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Evaluating the Bayesian causal 
inference model of intentional 
binding through computational 
modeling
Takumi Tanaka 

Intentional binding refers to the subjective compression of the time interval between an action 
and its consequence. While intentional binding has been widely used as a proxy for the sense of 
agency, its underlying mechanism has been largely veiled. Bayesian causal inference (BCI) has gained 
attention as a potential explanation, but currently lacks sufficient empirical support. Thus, this study 
implemented various computational models to describe the possible mechanisms of intentional 
binding, fitted them to individual observed data, and quantitatively evaluated their performance. 
The BCI models successfully isolated the parameters that potentially contributed to intentional 
binding (i.e., causal belief and temporal prediction) and generally better explained an observer’s time 
estimation than traditional models such as maximum likelihood estimation. The estimated parameter 
values suggested that the time compression resulted from an expectation that the actions would 
immediately cause sensory outcomes. Furthermore, I investigated the algorithm that realized this BCI 
and found probability-matching to be a plausible candidate; people might heuristically reconstruct 
event timing depending on causal uncertainty rather than optimally integrating causal and temporal 
posteriors. The evidence demonstrated the utility of computational modeling to investigate how 
humans infer the causal and temporal structures of events and individual differences in that process.

Time and causality are intertwined in the brain. Temporal relationships between events tell us about the causal 
structures in the  world1,2, whereas causal belief often distorts our subjective  time3–7. A well-known causality-
driven illusion is intentional binding—the compression of the time interval between an action and its conse-
quence. In a typical  method8, this effect is assessed by comparing two conditions. In the operant condition, one’s 
action (e.g., keypress) causes the presentation of a stimulus (e.g., tone). In the baseline condition, the same events 
occur by themselves in separate trials. Consequently, the observers perceive the action to be performed later 
and the stimulus to be presented earlier in the operant condition than in the baseline one. Named intentional 
binding, this effect is originally thought to be specific to (or at least prominent in) intentional action and its 
sensory  outcome9. When the movement was triggered by an external magnetic stimulation to the brain, Haggard 
et al.8 observed the repulsion, not compression, of the perceived interval. Moreover, compression was no longer 
observed when the observer was led to believe that there was no causality between the two  events10. Intentional 
binding therefore has been utilized as a proxy for the sense of  agency11; however, its interpretation has sparked 
considerable debate. Recent studies have questioned the necessity of intentionality in this effect. Similar temporal 
compression has been observed for outcomes of externally  induced12–14 or  forced15,16 actions and for unintended 
 outcomes17. Moreover, the essentiality of movement in intentional binding has been challenged by findings 
showing temporal attraction between externally triggered causal  events5,18,19, between the inhibition of an action 
and its  consequences20, and even between the actions of others and their  outcomes21. These discoveries have 
prompted some scholars to propose that temporal compression may be indicative of a broader mechanism of 
causality perception, thus favoring the term “temporal binding” or “causal binding”5,18. The connection between 
intentional binding and the sense of agency is still disputed, with some studies confirming their  correlation22, 
while others do  not23. This ongoing debate highlights the need for elucidation of the fundamental nature and 
underlying mechanisms of intentional  binding24,25.

Multisensory integration framework has attracted growing attention as a potential explanation for inten-
tional  binding26,27. Humans are consistently inundated with noisy signals from the external world. To optimize 
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perception in such a situation, the Bayesian brain integrates multiple signals weighted by their reliability. Com-
putationally, this integration serves to minimize the variance of final estimates, known as Maximum-Likelihood 
Estimation (MLE)28. In this context, intentional binding occurs when one estimates the timing of an event (e.g., 
action) by considering the timing of another event (e.g., tone). Supporting this notion, amplifying the sensory 
noise around motor or outcome events, thereby reducing their reliability, resulted in the timing estimates of 
these events being more heavily biased towards the timing of the other, more reliable  event26,29–31. However, MLE 
explains only how, but not when, signals are integrated. Importantly, the perceptual system cannot uncondition-
ally merge available signals because integrating irrelevant signals worsens estimation. Addressing this problem, 
the recent Bayesian Causal Inference (BCI) model elucidates the cognitive processes by which the brain infers 
the causal structure—determining which signals originate from the same source—through the synthesis of prior 
knowledge and sensory  evidence32–34. When one detects a remarkable (temporal or spatial) discrepancy between 
events, it breaks down the perceived causality and thereby  integration35.

Bαsed on the BCI model, Legaspi and  Toyoizumi36 implemented a computational model of intentional bind-
ing. In the multisensory contexts, integration is generally driven by the unity prior that different signals should 
represent an identical source in time and  space37,38. This assumption may not be appropriate in the case of 
intentional binding where the action and outcome are usually separated by a detectable (typically 250 ms)  gap29. 
Therefore, Legaspi and  Toyoizumi36 generalized the model by introducing a free parameter, µAO , that represents 
the expectation for the interval length between the Action and Outcome. An ideal observer represents the prob-
ability of experiencing a certain action-outcome interval, which biases temporal estimation. Such a flexible prior 
for temporal correlations is called the coupling prior37,38, as opposed to the unity prior for simultaneity. Impor-
tantly, their model predicts either repulsion or compression depending on whether the interval between sensory 
signals is shorter or longer than the prior. Thus, their model can explain the repulsion in an involuntary situation 
as well as  compression8. I refer to this model as the Legaspi and Toyoizumi (LT) model in the current study.

Computational modeling has multiple  benefits39. It outputs probabilistic predictions of an observer’s responses 
(e.g., time estimates) given sensory inputs. Comparing these predictions with observed data allows one to quan-
titatively evaluate the model’s ability. One can also compare the performance of different models and gain insight 
into the internal processes that produce the responses. Furthermore, estimating the model parameters specifies 
(the source of) interindividual and intergroup variation. While intentional binding is generally a robust phe-
nomenon, large individual differences are linked to specific psychiatric disorders such as  schizophrenia40–42. 
Examining internal parameters may provide cues on what characterizes one’s binding tendency.

