conditional SET stages and 16 types of conditional RESET stages for the ECA rule, 
ranging from 0 to 255. Most of them can be accomplished through a single operation, except for SET operations 
with P5P4P1P0 = (0110) and (1001) and RESET operations with P7P6P3P2 = (0110) and (1001) . These specific 
SET/RESET stages can be achieved by performing two consecutive steps of operations.

Results and discussion
Figure 3 demonstrates the stateful three-memristor logic operations for ECA through simulation. Circuit-level 
simulation is conducted using LTspice XVII, with a Python-LTspice interface developed to control the entire ECA 
evolution process, providing flexibility to modify rules and collecting circuit parameters. The HRS and LRS of the 
memristors and the load resistor were set as follows: RHRS = 5× 106� , RLRS = 5× 102� and Rload = 5× 102� ; 
where the positive/negative threshold of memristor was defined as: VSET = 3V , VRESET = −3V , respectively. The 
node potentials during the SET stage and RESET stage for Rule 171 and Rule 116 of the memristor-based ECA 
are shown in Fig.  3a,b, respectively. Rule 171 employs the “non-floating” strategy; while Rule 116 employs the 
“floating” strategy. Figure 3c,d show the electrical characteristic of the memristor A, B and C during evolution, 
respectively. The red, blue and green line corresponds to the memristor A′ , B and C′ , respectively. Firstly, the 
READ operation was implemented, a voltage pulse with amplitude 0.1V and width 12 μs was sequentially applied 
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to memristor A′ , B and C′ , for reading the current state of memristor (cell). The resistance state of memristor 
can be measured by the magnitude of the reading current, where the HRS ( < 10µA ) and the LRS ( ≥ 10µA ). 
Subsequently, the conditional SET/RESET operation was carried out, the pulses with amplitude VA′ , VB and VC′ 
and width 12 μs were simultaneously applied to memristor A′ , B and C′ , respectively. After that, another READ 
operation was implemented to read the state of each memristor. The results of the stateful three-memristor logic 
operations for Rule 171 and Rule 116 are consistent with the predicted outcomes.

The ECA typically involves multiple cycles for evolution, requiring a comprehensive hardware control 
approach. Figure 4 illustrates the flowchart of the memristor-based ECA evolution. In this circuit, the initial 
state of all memristors is set to “0”. Therefore, the memristors in state “1” are initially RESET to the HRS. Sub-
sequently, each cell state of the ECA is mapped to the corresponding memristors. For the cells in state “1”, the 

Figure 3.  Node potentials during the evolution of memristor-based ECA with (a) Rule 171 and (b) Rule 116; 
The elertrical charactristic of memristor during evolution with (c) Rule 171 and (d) Rule 116.

Figure 4.  Flowchart of the memristor-based ECA evolution.
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corresponding memristors are SET to the low-resistance state (LRS). Following this, a small fixed voltage pulse is 
applied to measure the current flowing through each memristor. The resistance state (HRS or LRS) of the memris-
tor can be determined based on the measured current, which is then used to determine whether each cell should 
undergo the SET stage or RESET stage during evolution. After completing the SET stage for all cells in state “0” 
and the RESET stage for all cells in state “1”, dummy memristors are employed to synchronize the cell states for 
the next generation. The COPY  operation21 is utilized to synchronize the states of the main memristors with 
their corresponding dummy memristors. Once this step is completed, another evolution cycle is implemented 
to continue the ECA evolution process.

Figure 5 shows the evolution of the memristor-based ECA using different rules: 30, 54, 94, 110, 118 and 190. 
The ECA comprises 32 memristors, i.e., 16 main memristors and 16 dummy memristors, forming a total of 16 
cells. The ECA’s initial state is specified as “1” in the 8th cell from the left, while the remaining cells are set to “0”. 
It undergoes evolution for a total of 15 cycles. The results of the evolution align with the expected outcomes for 
all rules, demonstrating the accuracy of the proposed memristor-based ECA. The system exhibits solid robustness 
even in the presence of stochastic characteristics, as evidenced by the successful evolution despite the inclusion 
of 10% white noise in RON and ROFF and a 5% white noise component in the VON and VOFF in the adapted MMSS 
memristor model. Additionally, the error tolerance of parameters RON , ROFF , VON , and VOFF in the adapted 
MMSS memristor model is analyzed in Supplementary Note 3. The results of the evolution are consistent with 
the expected outcomes for all rules, demonstrating the accuracy and robustness of the proposed memristor-
based ECA. Despite some fluctuations in the resistance of the memristors during the evolution process, they do 
not have an impact on the overall results.

Conclusion
In this study, we have introduced a memristor-based ECA circuit design capable of encompassing ECA rules from 
0 to 255. Memristors serve as both storage elements for cell states and computing elements of ECA evolution 
by applying appropriate voltages to each node. The ECA evolution process is efficiently divided into two stages, 
SET and RESET, by leveraging the characteristics of memristors and employing stateful three-memristor logic 
operations. Through detailed circuitry analysis, we have successfully identified the mathematical principles that 
govern each parameter of the proposed memristor-based ECA. This comprehensive understanding enables us to 
effectively achieve the desired ECA rule. SPICE simulations were conducted to demonstrate the evolution process 
of the memristor-based ECA for various rules. The proposed approach successfully achieved the expected evolu-
tion patterns of the memristor-based ECA and exhibited solid robustness in handling the inherent stochasticity 
of memristors. With its simplicity, minimal operational steps and high flexibility, the proposed approach opens 
an avenues for further research in the hardware implementation of CA.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Figure 5.  Evolution of the memristor-based ECA with Rules 30, 54, 94, 110, 118 and 190.
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