Despite these potential advantages, the LT model’s validity has not been sufficiently examined thus far. Leg-
aspi and  Toyoizumi36 reproduced tendencies reported in two significant  studies8,31 but did not fit their model to 
observations at either individual or trial-by-trial levels. Moreover, although Legaspi and  Toyoizumi36 validated 
their model by referring to the involuntary condition  in8, it is unclear what process the external stimulation 
modulated, e.g., attention, motor execution, or causal cognition. It is thus worth testing the LT model in a typical 
voluntary condition. Finally, they considered only one model (i.e., the LT model) and did not compare it with 
other types of BCI models with different algorithms or those with non-Bayesian alternatives.

Therefore, the current study quantitatively evaluated the computational models of intentional binding based 
on empirical data. I measured intentional binding using a classic clock method. Instead of employing an atypical 
involuntary condition, I manipulated signal intervals by varying the physical size of action-outcome gaps. As 
mentioned above, the LT model that is based on a coupling prior predicts repulsion rather than compression 
when the signal interval is sufficiently short. Technically, this manipulation was required to isolate the causal 
and temporal priors, which both influence the binding  effects36. Implementing various computational models, I 
first examined their ability to distinguish their free parameters via parameter recovery. Then, for the first time, I 
fitted the models to observed data. Based on the model fit and estimated parameter values, I discuss the possible 
mechanisms underlying intentional binding.

Results
Behavioral results
I conducted an online experiment (N = 76) based on a typical intentional binding task (Libet clock paradigm; see 
“Method” for details). The experiment was developed based on the JavaScript plugin with which Galang et al.43 
replicated robust intentional binding. In separate blocks, observers performed arbitrary keypress and/or heard 
a tone while viewing a clock rotating on a screen, and they estimated the timing of either of the events based on 
the clock-hand position. In the baseline tasks, they estimated the timing of the keypress or tone presentation that 
occurred independently. The operant tasks included three conditions of the action-outcome interval; observers’ 
keypress randomly caused a tone after 0 ms, 250 ms, or 500 ms. Estimation errors were calculated by subtracting 
the actual time of a keypress or tone from the reported time of the corresponding event.

The distributions of the estimates are illustrated in Fig. 1a. The baseline estimates for the keypress and tone 
timing were respectively biased in anticipatory and lagged ways (keypress baseline: mean = -52.22, SD = 61.56; 
tone baseline: mean = 18.27 ms, SD = 61.56 ms). The estimation errors from the analysis of variance (ANOVA) 
revealed the main effects of the conditions (baseline, 0 ms operant, 250 ms operant, or 500 ms operant) for 
both keypress ( F(3, 225) = 16.04 , MSE = 1029.85 , p < 0.001 , η̂2G = 0.028 ) and tone timing ( F(3, 225) = 10.66 , 
MSE = 2, 855.29 , p < .001 , η̂2G = 0.030 ). Compared to the baseline condition, the keypress timing was overesti-
mated in the operant trials with the 250 ms (t(75) = 4.59, p < 0.001, d = 0.30) and 500 ms (t(75) = 3.94, p = 0.001, 
d = 0.31) action-outcome intervals but not in the 0 ms (t(75) = − 0.21, p = 0.833, d = 0.01) interval. There were also 
significant differences between 0 and 250 ms (t(75) = 6.63, p < 0.001) and 0 ms and 500 ms (t(75) = 4.23, p < 0.001), 
but not between 250 and 500 ms (t(75) = 1.30, p = 0.394). In contrast, the tone timing was underestimated com-
pared to the baseline in all the interval conditions (0 ms: t(75) = − 4.54, p < 0.001, d = 0.38; 250 ms: t(75) = -3.60, 
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p = 0.002 d = 0.29; and 500 ms: t(75) = -4.76, p < 0.001, d = 0.42). While there was no significant difference in the 
timing estimations between the 0 ms and 250 ms conditions (t(75) = 0.74, p = 0.464), and between the 0 ms and 
500 ms conditions (t(75) = − 1.25, p = 0.427), a significant difference was observed between the 250 and 500 ms 
conditions (t(75) = − 3.65, p = 0.002). In summary, I confirmed the biases in time estimation consistent with 
typical intentional binding (i.e., compression) in all the conditions except for the action in the 0 ms condition.

Summing up action and outcome binding, I plotted the overall intentional binding in Fig. 1b. Perceived inter-
vals were compressed in proportion to the lengths of the physical intervals ( F(2, 150) = 7.53 , MSE = 4, 793.56 , 
p = 0.001 , η̂2G = 0.040 ). Although the difference between the 0 and 250 ms conditions was not statistically 
significant (t(75) = 1.77, p = 0.080, d = 0.24), the 500 ms condition elicited greater compression than the 0 ms 
(t(75) = 2.87, p = 0.011, d = 0.46) and 250 ms (t(75) = 3.43, p = 0.003, d = 0.23) conditions. One-sample t-tests 
confirmed the occurrence of compression in all the intervals (0 ms: t(75) = 4.27 , p < 0.001 , d = 0.48; 250 ms: 
t(75) = 5.60 , p < 0.001 , d = 0.64; and 500 ms: t(75) = 5.75 , p < 0.001 , d = 0.65).

Computational modeling
Introduction of models
To explore the mechanism that produced these behavioral results, a computational modeling analysis was per-
formed. Here, I explored twelve computational models as potential explanations for intentional binding. As 
the details for the model algorithms, fitting, and comparison are described in the “Methods” section, I briefly 
introduce the concepts of each model.

Eight of the twelve models were variations of the BCI accounts in which an observer infers the causal and 
temporal structures of events based on their prior expectations and sensory evidence. These models assume 
that observers have two priors regarding causal and temporal relationships between the action and the tone, 
respectively. The causal prior, P(ξ = 1), represents the prior probability of a causal relationship between an 
action (i.e., keypress) and subsequent events (i.e., tone). The temporal prior depends on the causal belief. The 
observers have an expectation for the interval between causally linked keypress and tone, which plays a role as 
joint prior of keypress and tone timing. Here, this prior is assumed to be a Gaussian distribution with mean µAO 
and standard division (SD) σAO . For an observer with a unity prior, µAO approaches zero. Meanwhile, for the 
acausal events that occur independently, there should be no relationship between event timing and therefore 
the prior for event interval would be flat (i.e., a uniform distribution) instead of a Gaussian distribution. The 
likelihood is calculated as the probability at which the occurrence of an event is signaled to the brain at a given 
time. For causal and acausal cases, one can shape the posterior distribution for event timing by combining the 
temporal prior and the likelihood function and obtain the candidates of time estimation as the peak location of 

Figure 1.  Behavioral results of the experiment. (a) The distributions and means of the time estimates (the dots 
with error bars below the distribution plots) were reported in each action-outcome interval condition (0, 250, or 
500 ms). The x-axis represents the timeline, with the actual time of keypress marked as zero. The time estimates 
are represented by color-coded plots: green for keypress estimates and purple for tone estimates. Lighter shades 
of these colors represent estimates in the operant condition, while darker shades denote baseline estimates. 
For ease of comparison, the single baseline estimates for keypress and tone are replicated across each interval 
condition. This is done by adjusting their offsets, allowing for a direct visual comparison with the operant 
condition estimates in each interval. (b) The mean magnitude of the time compression (i.e., intentional binding) 
as a function of action-outcome interval length. The sizes of the compressions were calculated by summing up 
the perceptual shifts from the baseline for the keypress and for the tone (see Methods for details). The symbols 
above the pairs of bars indicate significance in the post-hoc pairwise t-tests: **p < 0.01, *p < 0.05, and +p < 0.10. 
All error bars represent standard errors for within-participants  design44.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2979  | https://doi.org/10.1038/s41598-024-53071-7

www.nature.com/scientificreports/

the distribution (maximum-a-posteriori; MAP). Therefore, temporal estimation does not fully depend on when 
sensory signals arrive but is subject to their expected intervals for the likely causal scenario.

To draw final estimates, an observer can employ several strategies on how to utilize the two potential esti-
mates depending on causality. The LT  model36 directly compares the posterior probabilities of estimates (i.e., 
MAP) between causal and acausal cases and identifies more likely estimates. This corresponds to adopting the 
MAP estimates of the joint posterior of causal scenario and event timing. In contrast, multisensory research 
has proposed that causal inference and timing estimation can be hierarchically performed; the brain first infers 
causality by calculating the marginal posterior probability and then explores the likely event timing  accordingly45. 
We consider three strategies respectively called model-selection, model-averaging, and probability-matching46. 
Model-selection refers to a strategy where the observer selects the most likely causal scenario (either the pres-
ence or absence of a causal relationship) based on the posterior probabilities and then makes estimations in this 
chosen scenario. This is different from model-averaging, where the observer takes into account both causal and 
acausal scenarios, averaging the estimates across these scenarios weighted by their respective posterior prob-
abilities. Probability-matching, on the other hand, is another strategy where the observer randomly chooses 
between the causal and acausal scenarios based on their posterior probabilities for each trial, thereby matching 
the probability distribution of the scenarios. In summary, the BCI variants comprised two components, i.e., two 
types of temporal prior (i.e., the unity and coupling priors) and four estimation strategies. Factorially combining 
them resulted in the eight BCI models.

In contrast to the BCI models, I expressed a mandatory integration model without causal inference by fixing 
P(ξ = 1) to one. In this model, the signals are always integrated regardless of their timing, which means simple 
MLE. Because the four estimation strategies above make no difference when P(ξ = 1) = 1 , there were only two 
types of mandatory integration models with the coupling and unity priors, respectively.

The remaining two models represent non-Bayesian accounts. First, I assessed a fixed-criterion model in which 
the observer provided temporal judgments by averaging the timing of the action and outcome whose temporal 
gap was smaller than a certain threshold φ47. Alternatively, the false-report model assumes that observers can 
falsely report the non-target event instead of the target event with a certain probability, Pfr . For instance, when an 
observer estimates the outcome timing in some trials of the action operant condition, the mean action estimate 
apparently shifts toward the outcome, and vice versa. Although averaging the data including these erroneous 
responses can produce apparent binding-like results, such a risk has been overlooked in previous studies.

These 12 models above predict estimates for keypress and tone timing in operant tasks based on the distribu-
tion of the estimates in the baseline tasks. In the baseline tasks, as there is only one event present, the observers 
simply make time estimates based on the sensory inputs. Therefore, one can regard the distribution of time 
estimation in baseline tasks as the distribution of sensory noises. The mean and variance of this baseline distri-
bution are included in all 12 models as the fixed parameters. Moreover, the models can be evaluated relative to 
a baseline null model in which observers derive estimates similarly in the operant and baseline tasks and thus 
no binding occurs.

Parameter recovery
First, I investigated whether the models could identify their parameters via parameter recovery. Each simulated 
model was fitted to the data for 76 ideal observers whose free parameters were randomly sampled from the pos-
sible ranges (see “Methods” for details). The original and recovered parameter values were generally robustly 
correlated (mean r = 0.74, ts > 3.48, ps < 0.001, see Fig. 2 for details). Except for the BCI models with model-
selection, all the models recovered their parameters with high accuracy. The model-selection strategy always 
rejected the integration when the causal posterior was lower than a certain threshold, which seemed to make it 
difficult to isolate the parameters. For more detailed results, including all the values of original and recovered 
parameters, see Supplementary Table S1.

Model recovery
I also conducted a comprehensive model recovery analysis to assess the discriminative ability of the 12 compu-
tational models. The analysis involved fitting each model to datasets generated by these same models obtained 
in the earlier parameter recovery. The fitting was evaluated based on the Akaike information criterion (AIC), 
which considers both the model’s goodness of fit and its complexity. Figure 3 presents a model recovery matrix, 
which visualizes the comparative effectiveness of each model in predicting the datasets generated by itself and 
by the other models. The heatmap revealed a general trend where models accurately identified data from their 
own simulations, as indicated by the prominent diagonal line. The analysis generally demonstrated good dis-
crimination between Bayesian models and non-Bayesian models such as mandatory integration, fixed-criterion, 
and false-report. However, the matrix also revealed instances of less successful model discrimination. Especially, 
the Bayesian models with the joint posterior strategy and those with the model-selection strategy showed a 
less distinct separation, indicating a challenge in differentiating between the data they produced. The observed 
overlaps in discrimination underscore the need for careful interpretation in subsequent analyses.

Fitting results
The models were fitted to each observer’s data at the individual level and to the pooled data at the group level. 
In each case, I estimated the best free parameters using MLE.

The best models for individual observers are shown in Fig. 4a. The AIC indicated that the BCI models best 
explained 56 out of 76 observers’ data, whereas the fixed-criterion model yielded the best fits for only five observ-
ers (for all the AIC values for each model for each observer, see Supplementary Table S2). No observer was best 
explained by the mandatory integration models. At the individual level, there was no dominant BCI strategy 



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2979  | https://doi.org/10.1038/s41598-024-53071-7

www.nature.com/scientificreports/

shared by the observers. Of the 56 observers, 26 preferred the BCI models with the unity prior, and 30 preferred 
those with the coupling prior. Lumping different priors, 11 observers preferred the BCI models with the joint 
posterior, 22 the probability-matching, 19 the model-averaging, and 4 the model-selection. I plotted the model 
parameters’ estimated values in Fig. 4b–e. The estimated P(ξ = 1) tended to be smaller in the BCI models based 
on the joint posterior than in other BCI algorithms (Fig. 4b). While Legaspi and  Toyoizumi36 assumed P(ξ = 1) 
of 0.9 in the voluntary condition, the mean of the estimated value in the LT model (i.e., the BCI model based on 
the coupling prior and joint posterior) was ~ 0.5. Moreover, the mean (± SD) of µAO was 95.66 (± 94.32) ms in 
the LT model and 117.44 (± 130.09) ms in the BCI models overall (Fig. 4c), which were also smaller than previ-
ously  suggested36. The mean (± SD) of estimated φ was 186.65 (± 104.03) in the fixed-criterion model (Fig. 4d). 

Figure 2.  Results of parameter recovery. The relationships between original (randomly sampled) and recovered 
parameter values. Pearson’s correlation coefficients, r, and p-values in the tests for no correlation are shown for 
each pair. The words under each plot indicate model names. The capital characters in the model names indicate 
the algorithms (JP: BCI with joint posterior; MS: BCI with model-selection; MA: BCI with model-averaging; 
PM: BCI with probability-matching; MI: mandatory integration; FC: fixed-criterion model; and FR: false-report 
model). For the BCI models, the lowercase characters indicate the type of temporal prior: up: unity prior; and 
cp: coupling prior.
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Figure 3.  Model Recovery Matrix. This heatmap visualizes the cross-comparison of fit for 12 distinct models 
applied to datasets simulated by the same suite of models. Each cell indicates the percentage of datasets for 
which the row model provided the best explanation of the column-simulated data, with the color intensity 
reflecting the proportion (from 0 to 100, as denoted by the color scale on the right). Shades closer to pink signify 
a higher percentage, emphasizing the instances of accurate model recovery. The diagonal dominance suggests 
that models tend to best fit the data they generated, highlighting the discriminative power and fidelity of the 
modeling approach. See the Fig. 2 caption for the meaning of the model names’ acronyms.

Figure 4.  Results of individual-level model fitting. (a) The portfolio of models that best accounted for 
individual observers’ data (76 observers in total). (b) Distribution of estimated values of P(ξ = 1) for each type 
of BCI model. Small dots correspond to individual observers and large dots correspond to mean values. Error 
bars represent standard errors for within-participants  design44. (c) Distribution of the estimated values of µAO 
for models with the coupling prior. (d) Distribution of the estimated values of φ in the fixed-criterion model. (e) 
Distribution of the estimated values of Pfr in the false-report model. See the Fig. 2 caption for the meaning of the 
model names’ acronyms.
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Surprisingly, the remaining 15 observers’ estimations were best accounted for by the false-report model (Fig. 4a). 
Probably due to these observers, the group-level analysis for all pooled data identified the false-report model 
as the best (see Supplementary Table S3 for detailed results). The model’s best fitting parameter was Pfr = 0.04 , 
implying that observers made erroneous estimates in ~ 4% of all the trials, on average (see also Fig. 4e).

Considering that the 15 observers whose estimates were best accounted for by the false-report model might 
not appropriately perform the task, as planned (see pre-registration), I conducted another group-level fitting 
to the data excluding them. The results of this fitting are shown in Table 1, including the estimated parameter 
values, log-likelihood (LL), and AIC for each candidate model. They reveal that the probability-matching BCI 
model with the unity prior and that with the coupling prior almost equally better account for the remaining 
data. According to  Hilbe48, an AIC difference of less than 2.5 can be interpreted as nonsignificant. With an AIC 
difference of ~ 10 from these two models, the BCI based on the joint posterior and fixed-criterion model yield the 
next-best fits. Notably, only the mandatory integration models showed lower performance than the null model.

Discussion
BCI has been considered a promising account for intentional binding. While the theory has recently been for-
mulated as a computational model, it has not been thoroughly tested. In this study, I implemented a range of 
computational models, including both the BCI and non-BCI models, and quantitatively evaluated their ability. 
Instead of employing an involuntary condition, I manipulated the physical action-outcome interval length to 
test the model prediction. Although some partial problems remain, which will be discussed below, parameter 
recovery and model recovery ensured the validity of the model at a certain level. This allowed me to fit the models 
to observed data for the first time.

The mechanism underlying intentional binding
The parameter estimation and model comparison provided several implications for the underlying mechanism 
for intentional binding. Most of the observers were well explained by variants of BCI models, whereas some were 
explained by potential irregular responses. Notably, the BCI models outperformed the simple MLE as well as the 
fixed-criterion models at both individual and group levels. This indicates that humans do not always integrate an 
action and subsequent event but decide whether and how to integrate them by inferring their causal relationship.

I considered various BCI algorithms. While there was no consensus among individuals, probability-matching 
showed the best performance at the group level. In probability-matching, one sequentially infers the causal 
scenario and event timing, which is different from inference based on a joint posterior in the LT  model36. Inter-
estingly, probability-matching is a computationally suboptimal strategy compared to model-averaging46. As the 
calculation of the joint posterior and model-averaging are expensive, humans may heuristically reconstruct 
event timing depending on causal uncertainty. This is likely, given that probability-matching is known to be 
predominantly used in several perceptual and cognitive  tasks49–53. It should be noted, however, that some Bayes-
ian model algorithms, such as the probability-matching model with the coupling prior and the LT model, did 
not discriminate each other very well (see Fig. 3). Refinement of the models and experiments with larger sample 
sizes and more repetitions may contribute to drawing more robust conclusions.

In addition to the causal prior, the BCI models have the temporal prior regarding the action-outcome interval. 
The estimated mean values of temporal prior ( µAO ) were distributed around zero, with some variance across 
individual observers (Fig. 4c). The group-level fitting also estimated it at close to zero (see Table 1); therefore, 
introducing the coupling prior did not clearly improve model performance compared to using the unity prior. 
Indeed, although the coupling-prior model predicts illusory repulsion when signals inform a shorter interval than 
the prior, the behavioral results confirmed general binding effects (i.e., compression) even in the 0 ms condition. 

Table 1.  Results of group-level fitting after excluding the observers whose responses followed the false-report 
model. Values in parentheses represent the fixed parameters. Hyphens indicate the parameters that are not 
included in the model. See the Fig. 2 caption for the meaning of the model names’ acronyms.

Model P (ξ = 1) μAO φ Pfr Log-likelihood AIC

JPup 0.204 0 - - − 131,281.18 262,566.36

MSup 0.786 0 - - − 131,293.32 262,590.63

MAup 0.728 0 - - − 131,359.65 262,723.31

PMup 0.693 0 - - − 131,276.07 262,556.15

MIup 1 0 - - − 260,633.01 521,268.03

JPcp 0.202 0 - - − 131,296.44 262,598.88

MScp 0.769 0.119 - - − 131,297.52 262,601.04

MAcp 0.759 0 - - − 131,355.05 262,716.10

PMcp 0.702 0.046 - - − 131,275.16 262,556.31

MIcp 1 271.642 - - − 171,466.64 342,937.29

FC - - 198.837 - − 131,297.61 262,599.22

FR - - - 0.018 − 131,299.45 262,602.89

Null - - - - − 132,020.34 264,042.67
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These data suggest that, contrary to the assumption in the LT model, people tend to believe that their actions 
will immediately cause a consequence. Intentional binding, at least for an average observer, can be explained by 
unity integration as in classical multisensory  models37,38.

Nevertheless, setting the priors as free parameters is advantageous as it allows for a flexible description of 
binding tendencies. The current study confirmed substantial individual differences in the estimated parameters. 
Moreover, the causal and temporal priors depend on the task contexts. For example, the parameter for the causal 
prior should change by manipulating the action-outcome  contingency54–56. Additionally, people can learn the 
temporal structure of a  task57–60. Matute et al.61 also randomly presented 0 ms or 500 ms action-outcome intervals 
and revealed that the time estimate of the action shifted away from the outcome as more trials were experienced. 
One can reason that this was because the experience of delays led to larger time intervals being predicted. 
Consistent with this idea, when the interval length was blocked (not randomized), Glazebrook et al.62 observed 
strong binding for the 0 ms interval. It is thus possible that, in many studies that fix the interval to 250 ms, the 
prediction may approach that value (e.g., 230 ms), as Legaspi and Toyoizumi  suggested36. However, importantly, 
the current analysis estimated the temporal prior at approximately zero, despite the presence of 250 and 500 ms 
conditions, indicating the robustness of the unity assumption as a  prior63.

According to the BCI models, the fact that intentional binding reflects both causal belief and temporal pre-
diction may lead to difficulty in interpretation. Computational modeling can isolate these factors and explain 
binding tendencies in a certain individual and situation. It may help researchers investigate which (cognitive or 
sensory) processes are responsible for aberrant binding, for example, in  schizophrenia40–42. This approach may 
also be useful to explore the relationship between cognitive and sensory processes. While the current models 
assume dependency of temporal prior on causal inference, causal prior may also be subject to the temporal 
context. Although such influences could not be independently quantified in the current setting, future research 
can investigate their dynamics by manipulating causal and temporal contexts. Furthermore, contrary to the 
traditional analysis of binding, the computational models can provide trial-by-trial (probable) predictions of 
whether one would causally bind action and outcome. By assessing if this prediction would coincide with explicit 
causal judgments, researchers can explore a novel, powerful tool to investigate the sense of agency.

Possibility of non-Bayesian accounts
In principle, my findings support the idea that the BCI account can explain intentional binding. However, it is 
important to note that a substantial number of observers were better explained by a misunderstanding of the 
task demand, implying a potential problem with the typical measurements of intentional binding. This does not 
negate the occurrence of intentional binding in these observers but suggests that incidental errors might have 
inflated the observed binding effect. The classic clock task is usually designed to minimize such a risk by asking 
for action and outcome time reports in separate sessions. When the target events were mixed within a block, the 
binding effect was indeed  enhanced64. A critical limitation of traditional mean value analysis is its inability to 
differentiate between erroneous estimations and actual perceptual binding. As shown in this study, the compu-
tational modeling approach can help researchers manage such a risk.

Limitations
As a theoretical limitation of the present study, there may be other models that are better than those considered 
here. This study did not cover all possible accounts for intentional binding. Although I focused on models that 
assumed a common mechanism for perceptual shifts of keypress (action binding) and tone (outcome binding), 
some researchers have questioned this idea. For example, Tonn et al.65 observed no correlation between the mag-
nitude of action binding and that of outcome binding across individuals (see  also25). I also did not find similar 
changes in action and outcome binding as a function of interval length. This evidence raises the question of the 
validity of the overall compression as an index and suggests independent mechanisms for two subcomponents. 
 Hon66 provided a theoretical explanation for action and outcome binding, attributing them to attentional pro-
cesses and predictive processes respectively. Nevertheless, to the best of my knowledge, there is currently no 
theory that independently provides quantitative predictions for each type of binding. Future studies are expected 
to build a computational model that explains the dissociation of the two binding types and compare it with the 
common mechanism model.

Furthermore, there are several practical limitations. First, the clock paradigm was used to measure intentional 
binding; however, other tasks, such as direct interval  estimation18,19,21,22,67–70, can also be used to measure this 
effect. Given that these tasks possibly engage different  processes25,71, the current findings may not be applicable 
to other measurements. Additionally, this study was conducted in an online setting, which may have introduced 
uncontrolled noise such as latency in tone presentation and variability in tone timing. These factors may have 
increased the length or uncertainty of the event interval. I believe the risk of these noises was minimized by 
manipulating the action-outcome intervals for an observer and incorporating individual baseline differences 
into the model. Nonetheless, it is worth noting that the absolute values of the estimated parameter (e.g., µAO ) 
should be interpreted with caution. Moreover, the present study only quantified the mean, but not the variance, 
of the temporal prior distribution. It was difficult to estimate the variance while differentiating it from other 
parameters, such as P(ξ = 1) , in the current  design36. It is possible that there are also individual differences in 
the variance of this distribution, with some observers having a strong expectation for a specific interval length 
while others do not have such an expectation. Given that the perceived order of actions and outcomes is unlikely 
to be reversed, future models might consider asymmetric distributions like log-normal or gamma distributions 
for the temporal prior instead of the Gaussian distribution.
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Conclusion
In conclusion, this study provides the first demonstration of fitting the computational models for intentional 
binding to trial-by-trial observation. The findings support the idea that people use BCI to recognize causal and 
temporal event structures. Additionally, probability-matching emerged as a possible candidate for implementing 
BCI. These results provide insight into the mechanisms underlying intentional binding and highlight the useful-
ness of computational modeling in understanding this phenomenon. Adopting this computational approach 
may also enable future research to characterize action-outcome binding patterns in both healthy and clinical 
populations by quantifying their causal and sensory priors.

Methods
Computational model
All the models shared the assumption regarding how ideal observers generate estimates in the baseline condi-
tion but differed in the assumptions in the operant condition. Here, I define the actual timing of an action as 
the onset time ( t∗A = 0 ). Although the tone occurs by itself in the baseline condition, I express the actual time 
of an outcome, t∗O , by the corresponding action-outcome interval, tAO (e.g., 250 ms), to compare with that in the 
operant condition ( t∗O = t∗A + tAO ). The letters A and O in the parameter names represent ’action’ and ’outcome,’ 
respectively, while the asterisk denotes the actual value (physical timing). Our time perception is not precise in 
itself and is subject to internal noise and mechanical bias. The initial percept is thus expected to follow a Gaussian 
distribution whose mean is biased from the actual time and whose variance is the level of internal noises, namely,

where bA and bO represent biases, σA and σO represent noises, and τA and τO represent event timing for action 
and outcome, respectively.

The task requires an inverse inference to find the most likely timing of action t̂baselineA and outcome t̂baselineO 
from the corresponding noisy signals, τA and τO , respectively. A Bayesian observer solves this by exploring the 
timing of action tA and outcome tO that maximize the likelihoods given by the conditional probabilities,

As Eq. (2) takes on its maximum values when τA = tA and τO = tO,

Therefore, one can regard Eq. (1) as the distributions of baseline estimates and can obtain the approximation 
of the parameters, bA , σ 2

A , bO , and σ 2
O , from observation (see “Results”).

Models based on Bayesian causal inference
In the operant condition, the observers experience two events, an action and an outcome. A Bayesian observer 
integrates these different signals by weighting their reliability to obtain the best estimates. Details can be found 
in Ref.36; however, in summary, their BCI model further assumes that such integration occurs only when the 
observers believe the two events were correlated, that is, the action caused the outcome. The observer is thus chal-
lenged by two intertwined problems: when events occurred and whether they were causal. An optimal strategy 
maximizes the posterior probability, P(tA, tO , ξ |τA, τO) , that depends on the causal case, ξ . The binary parameter, 
ξ , indicates whether the action and outcome are relevant ( ξ = 1 ) or not ( ξ = 0 ). From the Bayesian theorem,

Given that  the init ia l  percepts ,  τA and τO  ,  are  independent of  the causal ity  ξ  , 
P(τA, τO|tA, tO , ξ) = P(τA|tA)P(τO|tO) . Given P(tA, tO , ξ) is a joint distribution of tA , tO , and ξ  , 
P(τA, τO|tA, tO , ξ)P(tA, tO , ξ) = P(τA|tA)P(τO|tO)P(tA, tO|ξ)P(ξ). Thus, the numerator that determines the peak 
location (i.e., maximum likelihood estimate) can be decomposed as follows:

The conditional probabilities, P(τA|tA) and P(τO|tO) , are likelihoods of sensory signals given event timing 
and are given by Eq. (1). The P(tA, tO|ξ) , the prior of event timing, depends on the causality. When the action 
and outcome are correlated ( ξ = 1 ), their gap should be normally distributed and, otherwise ( ξ = 0 ), the prior 
distribution should be the uniform distribution, that is,

(1)
τA ∼ N

(
t∗A + bA, σ

2
A

)

τO ∼ N
(
t∗O + bO , σ

2
O

)

(2)
P(τA|tA) = 1√

2πσA
exp

(
− (τA−tA)

2

2σ 2
A

)

P(τO|tO) = 1√
2πσO

exp
(
− (τO−tO)

2

2σ 2
O

)

(3)t̂baselineA = τA
t̂baselineO = τO

(4)P(tA, tO , ξ |τA, τO) = P(τA ,τO |tA ,tO ,ξ)P(tA ,tO ,ξ)
P(τA ,τO)

.

(5)P(τA, τO|tA, tO , ξ)P(tA, tO , ξ) = P(τA|tA)P(τO|tO)P(tA, tO|ξ)P(ξ).

(6)P(tA, tO | ξ) =






exp

�
− (tO−tA−µAO)

2

2σ2AO

�

√
2πσAOT

(ξ = 1)
1
T2 (ξ = 0)
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where µAO is a prior for the action-outcome interval and σAO is its standard deviation. Moreover, T represents 
the finite integral ranges for tA and tO to normalize the probability distribution.  Following36, the fixed parameters, 
σAO and T , were set to 10 ms and 250 ms, respectively. Note that µAO is a free parameter in the model with the 
coupling prior, whereas it is fixed to zero in the model with the unity prior.

Combining Eqs. (2) and (6), an observer obtains the optimal estimates that maximize the posterior probability 
(i.e., the MAP estimates) in each causal scenario, Eq. (5). In the causal case,

with the total variance, σ 2
tot = σ 2

A + σ 2
O + σ 2

AO . In the acausal case, like the baseline estimates, the peak locations 
are computed simply based on P(τA|tA) and P(τO|tO) :

There are several possible ways to determine the final estimates using these conditional estimates. In the 
model proposed by Legaspi and  Toyoizumi36, one prefers the MAP of the joint posterior of causality and event 
timing. Because the estimates, tA and tO , at the peaks are known as Eqs. (7) and (8), the ratio of the peak values 
can be computed:

The observer finally takes the estimates for the causal case with the higher peak (MAP);

In addition, I implemented hierarchical strategies for causal inference. Instead of the MAP of the joint pos-
terior, P(tA, tO , ξ |τA, τO) , the observer may use the marginal probability of each causal scenario, given by

with

and

here, three strategies were considered to produce the final estimate. With the model-selection strategy, the 
observers consider only the most likely case:

Meanwhile, with the probability-matching strategy, the use of estimates is stochastically determined in accord-
ance with the probability of each case:

(7)
t̂A,ξ=1 = τA + σ 2

A

σ 2
tot
(τO − τA − µAO)

t̂O,ξ=1 = τO − σ 2
O

σ 2
tot
(τO − τA − µAO)

(8)
t̂A,ξ=0 = τA
t̂O,ξ=0 = τO

(9)r ≡
max
tA,tO

P(tA,tO,ξ=1|τA,τO)
max
tA,tO

P(tA,tO,ξ=0|τA,τO) .

(10)
t̂operantA =

{
t̂A,ξ=1if r > 1

t̂A,ξ=0if r ≤ 1

t̂operantO =
{
t̂O,ξ=1if r > 1

t̂O,ξ=0if r ≤ 1

(11)
P(ξ = 1|τA, τO) =

P(τA, τO, ξ = 1)

P(τA, τO, ξ = 1)+ P(τA, τO, ξ = 0)

P(ξ = 0|τA, τO) = 1− P(ξ = 1|τA, τO)

(12)

P(τA, τO, ξ = 1) =
∫ ∫

R

P(ξ = 1|tA, tO, τA, τO)dtAdtO

= P(ξ = 1)σAO√
2πσAOTσtot

exp

(
− (τO − τA − µAO)

2

2σ 2
tot

)

(13)

P(τA, τO, ξ = 0) =
∫ ∫

R

P(ξ = 0|tA, tO, τA, τO)dtAdtO

= P(ξ = 0)

T2
.

(14)
t̂operantA =

{
t̂A,ξ=1 if P(C = 1|τA, τV ) > 0.5

t̂A,ξ=0 if P(C = 1|τA, τO ) ≤ 0.5

t̂operantO =
{
t̂O,ξ=1 if P(C = 1|τA, τO ) > 0.5

t̂O,ξ=0 if P(C = 1|τA, τO ) ≤ 0.5
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Finally, while the two strategies above exclusively employ either the causal or acausal case in a trial, the 
model-averaging strategy integrates estimates based on causal and acausal cases by weighting their likelihood:

Fixed-criterion model
As an alternative to the BCI model, the fixed-criterion model proposes that the observer simply averages the 
timings of action and outcome signals when their interval is below a certain threshold, φ :

False-report model
In the false-report model, the observer in the operant condition accidentally reports the timing of another event 
rather than the to-be-reported one at a certain probability, Pfr:

Null model
The baseline model assumes that the observers similarly estimate the timing in the baseline and operant 
conditions:

predicting no intentional binding.

Experiment
Ethical considerations
This study was approved by the institutional review board of the University of Tokyo (no. 202119) and was 
conducted in accordance with the ethical standards of the 1964 Declaration of Helsinki. All observers provided 
informed consent prior to the commencement of the experiments.

Deviations from pre-registration
The experimental methods, including the sample size, procedures, and exclusion criteria were pre-registered 
(https:// aspre dicted. org/ rc8y6. pdf). Although this included the analysis plan for summarized behavioral data, I 
changed the ANOVA design because I noticed that the registered one (2*3 repeated-measure ANOVA) was not 
consistent with the experimental design. The computational modeling analysis was exploratory. Only the rough 
plan was pre-registered in which I would compare models using the AIC by fitting the data at the group and 
individual levels and excluding participants whose responses would best be explained by either the false-report 
model or the null model.

Observers
I set 80 observers as the target sample size. According to Galang et al.43, this sample size is sufficient to detect 
action and outcome shifts with typical effect sizes reported in a meta-analysis25. Assuming that data from some 

(15)

t̂operantA =






t̂A,ξ=1 if P(ξ = 1|τA, τO ) > p
where p ∈ [0 : 1] uniform distribution

t̂A,ξ=0 if P(ξ = 1|τA, τO ) ≤ p
and sampled on each trial

t̂operantO =






t̂O,ξ=1 if P(ξ = 1|τA, τO ) > p
where p ∈ [0 : 1] uniform distribution

t̂O,ξ=0 if P(ξ = 1|τA, τO ) ≤ p
and sampled on each trial

(16)
t̂operantA = P(ξ = 1|τA, τO )t̂A,ξ=1 + P(ξ = 0|τA, τO )t̂A,ξ=0

t̂operantO = P(ξ = 1|τA, τO )t̂O,ξ=1 + P(ξ = 0|τA, τO )t̂O,ξ=0

(17)
t̂operantA =

{
τA+τO

2 if (τO − τA) ≤ φ

τA if (τO − τA) > φ

t̂operantO =
{

τA+τO
2 if (τO − τA) ≤ φ

τO if (τO − τA) > φ

(18)

t̂operantA =






τA if Pfr > p
where p ∈ [0 : 1] uniform distribution
τO if Pfr ≤ p
and sampled on each trial

t̂operantO =






τO if Pfr > p
where p ∈ [0 : 1] uniform distribution
τA if Pfr ≤ p
and sampled on each trial

(19)
t̂operantA = t̂baselineA = τA
t̂operantO = t̂baselineO = τO ,

https://aspredicted.org/rc8y6.pdf
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observers would be excluded from the analysis due to incomplete commitment and systematic issues, I invited 
100 observers via an online crowdsourcing service (CrowdWorks; https:// crowd works. jp/). Eighty-three partici-
pants appropriately completed the experiment on time and I analyzed the data from 76 observers, excluding five 
left-handed ones and two with low performance (33 females; mean ± SD of age = 41.28 ± 9.01).

Procedure
The experimental procedure was almost the same as that in the web-based experiment by Galang et al.43, except 
that there were three levels of the action-outcome interval. The experiment was conducted on a web browser 
with a JavaScript application and a jsPsych  plugin72. Observers viewed a clock rotating on a screen and estimated 
the timing of the target event based on the position of the clock hand. There were four types of tasks across 2 
(measurement: baseline or operant) measurements by 2 (target event: keypress or tone) events. In the action 
baseline task, observers pressed the space bar and reported the timing of the keypress. In the outcome baseline 
task, they heard a tone externally generated at a random point between 1280 and 3840 ms from the trial onset and 
estimated its timing. In the operant action/outcome task, observers pressed a key and heard the tone followed by 
a certain interval, and they estimated the key/tone timing. The action-outcome interval was pseudo-randomly 
chosen from 0 ms, 250 ms, or 500 ms. Note that, considering the possibility that a longer duration of outcome 
tone introduces temporal variability, an auditory tone with a duration of 50 ms was used, instead of the 200 ms 
tone employed by Galang et al.43. Observers performed different tasks in separate blocks. Each block of the 
baseline task contained 30 trials, whereas that of the operant task contained 90 trials comprising 30 repetitions 
of three possible action-outcome intervals. Observers completed two sets of randomly ordered task blocks (4 
tasks × 2 = 8 blocks), resulting in 60 trials per condition (i.e., 480 trials in total). Each block began with three 
practice trials, which were not analyzed.

Analysis
Behavioral data analysis
For each trial, an estimation error was calculated by subtracting the angle of the clock hand at the actual timing of 
the target event (keypress or tone) from the angle reported by the observer. These angle errors were transformed 
into temporal errors in ms. Positive (negative) numbers indicated overestimation (underestimation). For action 
and outcome timing, the mean errors were analyzed using one-way within-participant ANOVA with four condi-
tions (baseline, 0 ms, 250 ms, and 500 ms operants). Moreover, I quantified the action and outcome binding by 
subtracting the average errors in the corresponding (key or tone) baseline errors from those in the operant con-
ditions for each action-outcome interval length. Finally, intentional binding was calculated by summing up the 
amount of overestimation in action binding and underestimation in outcome binding. The binding effects were 
also analyzed using one-way ANOVA with three interval conditions. The p values below 0.05 were regarded as 
significant (two-tailed). Multiple comparisons were performed for significant main effects using Holm’s method.

Parameter recovery
For all the models, I simulated estimates for the same number of observers and trials (i.e., 480 trials for 76 observ-
ers) as in my experiment. To-be-recovered parameters were sampled from the uniform distributions whose ranges 
[lower, upper] were set to [0, 1] for P(ξ = 1) , [0, 500] for µAO , [0, 1000] for φ , and [0, 1] for Pfr . I fitted each 
model to a simulated dataset and assessed Pearson’s correlations between the sampled and recovered parameters.

Model recovery
In the model recovery process, I systematically fitted each of the 12 computational models to the datasets pro-
duced during the parameter recovery process, yielding a comprehensive 12 by 12 matrix of model fits. For each 
simulated observer within the dataset, the model yielding the lowest AIC score was identified as the best fitting 
model. The frequency with which each model emerged as the best fit was then calculated and expressed as a 
proportion of the total simulated observers within each set of simulated data.

Model fitting and comparison
All the models shared fixed parameters regarding baseline estimates, which were drawn from observation. The 
BCI models shared P(ξ = 1) as a free parameter. Only the models with the coupling prior had an additional 
free parameter, µAO . The threshold and false-report models each had one free parameter, φ and Pfr , respectively. 
Finally, the baseline model was a null model without a free parameter. I fitted each model to the data from each 
observer at the individual level and to the pooled data at the group level. The fitting was performed using MLE, 
defining the best parameter values that maximized the likelihood of a given model providing the observed esti-
mates. The likelihood was obtained by simulating the model by generating 100,000 pairs of τA and τO (i.e., Monte 
Carlo simulation). The Monte Carlo simulations give predictions about how responses would be distributed under 
a certain model for a given condition. Using this distribution, one can calculate how well the actual response in a 
given trial can be predicted (i.e., likelihood) by each model. I searched for the best parameters with  R73 and the 
R-package pso74. The possible parameter ranges were the same as those for parameter recovery. I then compared 
the different models’ abilities by reference to the best parameters based on the AIC, considering the difference 
in the parameter number. As a planned follow-up, I re-conducted the group-level fitting to the data excluding 
individuals whose responses were best accounted for by the false-report or baseline model.

https://crowdworks.jp/
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Data availability
The datasets and R sources for analyses during the current study are available in the Open Science Framework 
repository at https:// osf. io/ zsh8g/? view_ only= dc09b a2170 04414 98af9 e909a 2cf90 0e. The pre-registration of the 
experiment can be found in the AsPredicted repository (#97173) at https:// aspre dicted. org/ KMQ_ MHC.
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